
BMC Bioinformatics

Research
Decoding HMMs using the k best paths: algorithms and applications
Daniel G Brown* and Daniil Golod

Address: Cheriton School of Computer Science, University of Waterloo, 200 University Avenue W., Waterloo, Ontario, Canada N2L 3G1

E-mail: Daniel G Brown* - browndg@uwaterloo.ca; Daniil Golod - dgolod@uwaterloo.ca
*Corresponding author

from The Eighth Asia Pacific Bioinformatics Conference (APBC 2010)
Bangalore, India 18-21 January 2010

Published: 18 January 2010

BMC Bioinformatics 2010, 11(Suppl 1):S28 doi: 10.1186/1471-2105-11-S1-S28

This article is available from: http://www.biomedcentral.com/1471-2105/11/S1/S28

© 2010 Brown and Golod; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Traditional algorithms for hidden Markov model decoding seek to maximize either
the probability of a state path or the number of positions of a sequence assigned to the correct
state. These algorithms provide only a single answer and in practice do not produce good results.

Results: We explore an alternative approach, where we efficiently compute the k paths of highest
probability to explain a sequence and then either use those paths to explore alternative
explanations for a sequence or to combine them into a single explanation. Our procedure uses an
online pruning technique to reduce usage of primary memory.

Conclusion: Out algorithm uses much less memory than naive approach. For membrane
proteins, even simple path combination algorithms give good explanations, and if we look at the
paths we are combining, we can give a sense of confidence in the explanation as well. For proteins
with two topologies, the k best paths can give insight into both correct explanations of a sequence,
a feature lacking from traditional algorithms in this domain.

Background
Hidden Markov model (HMM) decoding is a basic
problem in sequence analysis, as HMMs are used
throughout the field to divide discrete sequences into
regions corresponding to features. HMMs decode a
sequence by assigning each position in the sequence a
label; intervals with the same label then correspond to
the same feature in a sequence.

Two common decoding procedures for HMMs are the
Viterbi and posterior algorithms. The Viterbi algorithm
computes the maximum probability path through an

HMM, and returns the labelling of the states of that path.
Many states may share a single label. While it is easy to
compute this single path, it often gives poor annotations
[1]. We might want to compute the labelling of a
sequence that has maximum probability, but that is NP-
hard [2]. Posterior decoding computes the most prob-
able state or label of each position of a sequence and
joins those together into a single labelling. This is
quickly computable, but has no guarantee that it will
actually correspond to a feasible labelling of the
sequence, since it may not satisfy the constraints of the
model.

Page 1 of 7
(page number not for citation purposes)

BioMed Central

Open Access

mailto:browndg@uwaterloo.ca
mailto:dgolod@uwaterloo.ca
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Recently, variant posterior methods have also appeared,
which seek to maximize the expected number of
positions in the sequence that are correctly labelled, or
the geometric mean of the probability that a position is
correctly labelled, while requiring that a labelling has
nonzero probability [3,4]. However, the overall labelling
may be of extremely low probability relative to the true
explanation; again, it is NP-hard to maximize the overall
labelling probability [2]. Also, several heuristic algo-
rithms, such as the 1-best by Krogh [1], exist to work
around these limitations, but do not guarantee optim-
ality.

We study an alternative approach: we investigate the
feasibility of computing the k most probable paths, and
how examining the labellings corresponding to these
paths can serve as a good alternative to more traditional
HMM procedures. We have used the HMM for the
Phobius [5] transmembrane topology predictor to
investigate the usefulness of the k-best paths in a real
world example and show that alternative paths can
provide a wealth of information. We show that k-best
paths can be good predictors and investigate ways to
extract such predictions. We also show how to judge our
confidence in a particular prediction by looking at the
alternatives that result from the k-best paths.

Finally, we investigate the use of the k-best paths to
predict more then one topology in cases when it is
biologically proven that such alternatives exist.

Notation and definitions
A hidden Markov model is a probabilistic generative
automaton that produces a sequence while traversing
stochastically through a finite set of states. An HMM is
defined by a collection of parameters: a start state I, a set
of transition parameters (aij), and a set of emission
parameters (bi(c)). Let m be the number of states. A path
π through the HMM is a sequence of states π0 = I, π1,
π2, ..., πn such that for all i, a

i iπ π +
≠

1
0 . For each path π of

length n + 1 the probability that this path emits sequence

x = x1x2 ... xn is Pr[,] ()π π π πx a b x
i i i ii

n=
−=∏ 11

. The Viterbi

algorithm finds the most probable path through the
HMM for a given sequence. The natural implementation
of the Viterbi algorithm (see [6]) uses dynamic program-
ming to construct a Θ(mn) sized matrix, in which cells
correspond to state-position pairs. There is a natural
extension to finding the k-best paths in the HMM: store
the k highest-scoring paths for each position-state pair.
The k highest probability paths for x1... xi that end in
state πi must be from the k-best paths to each of the
states for the sequence from x1 to xi-1. This observation
leads to a Viterbi-like algorithm with runtime k times as

large, and requiring Θ(kmn) storage. This approach has
been used in speech recognition as early as the 1990s [7],
but its space requirements make it infeasible for finding
the k-best paths for large values of k on substantial
HMMs for long sequences.

Alternatively, finding the k-best paths though an HMM
can be seen as finding k shortest paths in a graph with nm
nodes (one for each position-state pair). The graph has
O(m2n) edges, each edge corresponding to a potential
transition between HMM states. On this graph, one can
apply Eppstein’s algorithm [8] to find k shortest paths in
O(m2n + k) time. This algorithm keeps the whole
Θ(m2n)-size graph in memory as well as an Ω(mn) size
structure used in the algorithm; it also has high constant
factors in the runtime and only implicitly represents the
paths.

A space savings approach for Viterbi was presented by
Sramek et al. [9], which uses a compressed tree approach
to actively free memory used by unnecessary back
pointers in the state-position matrix. We create an m by
n + 1 grid of nodes where each node corresponds to a cell
of the Viterbi matrix (a position-state pair): each column
corresponds to them possible choices for the last state in a
prefix of x. We create an edge between node vi of column i
and node vi+1 of column i + 1 if the Viterbi path to the
position-state pair (i + 1, vi+1) goes through vi. Edges give
the back pointers in the dynamic programming for the
Viterbi calculation. If we remove all nodes and edges that
are not on paths from column n of the graph to state I in
column 0, what remains is a tree. In the approach of
Sramek et al., this tree is actively pruned, and nodes with
exactly one parent are merged into their parents as they
are created. An example of a compressed tree is in Figure
1. After compression, each node corresponds to a
sequence of states which emits a particular substring of
the given string, found in a potential Viterbi path to one of
the leaves of the tree. For details of how to maintain a
compressed tree efficiently see [9,10].

Methods
The Viterbi algorithm (and procedures for finding the k-
best paths) actually consists of two different calculations:
computing the probabilities of the best path (or k paths)
to every state for every prefix x1... xi of a given sequence
x1... xn, and also storing the pointers necessary to
reconstruct those paths. Our primary emphasis is to
store enough information to reconstruct these pointers
for the final paths in as little space as possible, again
using an active pruning procedure, which becomes a bit
more complicated with k paths than with just one. Using
this method, we typically use much less memory than
the Θ(kmn) required by the obvious approach.

BMC Bioinformatics 2010, 11(Suppl 1):S28 http://www.biomedcentral.com/1471-2105/11/S1/S28

Page 2 of 7
(page number not for citation purposes)

Computing the probabilities
To compute the k highest path probabilities to each state
at position i, we assume that we have a sorted list of the
k-best path probabilities to each state at position i - 1.
Then, if we are considering a state a whose possible
predecessors in the HMM are Pred(a), we can find the
k-best probabilities for state a at postion i by performing
an operation very similar to the first k steps we would
undertake in merging |Pred(a)| lists for mergesort. The
Viterbi probability of the ℓ-th best path to state v is

max (Pr[
()c Pred v

c
∈

−best path to state not used in best 1 ppaths] ()).a b xcv v i

We can compute this quantity in O(m) time per path; it
is an interesting algorithmic question whether this can
be sped up heuristically, since all paths to state v that
were in state c at position i - 1 will have their
probabilities multiplied by the same constant, acv bv(xi).

This calculation, then, takes k times the cost of a
standard Viterbi calculation and Θ(mk) space. By
contrast, the posterior algorithms yielding non-zero
probability paths of Fariselli et al. [4] and of Kall et al.
[3] run asymptotically as fast as Viterbi, but yield only a
single path, which may be overall an odd one from a
macroscopic view.

Storing and pruning the paths
The k best paths can be computed by using a three-
dimensional grid, where entry (i, j, a) corresponds to the
a-th best path to state j for sequence x1, ..., xi. Treating

this grid as a graph, we draw an edge from (i, j, a) to
(i + 1, k, b) if the b-th best path to state k at position i + 1
uses the a-th best path to state j at position i. As in the
Viterbi algorithm, we wish to actively maintain only
the entries in the graph that correspond to paths to the
current frontier, position i of the sequence.

We will describe two types of nodes in the graph: path
nodes, which correspond to a single value of (i, j, a), and
state nodes, which correspond to all paths (i, j, a) where i
and j are kept constant (see Figure 2A). An edge between
two state nodes exists if any of their path nodes have an
edge.

As we move forward in the sequence, we compute the k
best paths to each state at a new position i, drawing
edges in the structure to the predecessor of each. Then,
we prune and compress. First, we must prune away all of
the path and state nodes from the previous level that are
no longer found on paths to a leaf (and all nodes
orphaned by that change, until none remain to be
pruned); see Figure 2B. Then, we merge pairs of
consecutive state nodes for which all paths from one
state node go to the other and vice versa; see Figure 2C.

Each path node stores its number of children and
pointers to its state node, and the path node that is its
parent. Each state node stores the list of HMM states
associated with it (the state path through the HMM for
the sequence interval corresponding to that state node),
the list of at most k path nodes it includes, pointers to its
children, and the number of state nodes that are its
parents. We can find the parents of a state node by
examining its associated path nodes and identifying the
state node corresponding to the parent of each path
node.

A state node is deleted if it has no path nodes, and it is
merged with another state node if that node is its only

Figure 1
Example of compressed tree. Solid nodes and lines
indicate the actual data structure. The dotted nodes and lines
indicate intermediate steps in the construction described in
the text.

Figure 2
K-best tree construction visualization. The solid lines
represent path level nodes and edges, while dotted lines
represent vertex level nodes and edges. A) The tree
structure before any pruning or compressing. B) The tree
structure after path and state nodes are removed. C) The
final data structure, after all node merging.

BMC Bioinformatics 2010, 11(Suppl 1):S28 http://www.biomedcentral.com/1471-2105/11/S1/S28

Page 3 of 7
(page number not for citation purposes)

parent and it is the parent’s only child. This corresponds
to the situation where all paths that include a sequence
of states πi... πj for the subsequence si... sj are followed by
the same set of states πj+1 ... πk for sj+1 ... sk, so we can
merge the sequences together.

Pruning and compressing details
Suppose we are about to incorporate sequence letter, xi.
We calculate the probability of all k best paths to each
possible state. If the ℓ-th best path to state c uses path
node (i’, b, a) at the previous step (where i’ need not be
i - 1 due to compression), then we set that node to be the
parent of (i, c, ℓ), updating the child counters for (i’, b, a),
and we also set the state node (i’, b) to have (i, c) as a
child.

After performing this set of operations for all the new
graph nodes corresponding to sequence position i (at all
states), we prune all nodes not reachable from the new
leaves, by seeing which leaves at level i - 1 are no longer
accessible. For each path node in this “removal list”, we
remove the path node from its state node, and update
appropriate counters. If its parent’s child counter reaches
zero, it is moved to the removal list as well. If a path node
removed was the last path node for that state node, then
the state node is removed. We also detect if a state node
enters the condition that it has only one child and its child
has only that one parent: if so, the states are merged.

Because this algorithm is done online, the active
footprint of memory used by the algorithm is dramati-
cally less than Θ(kmn) in practice, though it may be that
large in extreme cases.

Recovering the paths
Once we have produced the final structure, we must
extract the k paths with highest probability. The k path
probabilities at each of the m leaves are the probabilities
of the best paths to those states. From these km paths, we
select the k of highest probability, as the first k steps of
an m-way mergesort, in O(km) time, and we construct
the k-best paths then in O(kn) time after the merging.
The total run time is O(nm2k) as for the naive algorithm,
as the overhead in doing the paths compression is
smaller then the basic calculations. The is no guarantee
that the new procedure is more space-efficient: our
heuristic may not always result in compression.

Results and discussion
Having k different high-probability explanations for a
sequence might offer some assistance in decoding it.
Here, after briefly showing that our pruning and
compression methods make finding the k best paths
for large values of k possible, we explore several different

uses for these multiple explanations: first, to see if any of
them is a good explanation, second, to see if we can
reconstruct a good single explanation from a set of paths,
third, to see if the topologies and probabilities assigned
by the HMM to the k best paths help us identify easy and
hard sequences to decode, and finally (and perhaps most
interestingly) to see if k paths can help us decode
sequences with different true explanations.

Our experiments use the domain of transmembrane
protein topology prediction, where Viterbi-style decoding
has not been successful. We have used the 188-state HMM
from Phobius [5], which divides alpha-helical membrane
protein sequences into segments corresponding to mem-
brane-spanning segments and the parts found either
inside or outside the cellular membrane. The topology of a
membrane protein is the number of the membrane-
spanning helical regions, along with the sidedness, which
is the identification of the first residue of the protein as
being either intracellular or extracellular.

We use the data set of proteins provided with Phobius
[5]: 247 membrane proteins with no signal peptide and
45 proteins with a signal peptide. We focus on the larger
of these two sets. Note that Kall et al. evaluated cross
validated data sets, making direct comparisons to their
published results inappropriate. We also note that their
HMM has been trained for success with the 1-best
algorithm, while we are using a quite different decoding
approach. In our last experiment, we study five proteins
known to have two topologies [11].

A fundamental question for this study is what makes a
good prediction. Transmembrane topology prediction is
somewhat imprecise because the actual boundaries of
membrane-spanning segments are inexact, but can be
identified to within a residue or so based on solved
protein structures [12]. The authors of Phobius describe
a prediction as correct if it identifies the correct topology,
and if each true helix overlaps with the corresponding
helix in at least five positions. Helices tend to be
approximately twenty-two residues long, so this measure
is lax.

We also studied a more stringent correctness measure,
parameterized by a tolerance τ. In it, a prediction is
correct if topology is correct, and if all predicted helix
boundaries are no more than τ residues away from the
true boundary. We used this measure with values of τ
from 0 to 5 in our experiments.

Memory and runtime
Our algorithms do dramatically reduce the memory
use of finding the k best paths in this HMM. Table 1
shows the maximum memory required in decoding the

BMC Bioinformatics 2010, 11(Suppl 1):S28 http://www.biomedcentral.com/1471-2105/11/S1/S28

Page 4 of 7
(page number not for citation purposes)

45 proteins with a signal peptide for different values of k:
while these values do grow with k, the memory usage for
the tree-based approach is approximately fifty times
smaller than for the naive approach; it takes twice as
much memory as an approach that only computes the
probabilities, and does not store back pointers at all. We
note that in this application, we could have used the
naive algorithm in the memory footprint of a typical
computer. However, we also computed the 10, 000 best
paths for the dual-topology proteins described below,
which would not have been possible with the naive
algorithm [13].

Meanwhile, Table 2 shows the runtimes for these three
approaches: our algorithm is the slowest, but the
overhead required for pruning and compression has
the effect of doubling the runtime of the more naive
methods.

Finding at least one good labelling
Now, we explore the k best paths to see if any of them
gives a good labelling. We compare with the results of
the 1-best algorithm [1], decoding algorithm for which
the model is trained. Our results are in Table 3. There is
much information in the k-best paths; the challenge is in
extracting this into a single prediction. For example, we
find a good labelling in the set of 100 best paths much
more often than in the single labelling found by the 1-
best algorithm. It is also striking that for 46 of the 247
proteins (19%), the exactly correct labelling is found
among the top 1000 paths.

From many labellings to one
Once we have identified the top k paths, the next
challenge is in summarizing them into a single labelling.
We divide the k paths into “groups”, where all paths in a
group predict the same topology, and then form a
consensus from the heaviest group, for which the sum of
the conditional probabilities of all of the chosen paths in
that group is highest. Note that this method cannot
succeed when the chosen group is not, in fact, of the
correct topology.

Many natural ways to form a consensus all gave
essentially equivalent results. For example, we might
average the positions of start points and end points of
transmembrane helices for all paths in a group. This
approach always produces consistent results. This
method is fairly good at retrieving the information
contained in the group, as shown in Table 4. For the
Phobius correctness measure, at most four proteins for
which the largest group of k paths gave the correct
topology were mis-annotated, after building the con-
sensus (data not shown). In general, this straightforward
approach to moving from k paths to a single labelling
did less well than the 1-best algorithm, but better than
Viterbi, though the results are much closer for our τ = 5
measure then for the Phobius measure.

Table 1: Overall memory usage. Overall memory usage required
to process all proteins with a signal peptide in Mb

Probability only Tree-based Matrix-based

k = 100 4 8 290
k = 200 6 13 570
k = 300 7 17 850
k = 400 8 21 1130

This value corresponds to the memory required for the longest protein.
‘Probability only’ corresponds to a run where no backtracking was
performed, ‘Tree-based’ refers to our tree-based implementation,
‘Matrix-based’ refers to naive matrix approach.

Table 2: Total runtime. Amount of time required to process all
proteins with a signal peptides, in seconds

Probability only Tree-based Matrix-based

k = 100 84 145 90
k = 200 161 303 166
k = 300 231 425 241
k = 400 296 553 317

Table 4: Forming a consensus labelling. Forming a consensus
labelling from k paths. Results for Viterbi decoding and 1-best
decoding (as used in Phobius) are provided for comparison.
(n = 247)

τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 Phobius

k = 10 3 12 23 27 47 69 139
k = 100 4 14 23 32 51 70 141
k = 1000 3 15 24 35 57 77 145

Viterbi (k = 1) 2 11 19 27 46 59 137
1-best 4 18 26 38 62 79 166

Table 3: Proteins with good labellings. Proteins with good
labellings

τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 Phobius

k = 1 (Viterbi) 2 11 19 27 46 59 137
k = 10 9 21 33 44 67 83 157
k = 100 34 52 64 85 110 129 198
k = 1000 46 66 89 123 143 168 214

1-best 4 18 26 38 62 79 166

For k paths and a correctness measure, we count the number of
proteins for which at least one of the top k paths gives a prediction that
satisfies that correctness measure. The bottom line gives the results for
the 1-best decoding algorithm used in Phobius. Presented is the data set
without signal peptide (n = 247).

BMC Bioinformatics 2010, 11(Suppl 1):S28 http://www.biomedcentral.com/1471-2105/11/S1/S28

Page 5 of 7
(page number not for citation purposes)

Other approaches to forming a consensus, such as
allowing per-position voting among the k paths on the
correct label of a position (which is in some sense
analogous to posterior decoding), or allowing predic-
tions to vote on the start position and length of helices
yielded similar results. Both of these methods can yield
labellings inconsistent with the model after generating a
consensus.

Using k paths to increase confidence
Another potential use of multiple paths is to reinforce
our belief that a particular protein is easy or hard to
properly annotate.

In particular, we hypothesized that if the top k paths all
correspond to the same number of helices (with possible
differences in sidedness or in the positions of helix
boundaries), this can be seen as supporting evidence for
that number of helices. Indeed, this is confirmed by the
results in Table 5. If the top k paths all give the same
number of helices, this prediction is very likely correct,
and in the majority of cases, the full topology is also
correctly chosen. Such proteins almost always form a
good consensus.

By contrast, for the proteins where multiple different
numbers of helices are predicted, the results are much
weaker: the largest group of predictions gives the correct
number of helices in 20% to 28% fewer cases, and gives
the overall correct topology in 32% to 37% fewer cases.

Another use for k paths is to identify proteins for which
the top k paths use up a significant part of the
conditional probability space of the model, given the
sequence. If so, then we hypothesize that their consensus
labelling is likely to be good. This hypothesis is
confirmed, as shown in Table 6. Consider the 47
proteins where the top 100 paths take up more than
conditional probability of 0.5 given the sequence. For 38
of them (81%), at least one of those paths satisfies our
correctness measure with τ = 5. By contrast, for the 102
with total probability of the top 100 paths less than 0.01,
only 31 (30%) have a path this good. Thus, the total
conditional probability of the top k paths is a good
predictor of the existence of paths with a good labelling
among these k paths.

Two true answers: dual-topology proteins
An interesting final testbed for our ideas are proteins
known to have two topologies; such dual-topology
proteins were only confirmed to exist in 2006 by Rapp
et al. [11]: the five proteins identified are EmrE [Swiss-
Prot:P23895], SugE [Swiss-Prot:P69937], CrcB [Swiss-
Prot:P37002], YdgC [Swiss-Prot:P0ACX0], and YnfA
[Swiss-Prot:P76169].

For all of these proteins, the two topologies differ only in
their sidedness: they all are short proteins with four
transmembrane helices, and have very little information
in their non-membrane segments to indicate which set
belong inside or outside the membrane.

Table 5: Gaining confidence. If the top k paths all agree about the number of helices, this prediction is correct in 83% to 91% of cases. If
they disagree, then in only 55% to 71% of cases does the largest group predict the correct helix number. A similar separation occurs for
the overall protein topology

All same number of helices Distinct number of helices

Type of correctness k = 10 k = 100 k = 1000 1k = 10 k = 100 k = 1000
(n = 189) (n = 120) (n = 64) (n = 58) (n = 127) (n = 183)

of helices 156(83%) 107(89%) 58(91%) 32(55%) 81(64%) 130(71%)

Overall topology 123(65%) 93(77%) 56(88%) 19(33%) 51(40%) 93(51%)

Table 6: Correct proteins as a function of conditional probability. Number of proteins predicted correctly as a function of the total
conditional probability of the top k paths. Results are shown for the data set without signal peptide (n = 247), with correctness being
measured with τ = 5

Probability of top k paths k = 10 k = 100 k = 1000

Correct Incorrect Correct Incorrect Correct Incorrect

< 0.01 33 98 31 72 33 45
0.01 - 0.5 42 64 60 37 82 27
0.5 - 1 8 2 38 9 53 7

BMC Bioinformatics 2010, 11(Suppl 1):S28 http://www.biomedcentral.com/1471-2105/11/S1/S28

Page 6 of 7
(page number not for citation purposes)

The Phobius model, by itself, does not give a good
prediction for most of these proteins: the topology from
Uniprot [14] is approximated by any of the top 100
paths in the model in two of five cases. One challenge for
these proteins is that because they are quite short, the
signal peptide module in the Phobius model often gives
them a bad labelling; if we remove that module, then
even the top ten paths gives this one correct topology in
four of five cases (data not shown).

However, much more interesting is the question of
finding two good answers. If we look at the top 100 or
1000 paths, then for all of these proteins, the top paths
support two or more different topologies. In three cases,
superficially YnfA, CrcB and SugE, the two heaviest
groups do give both correct overall topologies, and the
consensus of the these paths is correct for the Phobius
distance measure. For the other two proteins, EmrE and
YdgC, the top two groups are not correct: in both cases
one of the two groups incorrectly predicts three helices,
not four.

For proteins with two (or more) correct topologies, the
top k paths let us explore that space effectively. We
expect that similar explorations may also be fruitful in
other contexts where multiple correct answers are to be
found. We did not investigate the question of how often
proteins with a single topology might appear to have two
topologies using a similar approach.

Conclusion
We have developed a memory-efficient algorithm for
finding k-best paths in an HMM. Considering the k best
paths of an HMM is not novel; the idea has been
considered by speech recognition experts, for example
[7]. However, previous algorithms for this have either
used too much memory or been heuristic in nature. Our
method has a significantly lower memory footprint in
practice than the naive implementation. Using this
algorithm we investigated the use of k-best paths in
topology prediction for transmembrane proteins. While
better than the Viterbi algorithm, forming a consensus of
the k-best paths does not perform as well as the 1-best
algorithm; largely, the issue is in finding the correct
overall topology, which 1-best does better, possibly for
training reasons. Where the k-best paths gives the overall
correct topology, we can almost always compute a good
consensus prediction. We can extract other interesting
data from the k-best paths. In particular, we can estimate
our confidence in a prediction by looking at the content
and probability distribution of the k-best paths. Finally
we have shown that in the special case of dual-topology
proteins, a simple processing of the k-best paths can
often predict both of the correct topologies of a protein.

Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions
DB conceived of the study, wrote most of the manu-
script, and directed the experiments. DG designed most
of the algorithms, wrote some of the manuscript,
conducted the experiments, and did much of the
evaluation.

Acknowledgements
We appreciate helpful comments by Jakub Truszkowski. Research of both
authors is supported by the Natural Sciences and Engineering Research
Council of Canada and by an Early Researcher Award by the Province of
Ontario to DGB.

This article has been published as part of BMC Bioinformatics Volume 11
Supplement 1, 2010: Selected articles from the Eighth Asia-Pacific
Bioinformatics Conference (APBC 2010). The full contents of the
supplement are available online at http://www.biomedcentral.com/1471-
2105/11?issue=S1.

References
1. Krogh A: Two methods for improving performance of a

HMM and their application for gene finding. Proceedings of
ISMB 1997, 179–186.

2. Brejova B, Brown D and Vinar T: The most probable labeling
problem in HMMs and its application to bioinformatics.
Proceedings of WABI 2004, 426–437.

3. Kall L, Krogh A and Sonnhammer E: An HMM posterior decoder
for sequence feature prediction that includes homology
information. Bioinf 2005, 21:i251–i257.

4. Fariselli P, Martelli P and Casadio R: A new decoding algorithm
for hidden Markov models improves the prediction of the
topology of all-beta membrane proteins. BMC Bioinformatics
2005, 6.

5. Kall L, Krogh A and Sonnhammer E: A combined transmem-
brane topology and signal peptide prediction method. J Mol
Biol 2004, 338(5):1027–1036.

6. Durbin R, Eddy S, Krogh A and Mitchison G: Biological sequence
analysis.Cambridge University Press, Cambridge, UK; 1998.

7. Rabiner L and Juang B: Fundamentals of speech recognition Prentice-
Hall Signal Processing Series; 1993.

8. Eppstein D: Finding the k shortest paths. SIAM J Computing 1999,
28(2):652–673.

9. Sramek R, Brejova B and Vinar T: On-Line Viterbi algorithm for
analysis of long biological sequences. Proceedings of WABI 2007,
240–251.

10. Golod D and Brown D: A tutorial of techniques for improving
standard hidden Markov model algorithms. J Bioinf and Comp
Biol 2009, 7(4):737–754.

11. Rapp M, Granseth E, Seppala S and Von Heijne G: Identification
and evolution of dualtopology membrane proteins. Nat Struct
& Mol Biol. 2006, 13(2):112–116.

12. Tusnady G, Dosztanyi Z and Simon I: Transmembrane proteins
in the Protein Data Bank: identification and classification.
Bioinf 2004, 20(17):2964–2972.

13. Golod D: The k-best paths in hidden Markov models:
algorithms and applications to transmembrane protein
topology recognition. Master’s thesis University of Waterloo;
2009.

14. Bairoch A, Apweiler R, Wu C, Barker W, Boeckmann B, Ferro S,
Gasteiger E, Huang H, Lopez R and Magrane M, et al: The universal
protein resource (UniProt). Nucl Acids Res 2005, 33 Database:
D154.

BMC Bioinformatics 2010, 11(Suppl 1):S28 http://www.biomedcentral.com/1471-2105/11/S1/S28

Page 7 of 7
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/11?issue=S1
http://www.biomedcentral.com/1471-2105/11?issue=S1
http://www.ncbi.nlm.nih.gov/pubmed/16351738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351738?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15111065?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15111065?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16429150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16429150?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608167?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Notation and definitions

	Methods
	Computing the probabilities
	Storing and pruning the paths
	Pruning and compressing details

	Recovering the paths

	Results and discussion
	Memory and runtime
	Finding at least one good labelling
	From many labellings to one
	Using k paths to increase confidence
	Two true answers: dual-topology proteins

	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

