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Abstract

Background: Recombinant protein production is a useful biotechnology to produce a large
quantity of highly soluble proteins. Currently, the most widely used production system is to fuse a
target protein into different vectors in Escherichia coli (E. coli). However, the production efficacy of
different vectors varies for different target proteins. Trial-and-error is still the common practice to
find out the efficacy of a vector for a given target protein. Previous studies are limited in that they
assumed that proteins would be over-expressed and focused only on the solubility of expressed
proteins. In fact, many pairings of vectors and proteins result in no expression.

Results: In this study, we applied machine learning to train prediction models to predict whether
a pairing of vector-protein will express or not express in E. coli. For expressed cases, the models
further predict whether the expressed proteins would be soluble. We collected a set of real cases
from the clients of our recombinant protein production core facility, where six different vectors
were designed and studied. This set of cases is used in both training and evaluation of our models.
We evaluate three different models based on the support vector machines (SVM) and their
ensembles. Unlike many previous works, these models consider the sequence of the target protein
as well as the sequence of the whole fusion vector as the features. We show that a model that
classifies a case into one of the three classes (no expression, inclusion body and soluble)
outperforms a model that considers the nested structure of the three classes, while a model that
can take advantage of the hierarchical structure of the three classes performs slight worse but
comparably to the best model. Meanwhile, compared to previous works, we show that the
prediction accuracy of our best method still performs the best. Lastly, we briefly present two
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methods to use the trained model in the design of the recombinant protein production systems to
improve the chance of high soluble protein production.

Conclusion: In this paper, we show that a machine learning approach to the prediction of the
efficacy of a vector for a target protein in a recombinant protein production system is promising
and may compliment traditional knowledge-driven study of the efficacy. We will release our
program to share with other labs in the public domain when this paper is published.

Background

Acquiring large quantities of a desired protein in situ
from original host cells is not trivial. Moreover, gene
over-expression and purification of corresponding pro-
teins in a soluble form are important for structural and
functional proteomics. Recombinant protein production
is an important applicable procedure in biotechnology
and one of the few ways to over-express a given protein
coding sequence of interest. To date, Escherichia coli
(E. coli), one of Gram-negative bacteria, is still an
approachable and favored host for cloning and expres-
sing a given protein in many occasions [1-3]. In recent
years, a variety of studies have developed well-estab-
lished large-scale and high-throughput systems to obtain
large quantities of soluble recombinant proteins [4-6].
However, it has been reported that a large number of
foreign heterologous proteins were expressed at rela-
tively low levels [ 7] or difficult to solubilize [8], in E. coli.
These over-expressed proteins in an insoluble form are
termed as inclusion bodies. Since the refolding proce-
dure of inclusion bodies to recover a soluble form of
recombinant proteins is time-consuming, expression of
insoluble protein aggregates is frequently a major
obstacle in recombinant protein production.

Hence, to meet the demands of preventing inclusion body
formation in recombinant expression systems, many
researchers have dedicated their efforts to optimize the
growth conditions, such as buffer composition, protein
concentration, and cultivation temperature. While others
have focused on improving the folding probabilities
regarding enhancement of mRNA stability, over-expression
of rare-codon tRNA, selection of efficient vectors and host
strains, and co-expression with solubility-enhanced proteins
[3]. Nevertheless, more studies have emphasized the
importance of increasing the solubility of recombinant
proteins in E. coli by fusing them to highly soluble carrier
proteins [9-12]. Because the only way to select a specific
match between a target protein and an appropriate fusion
partner that will lead to a soluble form is still a trial-and-
eITor process; a more systematic approach is required.

Regardless of fusing different vectors, most previous
works have attempted to predict the propensity of a
given protein to be soluble or not in E. coli. The first such

study was conducted by Wilkinson and Harrison [13]
with a regression model analysis. They concluded five
amino acid-dependent factors are discriminative features
that correlate to inclusion bodies formation. There were
charge average approximation (Asp, Glu, Lys and Arg),
turn-forming residue fraction (Asn, Gly, Pro and Ser),
cysteine and proline fractions, hydrophilicity and mole-
cular weight. In a subsequent study, Davis et al. have
improved the statistical solubility model of solubility in
E. coli by demonstrating that the first two parameters were
more critical than other three [14]. Additionally, based on
the undertaking of structural genomics projects, Bertone
et al. have applied machine learning techniques such as
decision trees and Support Vector Machines (SVMs) to
discover other informative features based on 562 proteins
from Methanobacterium thermoautotrophicum. Among
these critical parameters, low content of negative residues
(DE <17%) and presence of hydrophobic patches are
associated with insoluble protein formation [15]. Subse-
quently, Goh et al. utilized random forest and decision-
tree based methods on about 27, 000 protein targets in
TargetDB [16] to conclude that the most significant
protein feature was serine percentage composition [17].
Furthermore, Luan et al. collected 1, 536 soluble proteins
out of 10,167 ORFs in Caenorhabditis elegans expressed by
single vector and one E. coli strain. In their study, the most
prominent protein feature was GRAVY (Grand Average of
Hydropathicity, an indicator for average hydrophobicity
of a protein) [18].

To date, many studies have showed that Support Vector
Machines (SVMs) combining with appropriate kernels
frequently result in better performance for biological
sequence classification than other methods based on
statistical learning theory [19,20]. Recently, many studies
have tried to apply SVMs to circumvent the problem of
assessing the propensity of target proteins to be actively
soluble or to form inclusion body in E. coli. According to
their previously observed sequence-dependent features
in protein levels, Idicula-Thomas et al. provided a SVM-
based approach to achieve 72% in prediction accuracy
[21,22]. Additionally, Smialowski et al. developed
PROSO, a two-layered predictor combining SVM and
Naive Bayes classifiers, and obtained a compatible
performance similar to Idicula-Thomas et al. [23].
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The studies mentioned above have at least two basic
postulations: 1) a given gene was thought to have been
over-expressed and 2) the expression level of a target
gene was the same whatever by fusing different vectors in
E. coli. Consequently, most previous works only focused
on demonstrating important factors related to solubility
prediction and mixed the cases of target genes in
inclusion fraction and non-expression to form a negative
set. However, recent research has reported that recombi-
nant proteins expressed as inclusion bodies still keep
biological activity than previously appreciated [24].
Thus, it is still significant to distinguish inclusion bodies
from the negative set in previous studies. Moreover, it
has also been assumed that all given proteins obtained
the same expression result regardless of the fusion of
different vectors in E. coli as it only focused on predicting
the solubility of a target gene by its protein sequence.
However, a given protein usually yielded different
expression levels by fusing different vectors. Note that
different groups have discovered different crucial protein
factors according to soluble target proteins acquired
from their own experiments. It would be partly because
their experimental data were conducted under different
expression conditions, such as the focus of fusing
different vectors in this work. Thus, Kataeva et al.
reported that the sensitivity in previous works on
predicting the solubility of recombinant proteins was
much lower than the specificity [25].

To the best of our knowledge, this is the first attempt to
consider the entire cloning and expression regions as a
whole than focusing only on the sequences of the
desired protein as in previous works. The entire cloning
and expression regions usually consist of affinity tags
and desired proteins for over-expression in recombinant
protein production systems. Therefore, the objective of
this study is to predict the efficacy of vectors in E. coli for
a given protein. We propose three SVM-based methods
to tackle a three-class classification problem according to
the expression levels in SDS-PAGE experiments. These
three classes consist of soluble fraction, inclusion
fraction, and non-expression, as show in Figure 1. We
finally compare our three SVM-based methods to
previous studies and report two case studies of applying
our methods to enhance the solubility for a given
protein to be over-expressed in E. coli.

Methods

Data preparation and formulation

High-throughput (HTP) protein productions were con-
ducted to screen the over-expressions of target proteins.
The system of HTP and parallel approaches in protein
expression included six different fusion protein expres-
sion vectors and two universal restriction sites in E. coli.
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Hierarchical structure comprising three expression
levels in SDS-PAGE. The hierarchical structure consists of
three expression levels; i.e., soluble fraction, inclusion
fraction, and non-expression, in SDS-PAGE.

The expression results consisted of three levels after the
treatment of denaturing SDS-PAGE. One hundred and
twenty one target genes were recruited from our core
facility of recombinant protein production [26]. The
target genes cover a wide variety of species from virus,
bacteria, mouse to human. The lengths of target genes
varied from 144 to 3162. That is, the lengths of final
translation proteins after being cleaved from recombi-
nant fusion proteins varied from 48 to 1054. Given a
target gene, DNA products were generated with 5" EcoRI
and 3’ Xhol sticky ends, and then cloned into six
expression vectors in parallel. The structures of six
different fusion constructs were shown in Figure 2.
Fusion vectors were named by their corresponding
fusion tags; i.e.,, CBP, GST, NusA, His, MBP, and Trx.
To over-express highly soluble recombinant proteins, six
different fusion constructs for each target gene were
transformed into E. coli under the same standard
experimental conditions, as well as in parallel. Host
strains of E. coli used in this study were JM109(DE3) and
BL21-CodonPlus(DE3). Host cells were harvested and
lysed in 96-well plates. After centrifugation, SDS-PAGE
experiments were used to separate proteins to determine
expression levels. In addition, Western blot was used to
further verify expression results in SDS-PAGE experi-
ment. Finally, in a parallel analysis of protein solubility,
each target gene was identified as soluble fraction,
inclusion fraction, or non-expression with respect to
different fusion protein vectors. In this way, 726
scenarios, 121 target genes with six different fusion
vectors, were obtained. There were 231, 236, and 259
cases for soluble fraction, inclusion fraction, and non-
expression, respectively (cf. Table 1).

Recombinant fusion protein solubility modelling

As shown in Figure 1, three expression levels of
recombinant proteins in SDS-PAGE experiments were
soluble fraction, inclusion fraction, and non-expression.
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Six fusion vectors used in HTP systems. Cloning and expression regions of the six expression vectors and corresponding
insertion locations of target proteins were used in this work. Recombinant fusion vectors were named by six fusion tags; i.e.,
(A) calmodulin-binding peptide (CBP), (B) glutathione S-transferase (GST), (C) N utilization substance A (NusA), (D) Histidine

(His), (E) maltose-binding protein (MBP), and (F) thioredoxin (Trx).

Table I: Data distribution of three expression levels in six fusion
vectors. 726 cases comprised 121 genes fused into six fusion
vectors generated from HTP systems

Labels\Vectors CBP GST His MBP NusA Trx Total

Soluble fraction 14 34 21 59 66 37 231
Inclusion fraction 52 37 48 28 24 47 236
Non-expression 55 50 52 34 31 37 259

Total 121 121121 121 121 121 726

Hence, after screening solubility of 121 target proteins in
six different fusion vectors, the model of expression and
solubility of entire recombinant proteins, including
given genes and fusion vectors, was formulated as a
three-class classification problem. In this work, three
SVM-based methods were proposed to tackle a three-
class classification problem in three different aspects of
using the hierarchical structure. Furthermore, based on
our experimental data of over-expression of given genes
in different fusion vectors in E. coli, we considered entire

sequences of recombinant expressed proteins instead of
only sequences of target protein in previous works.
Altogether, these three SVM-based methods, i.e. flatSVM,
nestSVM, and hierSVM, predict each scenario, including a
given gene and corresponding fusion vector, as one of
the expression levels in SDS-PAGE experiments. Because
F; measure is a frequently used parameter in a multi-
class classification problem, it was employed to compare
the performance among three proposed SVM-based
methods. Precision-Recall Curve (PRC) and Receiver
Operating Characteristic (ROC) were used to compare
performance of our methods to previous works. The
following sections describe feature extraction and our
three proposed methods in more detail.

Feature generation

Before training SVMs, feature extraction was applied to
generate fixed length feature vectors from entire recom-
binant expression regions. Two major steps in recombi-
nant protein productions in E. coli; i.e., transcribing
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messenger RNAs (mRNAs) of cloning and expression
regions, and translating proteins of recombinant fusion
vectors, were considered. The major factors were
correlated to mRNA expression and stability, codon
usage in E. coli, solubility of whole fusion vectors, and
Post-Translational Modifications (PTMs) on recombi-
nant proteins. Hence, based on nucleotide and protein
levels, entire cloning and expression regions were used to
retrieve potential features for predicting transcription
efficacy and solubility propensity of recombinant fusion
proteins in E. coli. For mRNA expression and stability, 84
k-mer features where k = 1, 2, and 3, along with
transcribed mRNA length for each recombinant fusion
gene.

Guanine-cytosine content (GC-content) calculated from
nucleic acid sequences of recombinant fusion genes were
also taken into account. For protein expression, codon
usage bias in E. coli could be a key factor of determining
the efficiency of translation. Moreover, based on the
reconstruction of phylogenetic tree, Elena et al. have
concluded that B and K12 strains are the most closely
related ones in E. coli [27]. Consequently, in this study,
Codon Adaptation Index (CAI) has been calculated
based on codon preference in E. coli K12 strain by
EMBOSS package [28]. As described in previous works, 6
and 444 sequence-independent and non-redundant
features used in [13] and [22] were extracted, respec-
tively. Features used in most previous works were
extracted only from sequences of target proteins to
predict solubility. However, different results having been
observed by using different fusion vectors were con-
sidered in this study. Instead of considering only target
proteins, features in protein levels were derived from
entire recombinant fusion proteins. It is known that
PTMs rarely occur in E. coli. However, for higher
eukaryotic proteins, some critical steps of correct protein
folding may be related to certain PTMs. Therefore, in the
present work, predicted PTMs on entire recombinant
fusion proteins were further considered. 71 PTMs
predicted by AutoMotif [29] were used to reveal critical
steps of PTMs on recombinant fusion proteins to aid
prediction of recombinant fusion protein solubility. In
addition, compared to solubility-related features used in
the previous works, isoelectric point and other 8 peptide
statistics calculated by EMBOSS.iep and EMBOSS.pep-
stats were included [28]. Finally, 617 features for each
instance vector were generated (cf. Table 2).

Three SVM-based methods for classification

Support Vector Machines (SVMs) are one type of
machine learning techniques used for classification and
regression originally developed by Vapnik based on the
statistical learning theory [19]. SVMs search for a

http://www.biomedcentral.com/1471-2105/11/S1/S21

Table 2: Feature index used in this study

Feature Type Description #(Feature)
Nucleotide <3-mer 84
Nucleotide nt Seq Length |
Nucleotide GC Content |
Code Preference Codon Adaptation Index |
Amino Acid Wilkinson and Harrison (1991) 6
Amino Acid Idicula-Thomas et al. (2006) 444
Amino Acid isoelectric point |
Amino Acid peptide statistics 8
PTMs Plewczynski et al. (2005) 71
Total 617

617 features were extracted from an entire recombinant fusion protein.
They were divided into two groups with respect to nucleotide or
protein levels. The first 87 features were generated from nucleic acid
sequences of entire recombinant fusion genes. The rest 530 features
were retrieved from protein sequences.

hypothetically unique and optimal hyperplane to
distinguish data by maximizing the margin. By cooperat-
ing with kernel functions, SVMs map original data that
are non-linearly separable in input space into a high-
dimensional feature space. In this paper, expression level
prediction of recombinant fusion proteins was formu-
lated as a three-class classification problem; i.e., soluble,
insoluble, and non-expression. After scaling features
generated by feature generation, all features in instance
vectors were normalized to zero mean and Standard
Deviation (SD) to 1. Here, three SVM-based methods
were proposed to deal with the three-class classification
problem. With respect to different aspects of considering
the hierarchical structure formed by expression levels of
recombinant fusion proteins, instance vectors were
treated as flat, nested, or hierarchical ones. Three SVM-
based methods were named as flatSVM , nestSVM , and
hierSVM , respectively. LIBSVM [30] were used to
implement all core algorithms in this research. Accord-
ing to the characteristics of features, the radial basis
function (RBF) kernel implemented in LIBSVM was used
because of its advantages on dealing with the most cases
of numerical data. In the present work, all instance
vectors were stratified sampling among three classes. In
each class, the same proportion is present in each
random partition to divide instances into m parts. In
training and validation, k-fold Cross-Validations (CVs)
were applied to the m-1 parts of instance vectors. The last
part was used as test. The procedure of training and
testing was repeated for n times. Finally, performance
results of these n repeats were averaged and their
corresponding SDs were measured.

flatSVM
According to the hierarchical structure as shown in Figure 1,
we treated this binary-tree taxonomy as a flat one.
Generally, one-against-one (1vsl) and one-against-the
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rest (1vsAll) are two commonly used strategies on dealing
with multi-class classification problems. However, as
reported by Hsu et al., 1vsAll strategy may get a comparable
performance as 1vs1 strategy, but it takes much more time
on training [31]. Therefore, considering the cost of training
time, we decided to use 1vsl strategy instead of 1vsAll
strategy in this work. As mentioned in Feature Generation,
instance vectors were derived with 617 features from entire
recombinant fusion regions and 726 instance vectors were
stratified by labels and divided into ten parts randomly.
Along with their corresponding labels of expression levels,
652 instance vectors were used on training and validation
by 10-fold CVs. By using three 1vsl classifiers, the
prediction class of an instance vector was determined by a
majority voting. The other unseen 74 instance vectors in
training and validation were applied to evaluate the
performance of trained classifiers. By repeating the same
procedure of training and testing in ten times, an average
and SD were calculated for these ten CV results. All
programs were implemented and associated with LIBSVM
package [30].

nestSVM

Following the procedure of transcribing and translating a
recombinant fusion protein in E. coli, the hierarchical
structure was divided into two steps. The first step was
related to protein expression and the second was
associated with the solubility of expressed proteins.
First, mRNA expression and stability for a recombinant
fusion gene and codon preference in E. coli were the
major factors. For second step, solubility related features
to test whether an expressed protein could be folded
correctly as a soluble one in E. coli were applied. Based
on the divide-and-conquer conception, a stepwise
method, nestSVM , was proposed to undertake the
three-class classification problem by training corre-
sponding classifier for each step. This way, two binary
classifiers were trained with distinct sets of features to
predict whether a recombinant fusion gene could be
expressed and whether an expressed recombinant fusion
protein would be soluble in E. coli. For protein
expression, a binary classifier was trained to distinguish
whether a recombinant fusion gene could be expressed
as a protein in E. coli by focusing on features derived
from nucleic acid sequences. 84 k-mer frequency
features, length, GC-content, and CAI were derived
from entire recombinant fusion genes used in first
binary classifier. Similar to flatSVM , 652 instance
vectors with 87 features were applied to 10-fold CVs
on training and validation of the first classifier. However,
for the first classifier, instance vectors labelled with
soluble and insoluble were treated as one class.
Furthermore, for predicting solubility of expressed
recombinant fusion proteins in E. coli, the second
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classifier was trained by the other non-overlapping 530
features in protein level. For a perfect case, all instance
vectors of soluble and insoluble used in first step were
promoted to train the second classifier. Hence, 207
soluble cases and 212 insoluble cases were used for 10-
fold CVs for training and validation. The second binary
classifier was mainly used to determine instances
between soluble and insoluble proteins. For testing the
performance of nestSVM , 74 unseen instance vectors
were used to predict protein expression by the first
binary classifier. In the second binary classifier, it was
applied to instances that were labelled as expression in
the first step to predict their protein solubility. The three-
class classification problem was tackled by combining
two binary classifiers for predicting expression and
solubility of recombinant fusion proteins in E. coli
respectively.

hierSYM

For our third method, class labels were considered as
attribute vectors instead of arbitrary numbers and
involved the concept of hierarchical classification
method [32]. Because of resource availability constraints,
we did not implement the entire algorithm. Instead, we
reduced it into a binary SVM classification to fit the
public domain tool. The algorithm was described as
follows. According to Figure 1, attribute vectors of labels
were encoded as <1, 0, 0, 1>, <0, 1, 0, 1>, and <0, 0, 1, 0>
to illustrate soluble, insoluble, and non-expression,
respectively. Here, the first three digits in attribute
vectors were associated to the original labels in the
order of soluble, insoluble, and non-expression. The last
digit in attribute vectors represented the common parent
node of labels between soluble and insoluble proteins in
class taxonomy. In other words, for the instance labelled
as non-expression, the last digit will be zero for the
attribute vector.

In order to reduce a hierarchical SVM classification into a
binary classification, subtractions between pairs of
attribute vectors were taken to implement the idea. For
example, when considering an instance vector with its
label as soluble, two new attribute vectors of positive
cases were produced by subtracting attribute vectors of
insoluble and non-expression from attribute vector of
soluble, respectively. Hence, two new attribute vectors of
positive cases were <1, -1, 0, 0> and <1, 0, -1, 1>. In other
words, subtracting attribute vector of soluble from
attribute vectors of insoluble and non-expression,
generated two new attribute vectors for negative cases,
therefore, two new attribute vectors of negative cases
were <-1, 1, 0, 0> and <-1, 0, 1, -1>. By using tensor
product ® to cooperate attribute vectors of labels into
instance vectors, 617 features in an instance vector were
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expanded to four times, i.e., 2468 features. Consider an
instance vector X, after expanding the four new attribute
vectors were generated. <X, -X, 0, 0> and <X, 0, -X, X>
were positive cases and <-X, X, 0, 0> and <-X, 0, X, -X>
were negative cases. Finally, for training and validation,
two positive cases and two negative cases were used. For
testing, 6 pairs of subtractions between attribute vectors
of labels were applied to predict and averaged to decide
the final prediction label. Similar to our other two
methods, after a stratified selection, 652 instance vectors
were used in training and validation for 10-fold CVs, and
then the remaining 74 instances were applied as test
cases.

Evaluation measurement
Given a multi-class classifier, F; measure is the proper
parameter of its performance. F; measure is calculated as

/
1 2Aj
F, == T — 1
! ]Z2A]‘+B]‘+C]’ (1)
j=1

where ] is the total number of classes, A; is the number of
instances correctly predicted as class j, B; is the number of
instances incorrectly assigned to class j, and C; is the
number of class j instances assigned to other classes.
Taking a general case of F; measure as example, F score is
simply derived and represented as

po 2P 2pr @)

2TP+FP+FN  p+r
where TP, FP, and FN represent true positive, false
positive, and false negative, respectively. Alternatively,
the well-known representation of F score for a binary
classification is associated with precision and recall,
which are denoted as p and r, respectively. Generally, a
system with good performance will assign the correct
class and only the correct class, by maximizing not only
precision but also recall, and then results in maximizing
the F score.

In this work, each SVM-based classifier was used as a
three-class classifier to predict expression levels of
recombinant fusion proteins in E. coli. Hence, the
performance of three proposed SVM-based classifiers
were compared to each other by F; measure. However, to
compare with previous works, three proposed SVM-
based classifiers were reduced to distinguish soluble
from non-soluble cases, including insoluble and non-
expression cases. By using F score, performance of our
methods was compared with previous works under the
same criterion. Moreover, the areas under Receiver
Operating Characteristic (ROC) and Precision Recall
Curves (PRC) were used to assess the performance of our
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methods with previous works. ROC consists of False
Positive Rate (FPR) and True Positive Rate (TPR) as x and
y-axes, respectively. On the other hand, PRC consists of
True Positive Rate (TPR) and Positive Predictive Value
(PPV) as x and y-axes, respectively. The detail calcula-
tions were as follows.

FalsePositiveRate = P (3)
TN+FP
TruePositiveRate = TP (4)
TP+FN
PositivePredictiveValue = P (5)
TP+FP

To investigate difference between pairs of our three
methods, Student’s t-test and Yule's Q-statistic [33] were
conducted to demonstrate the relationship of diversity.
The Yule's Q-statistic is defined as

_ N1IN00_ 10501
N11N00, 105,01

Q (6)

where N7 is the number of instances in the test instances,
classified correctly (i = 1) or incorrectly (i = 0) by the first
classifier, and correctly (j = 1) or incorrectly (j = 0) by the
second classifier. After calculation, the range of Q varies
from -1 to 1. For statistically independent classifiers, the
calculation will be equal to zero. On one hand, the
positive value of Q indicates that classifiers tend to
identify the same instances correctly. On the other hand,
classifiers commit errors on different instances will have
a negative Q.

Results and discussion

Predictive performance of our proposed SVM-based
methods

In order to investigate expression levels of target proteins
cloned into individual fusion vectors, six three-class
classifiers were trained and assessed by applying
flatSVM. Six hundred and seventeen features for each
target gene associated with individual vector were
generated as mentioned in Feature Generation. The
process of training and testing were used to 121 target
genes for each vector to train a three-class classifier. All
target genes were divided into five parts. Four out of five
parts were used to train a classifier by 5-fold CVs. The last
part of 25 target genes was tested by the classifier trained
in previous step. As elucidated in Table 3, the best
performance occurred in the classifiers based on GST
vector for the average F; measure. The result showed that
the classifier of GST vector outperformed other five
classifiers trained with respect to other vectors on
classifying instances into three expression levels
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Table 3: Performance evaluation of six individual classifiers with
respect to six vectors

Vectors\Measure F, measure

CBP 0.3509 + 0.0372
GST 0.4323 + 0.1515
His 0.4016 + 0.0874
MBP 0.3746 + 0.1017
NusA 0.3297 + 0.0695
Trx 0.2854 + 0.0609

For F| measure, each individual classifier must correctly identify each
instance into its real class

correctly. However, the performance of six individual
classifiers trained independently per vector was still far
from satisfactory.

Instead of taking experimental data separately to train six
classifiers with respect to each vector, all data were
considered together in the following experiments. For
our three proposed SVM-based methods, the predictive
performance was shown in Table 4. We also showed the
performance of AdaBoost as our baseline performance.
Overall, flatSVM with high F, measure, F score, and
accuracy seems to outperform other methods. Using
Student’s t-test, we investigated the pair wise relationship
of three proposed methods with respect to accuracy. We
showed in Table 5 that only flatSVM and nestSVM
resulted in statistical significance with a p-value less than
0.05.

Comparisons with solubility prediction methods

To compare our proposed methods with other pre-
viously published predictors, our methods were reduced
to a binary classifier of predicting solubility of proteins
from non-soluble ones, which included insoluble and
non-expression. As we have discussed, the widely used
and available predictors are Wilkinson-Harrison [13]
and PROSO [23]. By submitting each recombinant
fusion proteins to their provided web servers, calculated
results were acquired. As illustrated in Figure 3 for PRC,
each point in the plot was an average of 10 repeats of test
cases for all methods. To compare two methods in
previous works, Wilkinson-Harrison method achieved a

Table 4: Performance evaluation of three proposed methods

http://www.biomedcentral.com/1471-2105/11/S1/S21

Table 5: Student's t-test in accuracy

T-test in Accuracy (pvalue) flatSYM nestSYM
nestSVM 0.045%
hierSYM 0.1075 0.3789

Student's t-test in accuracy was performed to |10 repeats of evaluation
procedures among three proposed methods. flatSVM method
performed significantly better than nestSVM method with a p-value less
than 0.05.

better result than PROSO by 0.5471. According to the
claim of PROSO, correct evaluation occurred only when
target proteins were without trans-membrane segment.
Hence, after checking proteins in our dataset by
TMHMM [34], the bad performance of PROSO would
be because of the existence of trans-membrane segments
in recombinant fusion proteins that were not removed.
As shown in Figure 4, the area under ROC curve of
PROSO is 0.6058, which is closer to 0.781 reported in
the paper. Compared our three methods to others, the
best result of our proposed method is flatSVM , which
outperformed by achieving the auPRC and auROC of
0.8001 and 0.8891, respectively.

We used the feature selection package provided in
LIBSVM to measure the importance of the features. We
found that if we remove those less important features
from our feature set, it will result in a lower accuracy. For
instance, after doing feature selection and keeping 37 the
most important features, the testing accuracy will
dramatically decrease from 87.84% to 45.95% in one
of the best cross-validation model in flatSVM . Hence, we
decided to keep all 617 features to maintain the
performance.

Model ensemble of proposed methods

To investigate the diversity of our proposed methods, we
calculated Yule’s Q-statistic between pairs of proposed
methods. The results in Table 6 indicate that each
method permit to train a classifier in a partial un-
correlation. This outcome could motivate the impor-
tance to combine different methods into an ensemble
one. As shown in Figure 3 for PRC, ensemble models
between flatSVM and nestSVM resulted in a higher

nestSVM

hierSVM

AdaBoost

Avg.\Methods flatSVM

F, measure 0.7791 = 0.0606

F score 0.7551 + 0.0719
0.7833 + 0.0998
0.7397 + 0.1027

Accuracy 0.8351 + 0.0488

0.6989 + 0.0578
0.7068 + 0.0600
0.7875 + 0.0747
0.6466 + 0.0795
0.7865 + 0.0528

0.7466 + 0.0464
0.7000 + 0.0498
0.7083 + 0.0900
0.7015 + 0.0718
0.8041 + 0.0320

0.7241 + 0.0287
0.7075 + 0.0442
0.7000 + 0.0852
0.7240 + 0.0567
0.8135 + 0.0253

For F| measure, each individual classifier must correctly identify each instance into its real class. In contrast, F score just focuses on measuring the rate

of correctly identifying soluble fraction instances from non-soluble ones, i.e. the class of soluble fraction versus the other two classes.
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Figure 3
Comparative analysis with PRC curves. The PRC Curves from the comparative analysis of solubility prediction methods.
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Figure 4
Comparative analysis with ROC curves. The ROC Curves of the comparative analysis of solubility prediction methods.
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Table 6: Yule's Q-statistic between proposed methods

Q-statistic flatSYM nestSVM hierSYM
nestSVM 0.9022

hierSYM 0.9424 0.8569

AdaBoost 0.8527 0.7740 0.7979

Yule's Q-statistic was performed to proposed methods. It shows that
flatSVM and hierSVM tend to make similar mistakes and correct
classifications.

auPRC of 0.8093. As shown in Figure 4, ensemble
models among all methods achieved 0.9045 in auROC.

Computational simulation of enhancing solubility

by limit mutations or optimal codons

In biotechnology perspective, to improve the solubility
of target proteins, some laboratory workers may mutate
few nucleotides in target genes without affecting their
corresponding translational proteins. Moreover, accord-
ing to the codon preference in E. coli, they synthesize
whole nucleotide sequences based on the amino acid
sequences. Here, we designed two computational simu-
lations to enhance the solubility of recombinant proteins
via our prediction classifier. First, while considering a

Z1098 Nus
Z1098_Nus_13
21098 Nus_49
Z1098_Nus_158

http://www.biomedcentral.com/1471-2105/11/S1/S21

proper number of mutation sites in biological labora-
tories, we limited the maximum steps of mutation sites
to five. Meanwhile, to effectively reduce the search space,
we employed a beam search for narrowing down the
search to the top five potential candidates to be soluble
forms, which were predicted by our classifier. On the
other hand, we designed the second simulation by using
preferential codons in E. coli to synthesize entire
nucleotide sequences of target proteins. By inputting
these synthesized nucleotide sequences into our classi-
fiers, we want to investigate whether any changes in
expression levels will occur.

In our data set, there are totally 259 scenarios, including
a given gene and its corresponding vector, resulted in a
non-expression level. By mutating few nucleotides or by
synthesizing nucleotide sequences based on the codon
preference in E. coli, we tried to recover these 259 cases
from non-expression to soluble fraction. For the first
part, there are two cases predicted by our classifier to
change their expression level to soluble forms after one
and five steps, respectively. As shown in Figure 5, this
case was originally in the non-expression level, but was
predicted as a soluble from after mutating five bases. For
the simulation of using synthesized nucleotide

PRI c [ 1| I ..CUU...
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Figure 5
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Multiple sequence alignment for one mutation case. The result of Multiple Sequence Alignment (MSA) for one case
which was predicted as a soluble form after mutating 5 nucleotides was presented.
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sequences, there were totally 31 out of 259 cases that
were successfully predicted as soluble fractions as well as
nine out of 259 cases were predicted as insoluble
fractions.

Conclusion

Since the days when Wilkinson and Harrison started
applying statistical and computational approaches on
studying the solubility prediction for a given protein
over-expressed in E. coli [13], a large number of
researchers developed variety of methods on extracting
the important factors to affect the solubility of recombi-
nant proteins. In this study, we developed three SVM-
based methods of predicting three expression levels
based on SDS-PAGE experiments for a target protein in a
corresponding vector in E. coli. Unlike most previous
works of omitting the cases of no protein expressions in
E. coli, this work is the first attempt to tackle a three-class
classification problem of distinguishing the expression
level for a desired protein in SDS-PAGE experiments.
Moreover, according to the observation from our
experimental data, a given protein could result in
different expression levels when being over-expressed
in different vectors in E. coli. Therefore, this work is the
instance of encompassing the entire cloning and expres-
sion regions. By using our classifiers, the prediction
results could help biologists effectively and efficiently
choose among different vectors to gain soluble recombi-
nant proteins in E. coli. Additionally, in biotechnology
perspective, by mutating few nucleotides or by synthe-
sizing optimal sequences according to the codon
preference in E. coli, our prediction methods also provide
effective ways to enhance the solubility of target
proteins.
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