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Abstract

Background: Single nucleotide polymorphism (SNP) based association studies aim at identifying
SNPs associated with phenotypes, for example, complex diseases. The associated SNPs may
influence the disease risk individually (main effects) or behave jointly (epistatic interactions). For
the analysis of high throughput data, the main difficulty is that the number of SNPs far exceeds the
number of samples. This difficulty is amplified when identifying interactions.

Results: In this paper, we propose an Adaptive Group Lasso (AGL) model for large-scale
association studies. Our model enables us to analyze SNPs and their interactions simultaneously.
We achieve this by introducing a sparsity constraint in our model based on the fact that only a small
fraction of SNPs is disease-associated. In order to reduce the number of false positive findings, we
develop an adaptive reweighting scheme to enhance sparsity. In addition, our method treats SNPs
and their interactions as factors, and identifies them in a grouped manner. Thus, it is flexible to
analyze various disease models, especially for interaction detection. However, due to the intensive
computation when millions of interaction terms needs to be searched in the model fitting, our
method needs to combined with some filtering methods when applied to genome-wide data for
detecting interactions.

Conclusion: By using a wide range of simulated datasets and a real dataset from WTCCC, we
demonstrate the advantages of our method.
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Background
Rapid Improvements of high-throughput genotyping
technologies enable us to detect genetic variations with
much finer resolution than before. In genome-wide
association (GWA) studies of complex diseases, a few
thousands samples are collected and hundreds of
thousands of single nucleotide polymorphisms (SNPs)
have been genotyped for each sample [1].

Researchers have been investigating disease-associated
gene mapping for decades and various approaches have
been proposed. However, most of them have used a
single-SNP based strategy, in which each SNP is analyzed
individually (see [2] for a comprehensive review). Due to
the sophisticated regulatory mechanism encoded in the
human genome, it is widely agreed that complex traits
are typically caused by multiple genetic variations. One
type of genetic variation influences the traits individu-
ally. This is known as main effects. Another type of
genetic variation is that SNPs may show little effect
individually, but strong effects jointly. This is known as
epistasis or multilocus interactions [3]. Therefore, multi-
locus based approaches are believed to have higher
power than single-locus based ones. Identifying epistatic
interactions arises as an important problem in multi-
locus based approaches [4].

Recently, an increasing number of research has reported
the presence of epistatic interactions in complex diseases,
such as type-2 diabetes [5]. In order to detect epistatic
interaction, various computational and statistical meth-
ods have developed [4]. For example, Nelson et al. [6]
proposed a combinatorial partitioning method (CPM)
that enumerated multi-locus genotypes and evaluated
them with phenotypes. Culverhouse et al. [7] proposed a
restricted partitioning method (RPM) to improve the
efficiency of CPM. Millstein et al. [8] developed a testing
framework when epistasis is present. Ritchie et al. [9]
proposed a multifactor-dimensionality reduction (MDR)
method that identified interactions based on classifica-
tion accuracy through exhaustive search. Zhang and Liu
[10] proposed a Bayesian epistasis association mapping
(BEAM) method to address the issue of epistasis mapping
in genome-wide scale by using Markov Chain Monte
Carlo (MCMC) method. In spite of their promising
performance, most of these methods only show their
successes in association studies on small-scale data sets.

From our view, detecting disease-associated SNPs and
their interactions can be cast as the variable selection
problem in the framework of regression analysis.
Standard tools for variable assessment are the methods
of multivariate regression. In traditional applications of
multivariate regression, the number of variables is less
than the number of samples. In the context of SNP-based

disease association studies, however, the number of
SNPs is far more than the number of samples, making it
difficult or even impossible to directly apply standard
multivariate regression methods.

It is widely agreed in GWA studies that only a small
fraction of SNPs is disease-associated. In the multivariate
regression framework, this implies that most regression
coefficients should be zero. This motivates us to impose
a sparsity constraint to the regression model. In addition,
SNPs are bi-allelic markers (i.e., with allele A and a).
Each SNP has only three genotypes: two homozygous
genotypes (AA and aa) and one heterozygous genotype
(Aa). Therefore, each SNP can be naturally treated as a
three-level factor and be coded with three dummy
variables. Similarly, the interaction between two SNPs
can be treated as a nine-level factor. In order to
encourage sparsity on factors (groups of variables) rather
than a single dummy variable, we impose a group
constraint on the set of dummy variables that represent a
disease model (e.g., a single locus model or a two-locus
model). Hence, we propose an Adaptive Group Lasso
(AGL) method to identify main effects and epistatic
interactions from large-scale SNP data. Since Lasso [11]
is well known for imposing a sparsity constraint at the
variable level, we employ Group Lasso [12,13] to impose
the sparsity constraint at the factor level, and develop
adaptive reweighting to enhance the sparsity and to
reduce false positive finding.

Results and discussion
In this section, we evaluate the performance of our
method using both simulated and real data. In simula-
tion studies, we compare our method with some recent
competitors under a wide range of epistatic models. For
the real case-control study, we use the rheumatoid
arthritis (RA) data set from the Wellcome Trust Case
Control Consortium (WTCCC).

Simulation studies
In simulation studies, we mainly compare our method
AGL with Lasso, BEAM and MDR.

We choose Lasso [14,15] for comparison due to the close
relationship between our method and the two Lasso
methods. For the identification of main effects, they
presume additive, dominant or recessive effects when
fitting the Lasso model. For the identification of
interactions, Hoggart et. al [14] do not consider this
issues and Wu et. al [15] only restrict themselves to the
SNPs with strong main effects. Our method is different
from their methods in the following sense:

(1)We do not presume particular types of main effects
and interactions. Thus, our model is more flexible.
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(2) We impose a sparsity constraint at the factor level
instead of at the variable level.
(3) Our model includes all possible interactions and
is able to identify interactions with weak main
effects.

We also compare with BEAM [10] which arises as a
powerful epistasis mapping method. Both methods
share the concept of three SNP classes: unassociated
SNPs, SNPs with main effects and SNPs with interac-
tions. BEAM builds a Bayesian partition model based on
these three classes. It is worth mentioning that there is
only a single group of interacting SNPs in the BEAM
model. To identify multiple interacting groups, BEAM
implicitly makes use of MCMC to visit possible interac-
tions. We explicitly allow multiple groups of interacting
SNPs and impose additive effects between those groups.
Comprehensive comparison studies between BEAM and
other related methods have been carried out in [10].

Due to the limited space, the comparison with MDR is
given in the supplementary. We further conduct null
simulation to estimate the type I error rate of our
method.

In the following experiments, we use five-fold cross-
validation in model fitting process. We use Bonferroni
correction to adjust our p-value and set the significance
threshold as 0.3 in simulation studies. In the released
version of BEAM, the threshold is set as 0.3. Thus, we
choose the same threshold.

Comparison with Lasso
We conduct experiments under two scenarios.

• Scenario 1: Identification of main effects.
To illustrate our point, we consider two disease models
M1-1 and M1-2, as given in Table 1. M1-1 is a
multiplicative model used in both [16] and [10]. M1-2
is proposed in [17] to exhibit the interference effect. We
choose these two models with different minor allele
frequencies (MAF) to illustrate the influence of model
specification when identifying main effects. Under each
model setting, we generate 100 data sets which contains
1000 SNPs.

The performance of Lasso and AGL is summarized in
Fig. 1. The power of each method is calculated as the
ratio between the number of successful identifications of
disease loci and the number of data sets. Lasso performs
slightly better than our method for model M1-1. But it
performs much worse than our method for model M1-2.
Here are the reasons: Firstly, we impose additive effects
of SNPs in Lasso model fitting and then perform
statistical tests with df = 1. Secondly, for AGL we do
not assume additive effects of SNPs but use a more
general model structure (see our model (2) in Method)
and perform statistical tests with df = 2. Therefore, Lasso
performs better under M1-1 since the imposed additive
structure in Lasso agrees well with the structure in model
M1-1. M1-2 exhibits interference effect which can not be
well approximated by additive, dominant or recessive
effect. Lasso performs much worse than Adaptive Group
Lasso due to the model mismatch.

• Scenario 2: Identification of interaction effects.

The model mismatch problem of Lasso is more serious
when identifying interactions. Here we consider four
epistatic models M1-3 ~ M1-6 used in [18], as given in
Table 2. Here we report the performance of Lasso and
AGL under these four models. The comparison results of

Table 1: Two epistasis models (left: M1-1; right: M1-2)

Model
1-1

AA Aa aa Model
1-2

AA Aa aa

BB a a a BB a a a
Bb a a(1 + θ)2 a(1 + θ)3 Bb a a(1 + θ) a
bb a a(1 + θ)3 a(1 + θ)4 bb a a a(1 + θ)

Figure 1
The performance comparison between Lasso and
AGL on identification of main effects. We generate 100
replicates under each setting. Both 1000 samples and 2000
samples with balanced design are simulated. For Model 1-1,
the main effect can be well approximated by the additive
effect. Thus, Lasso outperforms AGL slightly. For Model 1-2,
the main effect can not be approximated by additive,
dominant or recessive effect. Thus, AGL outperforms Lasso
significantly.
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other epistatic models in [18] are similar. For Lasso
method, we take different main effects and their
interactions into consideration during Lasso model
fitting. Here we use our interaction model (see model
(7) in Method). We simulate two associated SNPs based
on the disease models, and gradually increase the
number of noise SNPs. Fig. 2 summarizes the experi-
mental results. The power is calculated as the proportion
of the 100 data sets in which interactions of the disease
associated SNPs are detected. Lasso with presumed main
effects (additive, dominant or recessive) loses its power

rapidly as the number of noise SNPs increases, while
AGL keeps its power when more noise SNPs are involved
in model fitting.

Generally speaking, if the underlying interaction could
be well characterized by Lasso with a presumed model
structure, e.g., additive model, then the statistical power
of Lasso would be higher than that of AGL because Lasso
uses less degree of freedom. However, since the under-
lying interaction is generally unknown and its possible
pattern may cover a wide range of spectrum [19], AGL
can serves as a valuable tool for discovering interactions
in larger model space. Hence, AGL and Lasso may be
complementary to each other in GWA studies.

We show the effect of adaptive reweighting in Fig. 3. The
first reweighting greatly reduces the number of selected
dummy variable groups and the reweighting process
converges in a few iterations (typically less than 5
iterations). The adaptive reweighting process reduces the
number of unassociated groups and leads to more
accurate p-value calculation in the statistical testing.

On the other hand, however, it can also be seen that
unassociated groups may enter the final model even after
adaptive reweighting. Hence, the selected groups in the final
model may not be associated with the phenotype. In this
regard, the significance assessment is critically needed.

Comparison with BEAM
We shall not compare our method with BEAM when
genetic heterogeneities are present since BEAM is not
developed to handle these cases (the authors of BEAM
had made it clear in [10]). We shall compare with BEAM
from two perspectives:

1. The ability of detecting epistatic interactions when
the main effect is weak or even absent.
2. The ability of detecting multiple interactions.

Figure 2
The performance comparison between Lasso and
AGL on pure epistasis model. Different main effects
(additive, dominant and recessive) and their interactions are
taken into consideration when fitting the Lasso model. The
number in the x-axis is the number of SNPs simulated in the
experiments. Lasso with a presumed model performs poorly
with increasing number of noise SNPs, while AGL is robust
under all settings.

Table 2: Four pure epistatisis models used in [18]

Model 1-3 h2= 0.3, pa = 0.4, qb = 0.4 Model 1-4 h2= 0.2, pa= 0.4, qb= 0.4

AA Aa aa AA Aa aa
BB 0.077 0.689 0.417 BB 0.086 0.536 0.641
Bb 0.763 0.150 0.491 Bb 0.677 0.275 0.096
bb 0.196 0.657 0.247 bb 0.219 0.413 0.712

Model 1-5 h2 = 0.1, pa = 0.4, qb = 0.4 Model 1-6 h2 = 0.05, pa = 0.4, qb = 0.4

AA Aa aa AA Aa aa
BB 0.068 0.299 0.017 BB 0.005 0.179 0.251
Bb 0.289 0.044 0.285 Bb 0.211 0.100 0.026
bb 0.048 0.262 0.174 bb 0.156 0.098 0.156

Here we only provide four pure epistatisis models used in comparison with Lasso. The complete model list used in comparison with BEAM is
provided in our supplementary document (please see Additional File 1).
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Detecting epistatic interactions with weak main effect
A wide range of interaction models without marginal
effects has been discussed in [19]. Here we consider the
40 pure epistatic models in [18] to compare the
performance between AGL and BEAM. The details of
these models are available in the supplementary docu-
ment. The heritability h2(see definition in [19]) of these
40 models ranges from 0.05 to 0.2 and the

MAF ranges from 0.2 to 0.4. We use 100 data sets for
each disease model. There are 200 cases, 200 controls,
and 1000 SNPs in each data set.

The comparison between our method and BEAM in
Fig. 4 shows that AGL is superior to BEAM for detecting
epistatic interactions without main effects. For the
models with MAF = 0.2, 0.4 and h2 ≥ 0.1, the power of
our method is above 95%, while that of BEAM is roughly
20%. The performances of the two methods degrade as
the heritability h2 decreases: the power of BEAM is lower
than 5% for the models with MAF = 0.2 and h2 ≤ 0.1,
while the power of our method still remains at about
75% for some of these models and is even higher for the
models with MAF = 0.4.

Our model includes all possible interactions (1000 ×
999/2 interactions) in the model fitting process, so there
is no chance to miss interesting interactions. The good
performance of our model is due to the group-sparsity
constraint: It identifies interactions in a grouped manner.
This is very helpful to weaken the influence of noise
SNPs.

The poor performance of BEAM is not due to the
statistical testing power of the B-statistics [10], but the
sampling efficiency. We carefully examined the

interactions in the disease models with h2 ≥ 0.1: Those
interactions are very significant even after the Bonferroni
correction of B-statistics. Notice that BEAM runs 5 × 106

MCMC iterations which are 10 times of pairwise
exhaustive search in the simulation study. Thus, our
conjecture is that MCMC might converge too slowly to
find the ground truth (We provide some evidence in the
supplementary to support our conjecture).

Detecting multiple interactions
Another disadvantage of BEAM is that it only allows a
single interacting group in its Bayesian partition model.
To compensate for this limitation, BEAM uses MCMC
sampling strategy to visit possible interactions during
model optimization. In contrast, our approach allows
multiple interacting groups and imposes additive effects
for these interactions. This flexibility enables us to have a
higher power to identify multiple interactions. Due to
the limited space, we show our comparison result of
detecting multiple interactions in the supplementary.

Null simulation study
To validate the use of our p-value and to estimate the
type-I error, we conduct null simulation studies in two
cases:

• Case 1: We generate 100 null datasets. Each dataset
contains 10 K SNPs and 1000 samples. All the SNPs
are generated independently with MAF uniformly
distributed in [0.05, 0.5]. In this case, the nominal
type-I error rates should be 10, 20, 30 per one
million SNPs for significance thresholds at 0.1, 0.2,
0.3.
• Case 2: We use genomeSIMLA [20] to simulate the
SNP data based on the marker information on the
Affymetrix 500 K chip from human chromosome 1.
Linkage disequilibrium (LD) exists among SNPs. We
also generate 100 null datasets, each of which
contains 38836 SNPs and 1000 samples. Due to LD
pattern, the error rate should lower than the nominal
error rate.

We summarize the type-I error of our model (2) in
Table 3. For Case 1, Our results are reasonable for the
three nominal levels. For Case 2, our type-I error rates
show that our method is conservative when LD exists.

Analysis of WTCCC data
Main effects
Current version of BEAM software can not handle
WTCCC data on the genome-wide scale. To compare
with BEAM on the real data, we apply our main effect
model (2) and BEAM to analyze WTCCC Rheumatoid
Arthritis (RA) data in the chromosome-wise manner. For

Figure 3
The reweighting effect of Adaptive Group Lasso. The
reweighting greatly reduces the number of selected SNP
pairs after the first iteration. This effect is more obvious
when identifying interactions in M1-3, M1-4, M1-5, M1-6.
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BEAM, we run 108 MCMC and set the significant
threshold as 0.3 after Bonferroni correction. BEAM
does not report any interactions. The identified main
effects of the two methods agree with each other. Some
of them are given in Table 4 and the details are given in
the supplementary document. The significant result from
WTCCC [1] could be reproduced.

• WTCCC reports that SNP rs6457617 located at
6p21 shows a very strong association. Our experi-
ment verifies this result.
• We do not identify SNP rs6679677 located at 1p13
reported by WTCCC. Instead, we identify two SNPs
rs7551793 and rs948620 near SNP rs6679677. The
signals of these two SNPs are much stronger than
rs6679677.

• We also identify SNPs in the moderate association
regions reported in [1]. We summarize the result in
Table 4.

Interactions
Detecting interactions in genome-wide scale is very
challenging and multi-stage strategies are often explored.
For example, MDR [9] usually is combined with TuRF
[21] which serves as a filter to remove those noise SNPs.
Currently, our method AGL can not be directly applied
to genome-wide scale SNP data since it is too compu-
tationally intensive to exhaustively search for all SNP
pairs. As suggested in simulation study, our method
keeps its statistical power when about 500,000 SNP pairs
are considered in our model. Thus, the main difficulty is
the computation burden of searching for all SNP pairs.
Thus, a filtering method is necessary for our method.

For identification of epistatic interactions, we focus on
two candidate regions: 6p21 and 7p21. These two
regions are reported in our previous work named
SNPHarvester [22] which is a filtering method. Here
we apply our interaction model (7) and report some SNP
interactions in Table 5.

• For the region 6p21, we select a segment covering
the SNPs reported in [22]. This segment contains 250
SNPs from rs3135366 to rs461338. We enumerate all
possible interactions and include them in our model.
Our method reports two interacting pairs:
(rs4988822, rs3135392) and (rs17429127,
rs2157082). These SNPs are related to gene HLA-
DRA. The result in [23] reports that there is a strong
association between RA and HLA gene family. Notice

Figure 4
The performance comparison between AGL and
BEAM (B) based on pure epistatic models. We
generate 100 datasets for each model. Each dataset contains
400 sample (Nu = 200, Nd = 200) and 1000 SNPs. BEAM runs
5 × 106 Markov Chain Monte Carlo iterations which are 10
times of pairwise exhaustive search. The comparison shows
that our method outperforms BEAM for these pure epistatic
models.

Table 3: Null simulation: empirical type-I error from 100
simulated data sets

Cases Error rates per one million SNPs of different
thresholds after Bonferroni correction

threshold = 0.1 threshold = 0.2 threshold = 0.3
Case 1 11 18 28
Case 2 3.08 4.89 7.47

The nominal type-I error rates should be 10, 20, and 30 per one million
SNPs for significance thresholds at 0.1, 0.2, and 0.3, respectively.

Table 4: Some significant SNPs identified by our method on
WTCCC RA data. These SNPs covers the regions which are
moderate associated with RA as reported in [1]

SNPs Location Related Genes P-value

rs7539166 1p36 TMEM51 < 10-30

rs384843 1p36 NBPF3 5.2 × 10-9

rs7516721 1p36 GPR3 7.7 × 10-14

rs4959053 6p21 PSORS1C1 < 10-30

rs6457617 6p21 MHC region 1.3 × 10-15

rs6973565 7q32 PLXNA4 1.2 × 10-9

rs10250029 7q32 CHCHD3 < 10-30

rs10751815 10p15 ADARB2 < 10-30

rs4266996 10p15 unknown < 10-30

rs17147777 10p15 unknown < 10-30

rs8129909 21q22 IGSF5 < 10-30

rs16999716 21q22 DSCAM 9.2 × 10-9

rs4542939 21q22 DSCAM 8.3 × 10-9

rs13047947 21q22 PDE9A < 10-30

rs140344 22q12 unkown < 10-30

rs5749509 22q12 SYN3 < 10-30

rs6518796 22q12 SYN3 < 10-30
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that the two SNPs rs4988822 and rs3135392 cannot
be identified by univariate analysis due to their weak
main effects (Their p-value is at the level of 10-3 given
by univariate analysis). However, they do show a
strong interaction. We also run BEAM on the selected
segment (5 × 106 MCMC). BEAM reports
( r s9469220, rs3957146) and (rs3129872,
rs9272723) as the two most significant interactions
based on the B-statistics. We carefully check these two
pairs based on the logistic regression model. We find
that the interaction of the SNP pair (rs9469220,
rs3957146) is very weak using the standard c2 test
based on logistic regression models with df = 4, while
the interaction of the SNP pair (rs3129872,
rs9272723) is strong. We further explore the reason
why our method does not report the interacting pair
(rs3129872, rs9272723). We observe that SNP
rs9268645, which is highly correlated (strong LD)
with SNP rs3129872, enters our model as a main
effect term. Consequently, the pair (rs3129872,
rs9272723) does not enter the model as a interaction
term. This shows that the SNP pair (rs3129872,
rs9272723) should not be reported as an interacting
pair.
• For the region 7p21, we select a segment which
covers the SNPs reported in [22]. The segment
contains 250 SNPs from SNP rs1076224 to SNP
rs1548882. We analyze this region and report one
interacting pairs (rs1358169, rs6460831). The two
SNPs rs1358169 and rs2526100 are related to gene
THSD7A on chromosome 7, which has been reported
to be associated with bone mineral density [24]. This
shows plausible biological relevance. We also run
BEAM on the segment. But it does not report any
interaction.
• Neither BEAM nor our method finds significant
interactions in the region 6q23.

The definition of interactions is not consistent in
literatures. For example, the interaction effect of two
SNPs is define via logistic regression models of geno-
types and their combinations [3], while it is also defined
via models of haplotypes [25]. The interactions reported
above are based on the definition of interaction of a SNP

pair in [3]. We extend this definition such that we can
simultaneously handle interactions of multiple SNP
pairs. The details are given in the Method section. We
realize that the interacting SNPs reported above are close
to each other on the physical map. This type of
interaction effects may be caused by the haplotype
effect. Detecting interactions of genes in different
genome regions by analyzing genome-wide SNP data is
still under investigation [4].

Conclusion
In this paper, we proposed an Adaptive Group Lasso
method for large-scale SNP data analysis. The novelty of
our method is that it analyzes SNPs and their interac-
tions simultaneously. It imposes a sparsity constraint at
the group level and enables us to identify associated
SNPs (especially for interacting SNPs) from large-scale
SNP data robustly. We show that our method outper-
forms its recent competitors in both simulation studies
and real application.

The limitation of our method is that the interaction
model can not be directly applied to genome-wide scale
SNP data analysis. The main difficulty comes from the
computation burden of searching for all SNP pairs. There
are two possible solutions to solve this issue. One
solution is to make use of some filtering method to
reduce the number of SNPs to a manageable size, for
example, [22]. Another solution is incorporating biolo-
gical information. Pathway information [26] provides a
biological clue to narrow down the search range for
interaction detection. We shall investigate this in our
future work.

Methods
SNPs are high-density bi-allelic markers. We use capital
letters (e.g., A and B) and lowercase letters (e.g., a and b)
to denote major and minor alleles, respectively. We also
use G1 to denote the collection of all three genotypes of
one SNP and use G2 to denote the collection of all nine
combinations of two SNPs:

G AA Aa aa G AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb1 2{ , , }, { , , , , , , , ,aaabb}

(1)

Our target is to identify disease-associated SNPs and
their interactions. Researchers may have different under-
standings of epistatic interaction. To be clear, Our
definition of interaction refers to the deviation from
the additive model of multiple SNPs. In other words, the
interaction effects refers to the phenotype variation that
can be explained by joint effects of multiple SNPs but
not by their main effects. This is consistent with the
definition given in [3]. We achieve our goal through
addressing the following key issues:

Table 5: Some significant SNP groups identified by our method in
the candidate regions on WTCCC RA data

SNP Groups Location Related Genes P-value

(rs4988822, rs3135392) 6p21.3 (HLA-DRA,
HLA-DRA)

3.33 × 10-15

(rs17429127, rs2157082) 6p21.3 (HLA-DRA,
HLA-DRA)

< 10-30

(rs1358169, rs6460831) 7p21.3 (THSD7A,
THSD7A)

< 10-30
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• Model: How to model the relationship between
genotype and phenotype?
• Optimization: How to optimize the model
structure?
• Significance assessment: How to test the signifi-
cance of the detected association?

In the following, we first present our model for
identification of main effects and epistatic interactions.
Then, we give an optimization algorithm for large-scale
SNP data analysis. Finally, we describe a method to
assess the significance of the SNPs identified by our
model.

The adaptive group Lasso model for identification
of main effects
Suppose N samples with Nd cases and Nu controls have
been genotyped at L loci for an association study. Now
we have a design matrix X collecting these N samples and
a response variable y Œ RN indicating a sample from case
or control. Since A SNP has only three genotypes, we
treat it as a factor and code it with three dummy
variables. We use [1 0 0] to code genotype AA, [0 1 0] to
code genotype Aa and [0 0 1] to code genotype aa. Then
the design matrix X becomes a N × (L × 3) matrix. We
shall use Xj, a submatrix of size N × 3, to denote the
columns of X corresponding to the j-th SNP. Similarly,
Xij, a submatrix of size 1 × 3, corresponds to the i-th
sample and the j-th SNP. We propose an Adaptive Group
Lasso logistic regression model (AGL) for main effect
identification:

ˆ ( ) argmin ( ) argmin ( || || )( )ββ ββ ββ ββ
ββ ββ

AGL AGL
j j j

j

L

R w pγ γ= = − +
⎛

⎝ =
∑ 2

1

⎜⎜
⎜

⎞

⎠

⎟
⎟
, (2)

where g is a real value parameter controlling the trade-off
between the likelihood and the constraint, pj = 3 is the
number of dummy variables used to coding the j-th
SNP for j = 1, ..., L, bj = [bj, AA, bj, Aa, bj, aa],

|| || , , ,ββ j j AA j Aa j aa2
2 2 2= + +β β β , and l(b) is the log-like-

lihood of logistic regression:

( ) ( ) log exp( )ββ ββ ββ= + − + +
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎡

⎣ = =
∑ ∑1

10

1

0

1
N

yi ij j

j

L

ij j

j

L

β βX X⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥=

∑
i

N

1

. (3)

For convenience, we define an active set A = {j|bj ≠ 0}.
We use an iterative algorithm to adaptively assign
weights wj in (2) as given in Algorithm 1.

From the iterative algorithm, the penalty weight is
adjusted according to its previous estimation. If the

current estimation || ||( )ββ j
m

2 is small, i.e., SNPj is less
likely to be associated with disease, then the penalty
weight should increase to prevent SNPj from entering the
model in the next iteration, and vice versa. The
theoretical justification is given in the supplementary
document.

Algorithm 1 Adaptive Reweighing Algorithm of Group
Lasso

1. Set the iteration count m = 0. Initially set w j
m( ) = 1,

j = 1, ..., L.
2. Solve problem (2) to obtain b( γ ∗

( )m ) and the
active set A ( )m , where γ ∗

( )m is determined by cross-
validation.
3. (1) Update the weight:

w
j

m
jj

m m( ) ( )

|| ( ( ))||
, .+ =

∗
∈1 1

2ββ γ
A (4)

(2) Remove SNPj, when j ∉ A ( )m .

4. If the active set A ( )m does not change, stop;
otherwise increment m and go to step 2.

The proposed model has following characteristics:

• Flexibility: Due to the dummy variable representa-
tion, our model is flexible to analyze different main
effects (additive, dominant, recessive, interference
[17]) in a unified way without presuming one
particular type of effect. This flexibility will be
pronounced when identifying epistatic interactions.
• Sparsity: The sparsity constraint w pj j jj

L
|| ||ββ 21=∑

comes from the fact that most SNPs are unassociated.

Notice that || || , , ,ββ j j AA j Aa j aa2
2 2 2= + +β β β imposes a

constraint to select a group of dummy variables rather
than a single one. The weightwj is assigned adaptively in
Algorithm 1 to enhances the sparsity at the factor level. If
without reweighting, too many noise SNPs would enter
the model in GWA studies.

The adaptive group Lasso model for identification of
epistatic interactions
Definition of interactions
Interactions between SNP1 and SNP2 are often defined
via logistic regression models as in [3]. Let SG

1 and SG
2

be the dummy variable coding for genotype G of SNP1
and SNP2, respectively. The main effect logistic regres-
sion model of SNP1 and SNP2 is:

log .
p
p

S S S SAa Aa BB Bb

1 0 1 2 1 3 2 4 2−
= + + + +β β β β β (5)
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The full logistic regression model of SNP1 and SNP2 is:

log , ,
p
p

S S S S S SAa Aa BB Bb AABB AA

1 0 1 1 2 1 3 2 4 2 5 1 2 6 1 2−
= + + + + + +β β β β β β β BBb AaBB AaBBS S+ +β β7 1 2 8 1 2, , .

(6)

Let LM and LF be the log likelihood of the main effect
model and the full model, respectively. According to the
likelihood ratio test, interaction effects are defined via
the difference of the log likelihood of these two models,
i.e., LF - LM. Hence, interaction effects can be interpreted
as departure from linear models naturally [4].

Modelling interactions
The model for identification of epistatic interactions is
an extension of model (2): Interaction terms are further
included in a grouped manner. We treat the combination
of two SNPs as a 9-level factor and use 9 dummy
variables to code them. Let J1 be the index set of all SNPs:

J1 ≜ {1, 2,..., L}, and J2 be the index set of all pairwise
interactions of L SNPs:

J1 ≜ {(1, 2), (1, 3)..., (L - 1, L)}. The design matrix X
becomes a N × (L × 3 + L × (L - 1)/2) matrix, i.e.,
X X X= [ , ]J J1 2

, where X J1 and X J2 are the sub design
matrices collecting main effect groups and interaction
groups, respectively. Similarly, We use X i j, 1

with j1 Œ J1
to denote the i-th sample and the j1-th group in X J1 and
X i j, 2

with j2 Œ J2 to denote the j2-th group in X J2 . We
propose the following model to identify epistatic
interactions:

ˆ ( ) argmin ( ) || || || ||ββ ββ ββ ββ
ββ

AGL
j j j

j J

j j jw p w pγ γ= − + +
∈
∑ 1 1 1

1 1

2 2 22 2

jj J2 2∈
∑

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
,

(7)

where p j1
3= for j1 Œ J1, p j2

9= for j2 Œ J2,

|| || ,|| ||, ,ββ ββj j gg G j j gg G1 11 1 2 22 2
2

2
2

2= =∈ ∈∑ ∑β β (defi-

nitions of G1 and G2 are given in Eqs. (1)), and ℓ(b) is
the log-likelihood of logistic regression:

( ) ( ) log exp(, ,ββ ββ ββ= + + − + +
∈ ∈
∑ ∑1

10 01 1

1 1

2 2

2 2
N

yi i j j

j J

i j j

j J

iβ βX X X ,, , ) .j j i j j

j Jj Ji

N

1 1 2 2

2 21 11

ββ ββ+
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥∈∈=

∑∑∑ X

(8)

The proposed model structure has the following char-
acteristics:

• Our interaction model integrates the analysis of
SNPs with main effects and interacting SNPs, and
unassociated SNPs are prevented from entering the

model by the sparsity constraint. Recall that interac-
tion refers to the phenotype variation that can be
explained by joint effects of multiple SNPs but not by
their main effects, model (7) includes main effects to
discourage the interaction terms to enter the model,
when their effects can be mostly explained by the
main effects. However, this may not be able to
completely prevent spurious interactions from enter-
ing the model. The reason is that the interaction
terms may explain more variances than their corre-
sponding main effects. Hence, they are more likely to
enter the final model even when they are penalized
more heavily ( p j1

3= for j1 Œ J1, p j2
9= for j2 Œ J2).

To overcome this difficulty, we resort to the statistical
test of interaction effects.
• By using dummy variables, our model is flexible to
model various interactions, including all epistatic
models described in [17]. Both main effect terms and
interaction terms enter the model in a grouped
manner. Thus, our model is insensitive to the noise
occurring at one level of the genotype combinations
G1 and G2.
• Our model imposes additive effects for these
interactions. Simultaneous analysis of all interactions
achieves under this model structure.

Optimization algorithm
In our Adaptive Reweighing Algorithm of Group Lasso
(Algorithm 1), we need an algorithm to solve optimiza-
tion problem (2) efficiently. We make use of the
coordinate descent algorithm [13,27]. The advantage of
the coordinate descent algorithm is that it has a closed-
form solution of the least square problem when
updating one group at a time. Therefore, it is suitable
for large-scale data analysis. For the log-likelihood of
logistic regression, the iteratively reweighed least square
algorithm (IRLS) is efficient: A quadratic approximation
is formed to the log-likelihood based on current
estimation and the least square problem is solved by
the coordinate descent algorithm. This process is
repeated until its convergence which is guaranteed
[13]. The detail of the algorithm is given in the
supplementary.

Statistical testing
The statistical testing is to determine whether the
identified SNPs (i.e., the SNPs in the active set) are
significantly associated with the disease

Significance tests of main effects
Let A1 be the SNP set identified under model (2) and s1
denote the number of identified SNPs in A1 . We use the
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following strategy to assess the significance of identified
SNPs:

1. Re-fit the logistic regression model for the
identified SNPs in A1 and obtain the log-likelihood
ℓfull.
2. Leaving SNPj Œ A1 (j = 1, ..., s1) out, fit the logistic
regression models and obtain the log-likelihood ℓ\j.
3. Obtain p-value of SNPj using c2 test based on the
value 2(ℓfull - ℓ\j) with the degree of freedom (df)
discussed below.

There are several key issues in the above procedure:

1. Since we use three dummy variables to code each
SNP, collinearity exists when fitting logistic regres-
sion models. To overcome this difficulty, we fit the
logistic regression model with a L2 regularization
term

min ( ) || || ,
ββ

ββ ββ− +
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟∑γ2 2

2
j

j

(9)

where g is a small number to avoid singularity. Here
we set g = 10-4.
2. For model (9), the effective degree of freedom is
given by

df trace T T= +( )−( ) ,X UX X UXΓ 1 (10)

where Γ is a (s1 + 1) × (s1 + 1) diagonal matrix
with diagonal elements [0, g, ..., g], U is a diagonal
matrix with diagonal elements pi(1 - pi). Here
pi ij jj A

= + − − ∈∑
1

1 0 1exp( )β βX is evaluated after con-
vergence of the logistic regression model (9) fitting.
3. The degree of freedom of the c2 test for SNPj is
df df dffull jχ 2 = − \ , where dffull and df\j are the
effective degrees of freedom of the logistic regression
models with all s1 SNPs and without SNPj, respec-
tively.

It is worth mentioning that our p-value is obtained after
the selecting process in AGL fitting. The selecting process
may affect the precision of p-value estimation. We justify
our p-value by conducting null simulation later.

Significance tests of epistatic interactions
Our Tests of interactions is built upon the definition of
interactions. The key point is that the main effects of the
two SNPs should not be taken into account when testing
their interaction effect. We conduct significance tests of
epistatic interactions in the following way:

Let A2 be the set of the groups identified under model
(7) and s2 is the number of the groups in A2 .

1. Re-fit the logistic regression model for the
identified groups in A2 and obtain the log-like-
lihood ℓfull.
2. For each interaction term in A2 with index l (l =
1, ..., s2), fit the logistic regression model with the
main effect term replacing the interaction term and
obtain the log-likelihood ℓ\l.
3. Obtain p-value of interaction term l using c2 tests
based on the value 2(ℓfull-ℓ\l) with df = dffull - df\l.
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