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Abstract

Background: All polypeptide backbones have the potential to form amyloid fibrils, which are associated with a
number of degenerative disorders. However, the likelihood that amyloidosis would actually occur under
physiological conditions depends largely on the amino acid composition of a protein. We explore using a naive
Bayesian classifier and a weighted decision tree for predicting the amyloidogenicity of immunoglobulin sequences.

Results: The average accuracy based on leave-one-out (LOO) cross validation of a Bayesian classifier generated
from 143 amyloidogenic sequences is 60.84%. This is consistent with the average accuracy of 61.15% for a holdout
test set comprised of 103 AM and 28 non-amyloidogenic sequences. The LOO cross validation accuracy increases
to 81.08% when the training set is augmented by the holdout test set. In comparison, the average classification
accuracy for the holdout test set obtained using a decision tree is 78.64%. Non-amyloidogenic sequences are
predicted with average LOO cross validation accuracies between 74.05% and 77.24% using the Bayesian classifier,
depending on the training set size. The accuracy for the holdout test set was 89%. For the decision tree, the non-
amyloidogenic prediction accuracy is 75.00%.

Conclusions: This exploratory study indicates that both classification methods may be promising in providing
straightforward predictions on the amyloidogenicity of a sequence. Nevertheless, the number of available
sequences that satisfy the premises of this study are limited, and are consequently smaller than the ideal training
set size. Increasing the size of the training set clearly increases the accuracy, and the expansion of the training set
to include not only more derivatives, but more alignments, would make the method more sound. The accuracy of
the classifiers may also be improved when additional factors, such as structural and physico-chemical data, are
considered. The development of this type of classifier has significant applications in evaluating engineered
antibodies, and may be adapted for evaluating engineered proteins in general.

Background
Antibodies are used in a number of therapeutic proce-
dures such as target-specific anti-cancer therapy, immu-
nosuppression, and purging prior to bone marrow
transplants. Most of those antibodies are of nonhuman
origin, and their administration often results in the gen-
eration of adverse immune responses, which also limit
their efficacy [1]. Humanization is usually performed to
lessen the occurrence of these responses, to improve cir-
culation half-life, and to restore effector functions [1,2].
Current humanization strategies include the retention of
variable domains or the specificity-determining residues

(SDR) only, grafting of complementarity-determining
regions (CDR), and veneering [3-6].
Humanization, however, may decrease the thermal sta-

bility of an antibody and result in affinity reduction, as
well as amyloid fibril formation, especially when the
substitutions leave the humanized antibody prone to
unfolding [3,7,8]. Studies indicate that the potential to
form fibrils is a general property of polypeptide chains,
but the propensity for amyloidosis is largely influenced
by its sequence and the stability of its native state
[9-11]. Furthermore, there is evidence that some anti-
body sequences, notably kappa light chain sequences,
become prone to fibril formation due to point mutations
acquired during affinity maturation [12]. Apart from
these, events that lead to misfolding, such as conforma-
tional transitions between alpha helices and beta sheets,
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and partial or complete unfolding, could lead to amyloi-
dosis [13-15]. Consequently, it would be of interest to
develop a method to predict such events, as well as to
identify mutations that could lead to amyloidosis. Cur-
rently, a number of computational methods are available
for amyloidogenic potential prediction [16-18]. These
generally use either the physicochemical properties of
amino acids to create models for predicting aggregation
rate on mutation and identifying hotspots, or the infor-
mation from overlapping amyloidogenic polypeptide
decomposition [17]. Recently, a method using mean
packing density profiling has also been reported, and
has been found to be able to predict both amyloidogenic
and intrinsically disordered regions in both peptides and
proteins [19]. Nevertheless, these methods yield predic-
tions on which regions of a sequence are potentially
amyloidogenic; for highly similar sequences, as the case
is with both amyloidogenic and non-amyloidogenic anti-
bodies, results from such methods are not so easy to
distinguish (See Supplementary Information, additional
file 1). In this paper, we explore the use of naive Baye-
sian and decision tree classification methods for predict-
ing the amyloidogenic propensities of antibody
sequences, with the primary application of predicting
amyloidogenic propensities of engineered antibodies in
mind. The naive Bayesian method provides the advan-
tage of taking the effects of mutations at specific combi-
nations of positions into account. The decision tree, on
the other hand, intuitively allows the evaluation of more
factors that may contribute to the amyloidogenic poten-
tial. For generating the classifiers in both methods, 143
amyloidogenic antibody sequences derived from twelve
different germlines and 158 corresponding non-amyloi-
dogenic derivatives were used. The unambiguous assign-
ment of amyloidogenic and non-amyloidogenic
sequences to their respective germlines is a critical pre-
mise in this paper. Germlines are DNA elements that
define the basic, inherited antibody repertoire of an indi-
vidual, which are rearranged and mutated during the
response to foreign antigens [20]. As indicated pre-
viously, some sequences become prone to fibril forma-
tion after this mutation process [12]; consequently, the
generation of separate alignments for the amyloidogenic
and non-amyloidogenic derivatives of a single germline
might lead to the identification of mutation patterns or
characteristics exclusively associated with amyloidosis. It
is critical that sequences are assigned correctly to a
germline in order to ensure that the mutations observed
are actual mutations, and do not arise from incorrect
alignments. All alignments used in this paper are hand-
annotated.
To test the classifiers and to evaluate the effects of the

training set size, a holdout test set consisting of an addi-
tional 103 amyloidogenic sequences and 28 non-

amyloidogenic sequences for eight of the twelve germ-
lines was used. The naive Bayesian method, which is
solely based on positional information, yields a predic-
tion accuracy of 60.84% for amyloid-formers after LOO
cross-validation, which is consistent with the 61.16%
accuracy for the holdout test set. When the latter is
included in the training set, LOO cross-validation accu-
racy increases to 81.08%. Sequences classified using a
decision tree, on the other hand, yielded an average pre-
diction accuracy of 78.64% for the holdout test set.

Results
A direct implementation of the Naive Bayesian method
results in prediction accuracies between 60.84% and
81.08%
LOO cross-validation was performed to evaluate the
accuracy of the Bayesian classifier; this particular
method was used to allow the calibration data to be
reused as test samples while simulating the prediction of
future unknowns [21]. The average accuracy from this
validation was at 60.84 ± 35.96% for classifying amyloi-
dogenic sequences, with 25.95% of the non-amyloido-
genic sequences being misclassified (Table 1, AMC and
NAMC). Validation performed on the holdout test set
yielded an average accuracy of 61.16 ± 13.75%, which
falls within the LOO cross validation result (Table 1,
AM Test).
To evaluate the effects of training set size, the holdout

test set was combined with the original training set to
generate a new set of classifiers. These were again sub-
jected to LOO cross-validation, yielding a higher average
accuracy of 81.08 ± 29.33% (Table 1, AMC, new).

Germline-specific decision trees result in an average
prediction accuracy of 78%
In order to construct a decision tree, we analyzed the
nature of the mutations exclusively associated with amy-
loid formers using an algorithm and accompanying
visualization program that we have previously developed
[22,23]. Results indicate that most of the mutations that
occur exclusively in CDR residues or in FR residues of
amyloidogenic derivatives are most likely the biggest
contributors to misfolding, with 69% of the mutations in
exposed CDR resulting in a general increase in sheet-
forming propensity, as opposed to the 36% in buried
FRs (Figures 1 and 2; Table 2). In contrast, the comple-
ments (31% for exposed CDRs and 64% for buried FRs)
resulted in decreased sheet-forming propensities. We
used these information as branch weights for an initial
decision tree (Table 3); before establishing the weight
thresholds for classification, however, we checked if
paths taken by amyloidogenic and non-amyloidogenic
derivatives can be generalized. Interestingly, we
found no consensus paths for either amyloidogenic or
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Table 1 Naive Bayes classifier accuracy

Germline AMC1 NAMC AMC, new2 NAMC, new AM Test3 NAM Test

C A C A C A C A C A C A

J00248 5 8 13 15 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

M30446 0 6 7 10 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

X72813 0 6 18 19 1 8 19 19 1 2 N.A. N.A.

X93620 12 22 12 16 31 33 15 16 9 11 N.A. N.A.

X93627 6 12 14 14 17 19 13 14 4 7 N.A. N.A.

X93632 0 5 8 9 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

X93640 6 11 10 13 9 17 12 13 4 6 N.A. N.A.

Z22188 11 15 10 12 29 34 9 12 13 19 N.A. N.A.

Z22191 0 5 9 9 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Z22197 7 8 0 6 14 26 10 17 12 18 11 11

Z22208 7 13 12 14 31 35 13 20 8 22 4 4

Z73673 26 32 4 21 49 50 25 34 12 18 10 13

Accuracy (%) 60.84 ± 35.96 74.05 ± 31.49 81.08 ± 29.32 77.24 ± 13.04 61.16 ± 13.75 89.28 ± 13.32
1 Classifiers generated with the original training set comprised of 143 amyloidogenic and 158 non-amyloidogenic sequences
2 Classifiers generated with the original training set and the holdout test set
3 Results using AMC/NAMC, i.e. old classifiers

C = Correct; A = Actual

Figure 1 Normalized mutation matrices of amyloidogenic (Column A) and non-amyloidogenic derivatives (Column B) of 12 antibody
germlines. Original residues are in rows and corresponding replacement residues are in columns. The amino acids have been arranged
according to increasing b-sheet forming propensities [54]. The intensity matrix of the difference between the amyloidogenic and non-
amyloidogenic matrices (Column C) reflects the relative predominance of a mutation type in either amyloid or non-amyloid formers. A fourth
matrix set (Column D) is used to indicate the mutations that occur exclusively in amyloidogenic derivatives. Separate matrices were generated
for mutations in buried CDR, exposed CDR, buried FR and exposed FR positions.

David et al. BMC Bioinformatics 2010, 11:79
http://www.biomedcentral.com/1471-2105/11/79

Page 3 of 13



non-amyloidogenic sequences; instead, consensus paths
appear to exist for each germline (Figure 3A, Table 4).
Consequently, we constructed a second decision tree
which takes the germline of origin into account, as the
case was in the Bayesian analysis. Depending on the germ-
line, weights along selected paths are either boosted or
decreased (Figure 3B, Table 4). Thresholds for separation
were chosen to maximally distinguish samples in the train-
ing set (Table 5), and are evaluated using the holdout test
set. Table 6 lists the classification results per germline.

Discussion
The diversity of the antibody repertoire is generated
through the combinatorial recombination of a small
pool of germline genes and its somatic hypermutation.
Nevertheless, these diversification processes have set-
backs, including the generation of autoreactive antibo-
dies as well as structurally compromised antibodies [24].
The latter are implicated in diseases that range from
benign, high-level soluble light-chain production to
pathological deposition in glomerular basal membrane
cells, bone marrow plasma cells, interstitial tissues,
arterial walls and basement membranes [24,25]. These
unwanted effects often result from a set of mutations
whose consequences on the structure are not so evident,
so much so that the resulting unstable light chains
evade elimination during posttranslational quality con-
trol [24,26]. Avoiding such mutations or combinations
thereof is critical in antibody engineering.
From studies carried out on amyloidogenic antibodies,

some patterns that can be linked to amyloidosis have

Figure 2 Analysis of mutations exclusive to amyloidogenic derivatives. A rough analysis of mutation patterns could be made by dividing
the matrix using the diagonal, or by dividing it into quadrants. Mutations to the right of the diagonal are characterized by increased sheet-
forming propensities (+), while those to the left imply the opposite (-). In terms of the quadrants, which are numbered in the same way as the
Cartesian plane, the first contains information on mutations from low- to mid-propensity, sheet-associated amino acids to relatively high-
propensity sheet-associated amino acids (++), while the third quadrant contains the opposite (–). In the most general sense, mutations either on
the right of the diagonal, or in the first and third quadrants (shaded), would be the biggest contributors to destabilization. The analysis indicates
that a significant number of mutations in the exposed CDR residues result in increased b-sheet-forming propensities, while mutations in buried
FR residues tend to be associated with a decrease in b-sheet-forming propensities.

Table 2 Summary of mutations exclusive to amyloid
formers

Exposure,
Region

Increased b-sheet-forming
propensity

Decreased b-sheet-
forming propensity

Exposed
CDR

20 9

Exposed FR 20 19

Buried CDR 21 16

Buried FR 12 21
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been found. Poshusta and co-workers, for instance, have
reported that non-conservative mutations account for
0.6 - 0.79 of the total mutations in Vl sequences, while
0.4 - 0.59 account for the mutations in V� sequences
[27]. They also reported differences in the location of
these mutations in patients with different secreted levels
of light chains. Specifically, it is implied that the position
of mutations, and not the amount secreted, plays a more
important role in light chain amyloidogenic propensity,
based on studies on patients with very low light chain
levels but advanced amyloid deposition [27]. Conse-
quently, it is clear that two factors, at the minimum,
have to be considered in generating a protocol for pre-
dicting amyloid formation: the combination of positions
at which the mutation occurs, as well as how these
affect the structural stability of the antibody.
A review by Caflisch [17] classified the computational

approaches used in predicting protein and peptide
aggregation propensity into two general groups. The
first makes use of the physicochemical properties of the
amino acids to create phenomonological models for pre-
dicting aggregation behavior on mutation. The second,
on the other hand, uses the decomposition of amyloido-
genic peptides into overlapping segments. These are
then simulated to the level of atoms to obtain estimates
of aggregation propensity, as well as the structural

details of the aggregates. Some programs that have since
been developed to deal with amyloidosis include the
PASTA server [28,29], a fibril prediction program [30],
AGGRESCAN [16], Zyggregator [31], and Pafig [32],
among others. Nevertheless, these algorithms deal with
the prediction of the segments involved or possibly
involved in amyloidosis, but do not generate direct pre-
dictions on whether a given sequence will be amyloido-
genic or not. Here, we propose methods that may be
used to complement existing prediction protocols in
obtaining direct predictions about the amyloidogenicity
of an antibody sequence; the method may be extended
to other protein types, provided that there are suffi-
ciently related positive and negative training sets.
A Naive Bayesian classifier uses probabilities to link

hypotheses to events defined by a set of attributes. In
Mitchell [33], the Naive Bayesian classifier vNB is
defined as:

v arg P v P a vNB j i j

i

n



max ( ) ( | )

1

(1)

where vj is one of a set of V classes and ai is one of n
attributes describing an event.
This approach is attractive for the current problem,

where there are only two possible outcomes. The most
straightforward way of applying it is to use information
of the combinations of positions at which mutations
occur in amyloidogenic and non-amyloidogenic deriva-
tives of a single germline. For example, to gauge the
probability that a test sequence x derived from a germ-
line g will be amyloidogenic, one would use the Bayes
equation to evaluate the association between the posi-
tional combination of mutations, c, in x and the two
hypotheses:
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where xm1, xm2, ..., xmn define c, and with pAM and
pNAM being defined by the positional mutational prob-
abilities in amyloidogenic and non-amyloidogenic deri-
vatives, respectively. Applying this method (Methods
section, equations 4 and 5; Figure 4) yielded an average
prediction accuracy of 60.8%; for an independent test
set, the accuracy was 61.16% (Table 1). When the test
set is used for training as well, the accuracy of amyloid
sequence classification increases significantly. Misclassi-
fication of non-amyloidogenic sequences is also reduced

Table 3 Decision tree weights

Edge Weight Reference for weight

CDR 1.0 Ratio of CDR:FR mutations

FR 0.79

CDR - exposed 0.78 Ratio of buried:exposed CDR mutations

CDR - buried 1.0

FR - exposed 1.0 Ratio of buried:exposed FR mutations

FR - buried 0.85

CDR - exposed - Δ 0.69 Ratio of mutations increasing (Δ)
sheet-forming propensities to mutations
decreasing (▽) sheet-forming
propensities in exposed CDR residues

CDR - exposed - ▽ 0.31

CDR - buried - Δ 1.00 Ratio of mutations increasing (Δ)
sheet-forming propensities to mutations
decreasing (▽) sheet-forming
propensities in buried CDR residues

CDR - buried - ▽ 0.76

FR - exposed - Δ 1.00 Ratio of mutations increasing (Δ)
sheet-forming propensities to mutations
decreasing (▽) sheet-forming
propensities in exposed FR residues

FR - exposed - ▽ 0.95

FR - buried - Δ 0.74 Ratio of mutations increasing (Δ)
sheet-forming propensities to mutations
decreasing (▽) sheet-forming
propensities in buried FR residues

FR - buried –▽ 0.43
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Figure 3 Decision tree for the evaluation of individual mutations. A decision tree (A) was constructed in order to evaluate the contribution
of a mutation to amyloidogenicity. A path is followed for each mutation, depending on its position and exposure, as well as on the increase or
decrease in sheet-forming propensity associated with it. Each path leads to one of eight terminal nodes, which is associated with a score,
defined as the product of the weights (in italics) along the path leading to it. An analysis of paths taken by amyloidogenic and non-
amyloidogenic derivatives of the different germlines indicated that different pairs of terminal nodes may be used to provide maximum
separation between these derivatives. For instance, amyloidogenic derivatives of X93627 mostly end in leaf 1, while the non-amyloidogenic
counterparts are more frequently associated with leaf 7; germline derivatives that can be distinguished using specific terminal nodes are
indicated in the illustration. Based on this analysis, a final tree (B) was created which branches first on the basis of the germline to which the
derivative being tested belongs; the structure and weights of the original tree (A) are kept. Each edge emanating from a germline node is
connected to a copy of the original tree, where weights on paths which could be used for maximizing the separation between amyloidogenic
and non-amyloidogenic derivatives are either boosted or decreased tenfold. For the illustrative example in (B), paths for J00248 (Germline 1) and
Z22208 (Germline n) are shown.
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by an average of 3% (Table 1, NAM Test). This correla-
tion between the size of the training set and prediction
accuracy has been previously observed [34]. It may be
noteworthy to mention that the prediction accuracy for
derivatives of the germline X72813 did not improve sig-
nificantly even after the augmentation of the data set.
Predictions for this germline are similarly low with the
decision tree. Interestingly, most of the derivatives of
X72813 are implicated in light chain deposition disease
(LCDD). An interesting feature of LCDD-associated
sequences is that when these are synthesized in vitro,
the resulting proteins do not aggregate. Furthermore,
the analysis of these sequences frequently show no
obvious predisposition towards misfolding [35]. This
may be a possible explanation for the difficulty in
obtaining correct predictions for its amyloid-forming
derivatives. If this set is treated as an outlier, the average
prediction accuracy is 83.64 ± 18.49%.
In general, however, it is imperative to increase the

training set size - not only in terms of the number of
derivatives per germline, but in terms of the number
of germlines covered, in order to improve the perfor-
mance of the classifier. A development of a program
for automatically generating training sets is a non-tri-
vial task, however, and is beyond the scope of this
study. It could also be possible to consider other char-
acteristics, such as the physico-chemical and structural
effects of a mutation, as factors for defining pAM or
pNAM . Nevertheless, the question of how such factors
would be incorporated in the calculation has to be jus-
tified first, from both statistical and biological points-
of-view. Since our main interest is to provide a proof-
of-concept that a simple set of classification algorithms
may be used for predicting amyloidosis, we opted to
complement the Bayesian method with a decision tree,
where one could factor in additional effects of muta-
tions for classifying sequences.

Table 4 Summary of leaves providing maximum separation between amyloidogenic and non-amyloidogenic
derivatives of different germline sets*

Leaf J00248 M30446 X72813 X93620 X93627 X93632 X93640 Z22188 Z22191 Z22197 Z22208 Z73673

1 0.091 0.009 0.024 -0.016 0.042 0.046 -0.001 0.044 0.028 0.036 -0.032 -0.036

2 -0.030 0.008 0.009 -0.013 -0.135 -0.093 0.022 -0.075 0.073 0.089 0.052 0.062

3 -0.038 -0.001 0.071 -0.035 -0.038 -0.209 0.100 -0.085 -0.035 -0.017 0.068 0.003

4 -0.058 0.030 -0.145 -0.017 0.053 0.116 -0.008 -0.123 0.058 -0.198 0.039 0.014

5 -0.044 0.007 0.056 0.065 0.018 0.070 -0.009 -0.081 -0.092 -0.057 -0.025 0.008

6 0.132 -0.028 0.043 0.004 0.026 0.070 0.012 0.079 0.058 0.026 -0.006 -0.029

7 -0.058 -0.031 -0.054 -0.052 -0.048 0.000 -0.018 0.102 -0.082 0.158 -0.105 -0.016

8 0.007 0.006 0.066 0.063 0.083 0.00 -0.099 0.139 -0.011 -0.037 0.009 0.040

* Values were obtained by substracting the percentage of mutations in non-amyloidogenic derivatives from the percentage of mutations in amyloidogenic
derivatives terminating in a given leaf. Minimum and maximum values per germline set, which were used to identify the paths where scores were decreased and
boosted, respectively, are shown in italics and boldface, respectively.

Table 5 Summary of thresholds

Germline Threshold

J00248 1.70

M30446 1.50

X72813 1.75

X93620 0.65

X93627 0.85

X93632 1.80

X93640 2.50

Z22188 0.80

Z22191 0.75

Z22197 0.65

Z22208 1.50

Z73673 0.75

Table 6 Decision tree classification accuracy*

Germline AM NAM

J00248 N.A. N.A. N.A. N.A.

M30446 N.A. N.A. N.A. N.A.

X72813 1 2 N.A. N.A.

X93620 9 11 N.A. N.A.

X93627 7 7 N.A. N.A.

X93632 N.A. N.A. N.A. N.A.

X93640 3 6 N.A. N.A.

Z22188 14 19 N.A. N.A.

Z22191 N.A. N.A. N.A. N.A.

Z22197 13 18 9 11

Z22208 19 22 3 4

Z73673 15 18 9 13

Average accuracy (%) 78.64 ± 17.44 78.64 ± 6.30

* N.A. indicates that no additional sequences were obtained for this germline.
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Figure 4 Application of the naive Bayesian method for the prediction of amyloidosis. Given a set of amyloidogenic and non-
amyloidogenic derivatives of a single germline, it is possible to generate the probability that a mutation at a particular position would cause
amyloidosis or not. Briefly, separate mutation propensities for amyloid (pAM) and non-amyloid (pNAM) formers are generated by counting the
frequency of mutations per position. These fractions, as well as complements thereof (i.e. the probability that there will be no mutation in either
an amyloid-former or non-amyloid-former at a particular position, in black) are subsequently used to compute the amyloidogenic and non-
amyloidogenic probabilities of a test sequence. To calculate for the amyloidogenic probability of a test sequence, a probability is assigned to
each of the n positions in the sequence based on the characteristic of that position (i.e. if it contains a mutation or not). For positions
containing no mutations this probability is equivalent to qAM, qAM = 1 - pAM for position x. The probability for positions with mutations is equal
to pAM . Non-amyloidogenic probabilities are calculated in a similar manner, but with the use of pNAM instead of pAM . To avoid multiplications by
zero, the Laplace correction is used. A product of the probabilities is subsequently taken; if the product of amylodogenic probabilities is higher,
the test sequence is classified as amyloidogenic.
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Decision trees are particularly useful in classifying
unknowns into one of a finite number of categories,
based on the results of a series of tests on the attri-
butes of a sample [36,37]. It works by posing a series
of questions about the features associated with
unknowns; each question is contained in a node, and
each node has child nodes for each possible answer to
its question [38,39]. It eventually terminates in leaves,
which correspond to a classification. There are many
variants of decision trees; in the simplest form, ‘yes’/
’no’ paths are followed throughout the classification
process; in others, probability distributions over the
classes are used in order to estimate the conditional
probability that an item reaching a leaf belongs to the
class if defines [39]. In biology, it has been used in
Parkinson’s disease management [40], disease severity
profiling [41,42], toxicity analysis [43], large-scale pro-
teomic studies [44,45], microarray data classification
[46] and phylogenetic analysis, among other applica-
tions. Depending on the number of factors that will be
considered to classify the samples, decision trees may
be made by hand or constructed automatically using a
learning or an optimization algorithm [38,47]. Choos-
ing these factors and its arrangement on the tree to
optimally separate samples remain challenges in the
creation of decision trees; algorithms have since been
developed for optimal tree creation [36-38]. For this
study, four splitting variables were considered, based
on the mutation trends observed in both amyloido-
genic and non-amyloidogenic samples.
In order to obtain weights for the splitting variables,

mutation matrices were generated for the amyloiodo-
genic and non-amyloidogenic derivatives of the differ-
ent germlines. An interesting result from the analysis
of these matrices is that 69% of the mutations exclu-
sively found in exposed CDR residues of amyloid for-
mers appear to be implicated in higher sheet-forming
propensities, while 64% exclusive to buried FR residues
involve shifts to residues with lower sheet-forming
propensities (Figures 1 and 2, Table 2). This may sug-
gest that mutations stabilizing sheet structures in the
CDR, which normally assume loop structures, contri-
bute as much to amyloidosis as those that destabilize
the sheet structure in critical regions (i.e. buried FR
residues). This is not unlikely, based on some previous
observations. Hurle et al. [48], for instance, performed
a positional analysis of 36 amyloidogenic sequences to
find mutations that occur in less than 1% of all
sequences at a particular position. These mutations
were mostly found in CDRs, notably CDR1, for both �
and l light chains. Furthermore, Stevens et al.
observed that 24 out of the 26 invariant residues in �
light chains which drastically affect the structure of the
antibody upon mutation are found on the protein

surface, and make no obvious contributions to folding.
Mutations in CDRs are generally more varied, and its
contributions to amyloidosis, though not as easy to
pinpoint, are probably very significant [49]. Finally,
these results are consistent with predictions using
other methods (see supplementary information, addi-
tional file 1); this consistency may be viewed as a vali-
dation of our observations.
From these observations, a decision tree was created

to approximate the contribution of each mutation to the
overall amyloidogenicity of a sequence. The use of this
tree on the independent test set yielded a prediction
accuracy of 78.64% (Table 6), which is close to the 75%
prediction accuracy obtained when the decision tree is
tested on training set sequences. LOO cross validation
was not performed for this method, since this would
require weights to be changed as many times as there
are sequences. Classifiers generated with the training set
appear to have a better performance than those from
the naive Bayesian method. One possible reason was
that more factors are taken into consideration - one
approximates the effect of the mutation itself, as well as
the effect that it has in being at a particular region; at
the same time, it also roughly approximates the com-
bined effect of mutations, which are likely to be equally
responsible for misfolding as individual mutations
[27,50]. Nevertheless, this does not imply that the naive
Bayesian method is entirely without merit, since it is
clear that position or combinations of positions where
mutations occur has a key role in amyloidosis [27]. It is
also evident that more sequences have to be used, as
with the naive Bayesian method. Prediction results will
also be probably improved by including additional fac-
tors such as hydrophilicity, size and charge changes as
splitting variables, or refining the positions based on
precedent studies [27]. In adding splitting variables, the
construction of a decision tree could be performed
using an [automated] optimization algorithm [38].
A caveat for both methods, however, is the possibi-

lity of overfitting, which is the description of random
error, instead of true correlations. This phenomenon is
one of the key problems in machine learning, and may
occur when there are more degrees of freedom than
data [51,52]. Overfitted model results are not represen-
tative of the population behavior, and are unlikely to
be replicated. There are several rules of thumb for
avoiding overfitting, which includes having a minimum
of 10 - 15 observations per predictor variable, with lar-
ger sample sizes required in cases where the effect
sizes are small, or when predictors are highly corre-
lated [52]. For binary response models, the sample size
may not be directly relevant [52], although for this
problem, it appears that sample size plays an impor-
tant role. Due to the limited sample set size, it was

David et al. BMC Bioinformatics 2010, 11:79
http://www.biomedcentral.com/1471-2105/11/79

Page 9 of 13



only possible to perform a single holdout validation
and LOO cross validation, whose results were consis-
tent. However, for future work involving larger training
sets, it would be possible to include measures and per-
form more definitive tests to ensure that overfitting is
eliminated or minimized.

Conclusions
This exploratory study indicates that the Naive Baye-
sian classifier and decision trees may be used for
“yes"- or “no"-type predictions on the amyloidogenicity
of a sequence. Analysis of results from both methods
suggests that prediction accuracy may be improved by
optimizing the training set sizes, and by incorporating
more information about the alterations brought about
by mutations into the calculations. Some other factors
that may be considered include hydrophilicity and
charge changes brought about by the replacement
residues, with respect to its location, as well as the
way the mutations cluster from sequences with known
structures. Another factor that might be considered is
the sequence of immunoglobulin folding and the
implications of having mutations in the N-terminal
region, which is the first to be folded [53]. The further
development of these classification techniques, includ-
ing the possibility of creating a hybrid between Naive
Bayesian and decision trees, appears to be worthwhile;
these methods may eventually be adapted for predict-
ing the amyloidogenicity of non-immunoglobulin
sequences.

Methods
Sequences
The training set, comprised of 143 amyloidogenic and
158 non-amyloidogenic derivatives of the germlines
were obtained from the National Center for Biotechnol-
ogy Information (NCBI, http://www.ncbi.nlm.nih.gov/).
A holdout test set comprised of 103 amyloidogenic and
28 non-amyloidogenic sequences, chosen on account of
the absence of gaps, as well as the possibility of assign-
ing these unambiguously to a germline set, were also
obtained from the NCBI. Sequences were assigned to
the closest germline using ClustalW, and resulting align-
ments were manually annotated. Kabat numbering and
CDR/FR definitions were applied to all sequences. The
non-amyloidogenic derivation sets were constructed
from randomly chosen derivatives of each germline
which have, as a derivation set, approximately the same
total number of mutations as the amyloidogenic coun-
terparts. The first five amino acid residues are omitted
in the analysis, since these may have been primer-
derived. All sequences of the amyloidogenic and non-
amyloidogenic antibodies used in the analysis, which are
identified by their NCBI accession codes, as well as their

putative germline derivation, are in the supplementary
information (additional file 2).

Naive Bayesian Classification
We generated a Naive Bayesian Classifier for each germ-
line on the basis of its amyloidogenic and non-amyloi-
dogenic derivatives. Briefly, the probability p of a
mutation occurring at position x was quantified for both
amyloidogenic (pAM) and non-amyloidogenic (pNAM)
derivatives of the same germline. Raw values of pAM and
pNAM can take the value of 0; to avoid this, we used the
Laplace correction method, where 1 is added to the
numerator and 2 to the denominator. The respective
complements, qAM and qNAM, which represent the reten-
tion of the residue, is given by 1 - pAM or 1 - pNAM,
respectively. These probabilities are then used to calcu-
late the amyloidogenic and non-amyloidogenic propensi-
ties for a test sequence s derived from the same
germline as the training set. Supposing that s has muta-
tions at positions defined by the set M, the amyloido-
genic probability AM will be calculated as:

p q pAM AM

x

n n M

AM

x

n n M

x x
 









 
1 1

, ,

(4)

while the non-amyloidogenic probability is calculated
as:

p q pNAM NAM

x

n n M

NAM

x

n n M

x x
 









 
1 1

, ,

(5)

where x refers to the position (Figure 4). If AM is
greater than NAM, then the sequence is classified as
amyloidogenic; otherwise, it is classified as non-amyloi-
dogenic. Classifier accuracy was cross-checked against
both the training and test sets were used. Due to the
limited number of sequences obtained, validation is pre-
liminary, and consists of a LOO cross-validation, per-
formed for all amyloidogenic and non-amyloidogenic
derivatives, and a one-time holdout test validation.

Decision tree generation and sequence classification
A weighted decision tree was constructed to provide a
quantitative estimate of both individual and joint contri-
butions of mutations as functions of location (i.e. CDR/
FR), exposure and changes in sheet forming propensity.
The steps for generating the tree are shown in Figure 5.
Initially, separate mutation matrices for buried CDR
residues, buried FR residues, exposed CDR residues, and
exposed FR residues are generated for alignments of
amyloidogenic and non-amyloidogenic derivatives, based
on the algorithm described in [22]. Here, exposed resi-
dues were defined as residues having ≥ 25% accessible
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surface; exposure information was generated for each
alignment using structural homologues of the germline
sequence (see supplementary information, additional file
2). These were then visualized to facilitate easier analy-
sis, then post-processed by subtracting the non-amyloi-
dogenic from the amyloidogenic matrix image, resulting
in an image where the relative intensities are propor-
tional to the predominance of specific mutations. A bin-
ary matrix containing mutations exclusive to amyloid-
formers was also generated. In the matrices, residues
were arranged according to increasing b-sheet-forming
propensities (Table 7) [54], with the original residues in
the rows and the replacement residues in the columns,
such that all mutations to the right of the diagonal are
associated with increased sheet-forming propensities,
while those to the left correspond to decreased sheet-
forming propensities (Figure 2; Figure 5, step 1). The
trends observed in these matrices (Figures 1, 2 and 5,
step 2; Table 2) were then used as weights, which were
associated with the branches of the tree. At this point,
we determined if paths taken by amyloid and non-amy-
loid-formers could be generalized, or if these showed
germline dependence. This led to the identification of
paths that may be used in maximizing separation
between amyloidogenic and non-amyloidogenic deriva-
tives per germline (Table 4; Figure 5, step 3); for
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Figure 5 Steps in generating and testing a weighted decision tree. To create a weighted decision tree, mutations from amyloidogenic and
non-amyloidogenic derivatives of a single germline are organized into separate matrices that factor in location, exposure and sheet-forming
propensity into account (Step 1). These matrices are visualized and analyzed for general trends that may be transformed into weights (Step 2).
An initial tree is constructed from these information, which is tested against the training set (Step 3). From this testing, it became evident that
certain paths can be used for maximally separating amyloidogenic and non-amyloidogenic derivatives of a germline, and that these paths are
germline-dependent. We then generated a tree that takes the germline of origin into account, and which has different boosted paths. The final
step was to generate the classification threshold, which was determined from the analysis of scores for the test set (Step 4). This tree was then
used to classify sequences in an independent, holdout test set (Step 5).

Table 7 b-sheet forming propensities of amino acids [54]

Amino acid ΔΔ G (kcal mol-1)

Thr 1.1

Ile 1.0

Tyr 0.96

Phe 0.86

Val 0.82

Met 0.72

Ser 0.70

Trp 0.54

Cys 0.52

Leu 0.51

Arg 0.45

Lys 0.27

Gln 0.23

Glu 0.01

Ala 0.00

His -0.02

Asn -0.08

Asp -0.94

Gly -1.2

Pro <-3

* N.A. indicates that no additional sequences were obtained for this germline.
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instance, amyloidogenic derivatives of X93627 can be
maximally separated from corresponding non-amyloido-
genic derivatives by giving a tenfold higher score to
mutations that follow the path leading to leaf 2 and a
tenfold lower score for mutations leading to leaf 8.
Boosted and decreased paths to specific leaves are indi-
cated in Table 4 in boldface and italics, respectively.
Consequently, tracing the path through the tree that
describes each mutation yields a score, s, calculated as
the product of the weights along the path. Using this
strategy, the average amyloidogenic potential for every
sequence, AMseq, was calculated as follows:

AM

pm
m

n

nseq  


1
(6)

where s corresponds to scores of individual mutations,
and n corresponds to the number of mutations in a
sequence. Since s is amplified in certain paths, amyloi-
dogenic sequences are expected to have higher AMseq

values. Thresholds for classifying sequences as amyloi-
dogenic or non-amyloidogenic were defined per germ-
line based on the average scores of amyloidogenic
derivatives (Figure 5, step 4). Cross-validation was per-
formed on the holdout test set (Figure 5, step 5).

Additional file 1: Comparison of predictions between a germline
and an amyloidogenic derivative made using AGGRESCAN [16] and
the PASTA server [2829]. This shows that regions that may cause
amyloidosis are predicted, with highly similar profiles. However, no direct
predictions are provided (i.e. that the germline is non-amyloidogenic,
and that the derivative is amyloidogenic) in these methods.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
79-S1.PDF ]

Additional file 2: Amyloidogenic and non-amyloidogenic
immunoglobulin sequence alignments for each of the germline
derivation sets, including the exposure data. The structure indicated
at the end of each alignment refers to the structural template used as
the basis for determining residue exposure. Sequences in red are those
belonging to the holdout test set.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
79-S2.PDF ]
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