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Abstract

Background: RNA structure prediction problem is a computationally complex task, especially
with pseudo-knots. The problem is well-studied in existing literature and predominantly uses highly
coupled Dynamic Programming (DP) solutions. The problem scale and complexity become
embarrassingly humungous to handle as sequence size increases. This makes the case for
parallelization. Parallelization can be achieved by way of networked platforms (clusters, grids, etc)
as well as using modern day multi-core chips.

Methods: In this paper, we exploit the parallelism capabilities of the IBM Cell Broadband Engine
to parallelize an existing Dynamic Programming (DP) algorithm for RNA secondary structure
prediction. We design three different implementation strategies that exploit the inherent data,
code and/or hybrid parallelism, referred to as C-Par, D-Par and H-Par, and analyze their
performances. Our approach attempts to introduce parallelism in critical sections of the algorithm.
We ran our experiments on SONY Play Station 3 (PS3), which is based on the IBM Cell chip.

Results: Our results suggest that introducing parallelism in DP algorithm allows it to easily handle
longer sequences which otherwise would consume a large amount of time in single core
computers. The results further demonstrate the speed-up gain achieved in exploiting the inherent
parallelism in the problem and also elicits the advantages of using multi-core platforms towards
designing more sophisticated methodologies for handling a fairly long sequence of RNA.

Conclusion: The speed-up performance reported here is promising, especially when sequence length
is long. To the best of our literature survey, the work reported in this paper is probably the first-of-its-
kind to utilize the IBMCell Broadband Engine (a heterogeneousmulti-core chip) to implement aDP. The
results also encourage using multi-core platforms towards designing more sophisticated methodologies
for handling a fairly long sequence of RNA to predict its secondary structure.
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Background
In this section, we begin by presenting the relevant
biological background behind RNA and then give a brief
summary on IBM Cell platform; Astute readers are
referred to [1,2] for further details. Following this, we
describe RNA secondary structure prediction from a
dynamic programming perspective and list related
works. Finally, we analyze a Dynamic Programming
(DP) algorithm for RNA secondary structure prediction.

RNA
A ribonucleic acid (RNA) sequence is made of individual
molecules known as nucleic acids, which can be one of
four possible types - Adenine (A), Cytosine (C), Guanine
(G), and Uracil (U) [3]. A RNA sequence folds upon
itself to form bonds among its molecules known as base
pairs and the overall structure is then referred as its
secondary structure.

There are several types of patterns that make up the RNA
secondary structure - loops (hairpin, internal), stems,
bulges, free dangling ends and pseudoknots. In parti-
cular, pseudoknots are of prime interest for they play an
important role in regulatory, catalytic, messaging and
structural activities in cells. Therefore, elucidation of
structural features of pseudoknots and reliable predic-
tion of pseudoknots in RNA secondary structure using
sequence data are important for understanding structure-
function relationships in many RNA molecules.

Figure 1 shows an example of RNA secondary structure in
both Pseudoknot and Non-Pseudoknot configurations.

IBM Cell
Cell is a heterogeneous RISC-based multi-core micro-
processor architecture jointly developed by Sony,

Toshiba and IBM. Cell contains a 64-bit PowerPC
based 2-way processor core with SIMD extensions,
known as the PowerPC Processing Element (PPE).
There are 8 co-processors known as Synergistic Proces-
sing Elements (SPE) that are optimized for mathematical
computations. A high-bandwidth circular data bus
known as the Element Interconnect Bus (EIB) inter-
connects the PPE and SPEs.

Each SPE contains 256 KB local memory and no cache
memory. The SPU can only access data from the local
memory, and uses DMA to fetch data from the main
memory. Therefore, SPE programs have to pre-fetch data
of optimal sizes and leverage on locality of reference for
best performance. Langou et al [4] demonstrated a
3.2 GHz Cell with 8 SPEs delivering a performance equal
to 100 GFLOPS on an average double precision Linpack
4096 × 4096 matrix. SPEs are the work-horses while the
PPE handles the control and coordination of the tasks.

Figure 2 shows a simplified layout of the Cell Broadband
Engine.

In this paper, we used Sony PS3 game console for our
implementation. It may be noted that Sony PS3 game
console uses the IBM Cell processor. In Sony PS3, only
six of eight SPEs are available to the programmer. The
specifications of the Sony PS3 are presented below in
Table 1.

Dynamic Programming
RNA secondary structure prediction is the process of
determining the optimal set of pairings between nucleo-
tides. One of the well known computational methods for
RNA secondary structure prediction is dynamic program-
ming, which evolves a final optimal structure by computing
best solutions for overlapping sub-problems. In its simplest
form the algorithm performs base-pair maximization.

The optimal structure between two nucleotide positions
can be derived recursively from the optimal substruc-
tures contained within. Dynamic programming works
from the smallest substructure upwards, storing inter-
mediate results along the way for future back-referen-
cing. Dynamic programming for RNA structure
prediction is classified as non-serial polyadic [5]. This
means that the optimal structure at any stage has data
dependency on the results of previously calculated
substructures, not necessarily derived during the pre-
vious iteration. The optimal structure for any sub-
sequence involves considering all the possible pairings
that could take place amongst nucleotides contained in
that particular sub-sequence. The possibilities are shown
in Figure 3.

Figure 1
RNA secondary structures - A: Non-Pseudoknots, B:
Pseudoknots. This figure illustrates pictorially RNA
secondary structure in both Pseudoknot and Non-
pseudoknot configurations.
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Scenario F in the Figure 3 is the pseudoknot case which
needs more elaboration. Figure 4 shows a typical
pseudoknot from a dynamic programming perspective.

In Figure 4, in order for the dynamic programming
algorithm to compute (i, j1), it would no longer be
sufficient to look within sub-sequences of (i, j1) as for
every position k within (i, j1), there is a need to assess
the implication of k paring with some nucleotide at any
position j2 outside of (i, j1). The complication is that to
assess the effect of (k, j2), it also depends on how every
j1 within (k, j2) might pair with some nucleotide at any
position i outside of (k, j2).

Related work
Several DP and non-DP based algorithms have been
published in the literature. Zuker and Stiegler proposed a
simple DP for predicting optimal secondary structures
without pseudoknots [6]. The algorithm used thermo-
dynamic parameters as heuristics, has a time complexity
of O(n^3) and is implemented in mfold software [6].

Alternative methods to DP, especially to reduce the
complexity introduced by pseudoknot prediction, were

Table 1: PS3 hardware specifications. This table shows the
various hardware components of the Sony Play Station 3 (PS3)
game console with details on size of each of them

CPU Architecture PPE: PowerPC 64 bit
SPE: SPE Architecture

Clock Speed PPE: 3.2 GHz
SPE (each): 3.2 GHz

L2 Cache (PPE Only) 512 KB

PPE Memory 256 MB XDR

Memory Bandwidth 25.6 GB/s

SPE Memory 256 KB SRAM

Single Precision PPE: 25.6 GFLOPS
SPE: 25.6 GFLOPS

Double Precision PPE: 6.4 GFLOPS
SPE: 14 GLOPS

Figure 2
Cell schematic. This figure shows the IBM Cell Broadband Engine processor schematic. Various elements of the chip such as
PPE, SPE, EIB are shown.

Figure 3
RNA secondary structure building blocks. This figure
shows the various types of building blocks that form the
RNA secondary structure. 3A shows the hairpin loop, 3B
shows stack/bulge/internal loop, 3C shows bifurcation loop,
3D shows the three configurations of free dangling ends, 3E
shows the open bifurcation and 3F shows the pseudoknot.
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explored. In particular methods such as quasi-Monte
Carlo search, genetic algorithms, Hopfield networks and
stochastic context-free grammars [3] had limited success
in specialized scenarios.

Akutsu reformulated an approach based on tree-adjoin-
ing grammar (by Uemura et al) into a DP procedure, and
presented a DP solution for secondary structure predic-
tion with simple pseudo-knots. The algorithm had O
(n^4) complexity, and was based on base-pair max-
imization [7]. The DP solution was easier to understand,
modify and maintain compared to Stochastic Context-
Free Grammar (SCFG) based algorithms.

Jitender et al extended Akutsu’s solution to incorporate
thermodynamic parameters in order to predict simple
pseudoknots in optimal RNA secondary structures [3].
They used thermodynamic parameters derived and
provided by Zuker, Mathews and Turner [8] and retained
the time complexity of O(n^4).

Independently, Rivas and Eddy had actually proposed a
different DP approach to the pseudo-knot problem and
implemented in pknots [9]. The algorithm is non-trivial
and predicts general pseudoknots in thermodynamically
optimal secondary structures.

It is difficult to develop generic parallel algorithms on
multi-core architectures due to unique data dependen-
cies, memory access methods and load balancing [10].
Tan Sun and Gao identified small local memories and
increasing number of cores as a trend in multi-core
design and suggested that DP for multi-cores be designed

for data transformation and finer grain parallelism for
better performance [10].

Analysis of PKNOTS
Rivas, E. developed a dynamic programming algorithm
for predicting optimal secondary structures with general
pseudoknots by extending the work of Zuker et al. and
by using thermodynamic parameters [9]. The algorithm
is implemented in pknots [9].

The prediction of the secondary structure involves
iterating through all possible sub-sequences of increas-
ing lengths, and computing their respective optimal
structures. Figure 5 describes the process. The intermedi-
ate results are stored in two 2-dimensional matrices,
traditionally named VX and WX, to compute the optimal
configuration with the assertion that (i, j) itself pairs,
and the general optimal configuration with no assertion.
Notice that VX would have to be calculated before WX,
and that VX corresponds to scenarios A, B and C in
Figure 3, while WX includes the possibilities of scenario
D, E and F.

Rivas, E. introduced the idea of one-hole gap matrix to
compute the pseudo-knot scenario. This introduces the
need for four 4-dimensional matrices, over and above
the original VX and WX 2-dimensional matrices. The
scalar implementation uses two more 2-dimensional
matrices called WBX and VP for holding auxiliary
information about the WX and VX matrices.

Figure 4
Pseudoknot from a dynamic programming
perspective. This figure shows how a pseudoknot is
modeled using the dynamic programming paradigm.

Figure 5
Nesting relationship among matrix-filling functions.
This figure shows the control flow and sequence of
operation in a dynamic programming algorithm as time
passes and the various matrices that are populated depending
on the input sequence length.
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Table 2 below illustrates the data dependencies between
matrices, which is equivalent to the data dependencies
between the matrix filling functions. The data depen-
dency is from row to column.

The crucial note is that the data dependencies are both
non-serial and polyadic. By non-serial, we refer to the
fact that loop iterations are dependent not only on the
previous iteration, but also on the many previous
iterations. Polyadic because the data dependency is
one-to-many. In addition, all of the matrix filling
functions reference thermodynamic data from a matrix
of size 4276 × 4276.

The algorithm, with four 4-dimensional matrices and
four 2-dimensional matrices, has a space complexity
of O(n4), dominated by the space requirement of a
4-dimensional matrix. The time complexity of the
implementation, from the layout, and described by
Rivas, E. in [9], is O(n6).

Methods
In this section we will describe our parallelization efforts
to port pknots algorithm to the IBM Cell platform.
Sections 2.1 - 2.5 describe the 3 parallel implementa-
tions for pknots and 2 serial implementations for
performance comparisons.

In our quest to build the best possible parallel version, we
attempted various strategies and exploited several relation-
ships among the code graphs and data paths of the pknots
scalar implementation. We begin by analyzing the scalar
implementation to identify suitable locations in the
algorithms for introducing parallelization.

Amdahl’s law states that the amount of speedup
achievable is bounded by 1/((1-p)+p/s) where ‘p’ is the

proportion of the original code where a speedup of ‘s’ is
obtained. Therefore, to obtain an upper bound for
parallelism we set out to identify the section of the
program where most of the time is spent. A timing
analysis was performed on the scalar implementation, to
clock each matrix filling function. The result of the
timing analysis is shown in Figure 6.

From the Figure 6, it is clear that a bottleneck exists at the
function that fills the WHX matrix. This may not
necessarily be due to the function containing large
amounts of work but simply the fact that it is located
four levels deep into the nested configuration of the
program. For that reason, the extremely low weights of
the functions for VHX, ZHX, and YHX marks them out as
unnecessary for attention. From this point onwards the
parallelization efforts focus solely on this function which

Table 2: data dependencies in PKNOTS algorithm. This table describes the dependency relationship among the various matrices in the
dynamic programming (DP) algorithm

VP VX WX WBX VHX ZHX YHX WHX

VP O O

VX O O O O O O

WX O O O O

WBX O O O O

VHX O O

ZHX O O O O O

YHX O O O O O

WHX O O O O O O

Figure 6
Timing analysis of pknots. This figure builds on the
previous figures and shows the amount of time the system
spends in the various matrices. It can be seen that the system
spends most of the time in the WHX matrix routine.
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fills the WHX matrix, simply because of the ~90%
contribution of this function towards the program’s
runtime.

WHX consists of six major blocks of work. Each major
block contains a large amount of comparisons between
values from other matrices. A point to note is that there
is no data dependency between the individual blocks.
Figure 7 shows the WHX function with each block of
work named WHXn where ‘n’ is in the range from 1-6.
Each block is essentially a loop and the level of nesting is
indicated by the number of borders. Note that maximum
parallelization can be derived from WHX4 - WHX6
where as WHX1 does not contain loops and therefore in
all subsequent parallelization efforts WHX1 is left
untouched.

In addition to the individual loops (or work units) in the
WHX matrix filling function being independent of each
other, the loops themselves are each independent across
iterations. We use this to our advantage in our
implementations to improve the load balancing by
performing SIMD-style loop parallelization.

Code Parallelism (C-Par)
In the C-Par model, the PPE’s primary task is managing
synchronization between the SPEs. This model is known
as function offloading and is the most popular way of
parallelizing an existing application [11].

In this implementation, data independence between the
individual WHX blocks is exploited. Each block of work
for filling WHX is now performed separately and the

execution of each block is performed in parallel. The
strategy is to run six SPEs, each handling one block of
work, in essence running concurrently all the work
blocks of WHX. Figure 8 illustrates this.

The memory requirement of the implementation is a
major cause of concern. In particular, the thermody-
namic information requires 70 MB of memory and since
it has no predictable access pattern, neither the entire nor
a portion of it can be copied to the SPEs.

Due to the memory constraints listed above, individual
matrix elements are packaged together by the PPE into a
contiguous block and fetched by the SPEs. In addition,
all data transfers to the SPEs must be 16-bit aligned for
transfer between 16 bytes to 16 kilobytes and also
be perfectly aligned for transfers of 1, 2, 4, or 8 bytes.
Figure 9 illustrates the data packaging technique to
prepare the data for transfer from PPE to SPE. It involves
assembling individual data values from different
matrices into a single contiguous data package to satisfy
processor-data alignment requirements.

On the negative side, the C-Par implementation didn’t
make effective use of the available computational power
in the SPEs due to uneven number of loop iterations in
matrix-filling functions and thus causing synchroniza-
tion issues. In our next implementation, we aim to
balance out the work load among the available SPEs.

Data Parallelism (D-Par)
In this implementation, we switch to loop paralleliza-
tion to improve load balancing among SPEs, exploiting
the fact that there is no data dependency within each
block of work (loop). This mitigates some effects of
slowdown due to the non-constant number of iterations

Figure 7
WHX layout. This figure describes the WHX matrix in
more detail and shows the various sub-matrices. The number
of borders indicate the level of iterations.

Figure 8
C-Par implementation model. This figure describes the
work distribution under the C-Par implementation model.
Since most of the computing time is spent in filling WHX
matrix, the code is distributed to the various SPUs in the PS3.
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performed in each loop, which was the issue in C-Par
implementation.

In this model, each SPU executes all the six functions
sequentially for the same piece of input. CBE SDK was
used to create entities known as SPE contexts [12]
containing these functions.

SPE contexts are an abstraction of SPE and contain the
code and data to execute a work unit. During runtime,
each SPE context is created by a dedicated PPE thread
that stalls while the SPE executes. On completion, the
SPE contexts is terminated by the corresponding PPE
thread and the results are collected by the PPE. Figure 10
shows the D-Par implementation in a graphical way.

Through our experimental investigations, we found that
SPE context creation and swapping is expensive on the

IBM CBE. This is important for finer grain parallelization
adopted in this implementation, as the functions are
nested in loops and SPE contexts are swapped repeat-
edly. The overheads of setting up the parallel environ-
ment is amplified by the time complexity of the
algorithm as well.

This created the issue of SPU initialization as different
function codes needs to be swapped in and out of the
SPU for each and every piece of data at various stages of
the WHX{2-6} functions.

Hybrid Parallelism (H-Par)
We created a 3rd implementation based on the
experiences from the first two approaches. In particular,
we wanted to avoid both SPE synchronization and the
expensive SPE context switching.

The five SPE programs from the C-Par implementation
was merged into a single SPE program to avoid
performing repetitive SPE context creation and swapping
and the SPEs are loaded & configured and run right at
the start of the program. The SPE programs wait in busy
loops until appropriate mailbox messages arrive from
the PPE indicating the action is required. The WHX
function has been rewritten to send these messages.

Synchronization is tweaked at the input parameter level
to indicate to the SPE what set of computations it should
perform for the current set of parameters. This approach
has the advantage of loading a single function to all the
SPEs while enabling to work on different functions based
on the messages received.

We observed that the above H-Par implementation also
showed signs of slowness for certain inputs. We further
investigated and found that slow down happens in cases
where the communication costs exceeds the actual
computation to be performed by the SPEs.

Therefore, we introduced a tuning mechanism, during
run-time, to decide on the locality of execution, i.e.,
whether to run on PPE or to distribute across SPEs. Thus
whenever the input RNAs length is below a threshold
value, the scheduler will run the code in the PPE and
avoids invoking the SPEs, as the communication and
synchronization costs are more than the computational
gain achieved by executing the functions in the SPEs. For
longer RNAs, SPEs are chosen for computation work
loads.

In this H-Par implementation, the governing
parameters are that each SPE should at least receive
enough parameters to perform five iterations of the loop,

Figure 9
Data packaging for transfer to SPEs. This figure
describes the optimization implemented in the data transfer
from the PPU to the SPUs. It also highlights the intricacies of
the IBM Cell platform.

Figure 10
D-Par parallelism implementation. This figure describes
the 2nd implementation method, D-Par. It also highlights the
differences between earlier C-Par model especially with
regards to the code and data swapping.
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and that the parallelization only happens when there is
enough work to cater for at least two SPEs to run.
Figure 11 shows the flow-chart of this implementation
strategy.

CBE scalar
For performance comparisons, we compiled a CBE scalar
implementation not utilizing the SPEs. The scalar CBE
implementation is obtained by compiling the pknots
sources for the CBE PPE architecture, using the standard
GCC tool-chain provided with the IBM Cell Software
Development Kit v3.0.

x86 scalar
For cross-platform performance comparisons, we com-
piled a x86-architecture based scalar implementation.
The scalar implementation is obtained by compiling the
pknots sources for the x86 architecture, using standard
GCC tool-chain available in a Linux distribution.

Results and discussions
In this section we elaborate the results obtained through
our parallelization efforts and discuss the results based
on two criteria - correctness verification and performance
comparison. We used two hardware platforms for all our
experiments. First, the Sony Play Station 3 was co-
installed with a Linux Operating System with Linux
kernel 2.6.x. Second, a x86 virtual machine using
VMware Workstation 6.0 to run a virtual Linux Operat-
ing System with kernel 2.6.x. We used a virtual machine
to intentionally limit the memory of the x86 platform to

256 MB (equivalent to the Sony Play Station 3) to make
a fair comparison with the Cell processor.

Correctness in the context of this verification exercise is
to ensure results are consistent across the parallel
implementations with the original scalar version. In
performance comparison, we compare the run-times of
the parallel implementations with that of the scalar
version running in a single-threaded mode on the CBE
using only PPE and the x86 VM.

The results from our implementations were compared
with the results from original pknots implementation
using a set of real RNA sequences obtained from the
Pseudo Base [13]. The lengths of the sequences obtained
from this database are sufficiently diverse for correctness
verification and have experimentally verified structures.
The implementations recorded 100% correctness over
the data set.

To begin with, we compare the results from the first two
parallel implementations “C-Par” and “D-Par”. The
following Table 3 lists the run-times of the implementa-
tions for the set of RNA sequences.

Figure 11
H-Par parallelism implementation. This figure describes
the 3rd implementation method, H-Par. H-Par is the hybrid
of the first two methods and adds run-time optimization
decision primitives. This method takes into account the best
execution location and also trades space with time.

Table 3: comparison of ‘C-Par’ and ‘D-Par’ implementations. This
table details the run times for C-Par and D-Par implementations
using RNA sequences of various lengths and also computes the
speed ratio among them

Sequence Length Time (s)

C-Par D-Par C:D

21 10.52 8.72 1.206422018

22 13.82 11.32 1.220848057

23 17.97 14.88 1.20766129

25 29.65 23.52 1.260629252

30 88.54 71.33 1.241272957

34 188.65 147.32 1.280545751

38 362.93 289.69 1.252821982

40 493.86 399.51 1.236164301

40 493.9 397.71 1.241859646

41 573.51 467.41 1.226995571

42 661.65 541.78 1.221252169

46 1140.71 913.41 1.248847724

47 1297.22 1055.22 1.229336063

52 2373.26 1965.62 1.207384947

59 5055.58 4206.06 1.201975245
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The effect of improving load balancing is seen in the
superior performance of the D-Par implementation. How-
ever, the effect is not well pronounced as to suggest the first
model was extremely unbalanced. An alternative inter-
pretation is that the second model introduced balanced
loads only when there was enough load to share between
the SPEs, a tuning attribute of our implementation.

The importance of this result is the extent of slowdown
due to improper parallelism that can occur on the CBE
when the SPEs are underutilized. It implies the high
overheads involved in getting an SPE to run, and hence
significant loss of performance if they are run without
actually offloading much work from the PPE. One source
of such overheads in this dynamic programming
implementation in particular is the DMA of small data
fragments to operate on, as is the case before tuning
when the program attempts to use SPEs for every minute
amount of computation.

Secondly, we compare the D-par and H-par versions of
the implementation. The following table shows the run-
times of the ‘D-par’ and ‘H-par’ implementation for the
same set of RNA sequences.

As can be observed from the above Table 4, ‘H-par’ out-
performs ‘D-par’ significantly when the implementation
is fused with intelligence to choose the location of
execution for individual functions i.e., PPE for shorter
RNA sequences and SPEs for higher work load.

This result reinforces our earlier conclusion that for
shorter RNA sequences it is counter-productive to
introduce parallelism.

Figure 12 plots the performance of all the above three
parallel implementations. It can be observed the
performance increases from the first to the third.

Thirdly, we compute two speedups to show the gain
from parallelizing the DP algorithm the Cell architecture
and also examine the scalar performance of Cell Vs and
alternate architecture, i.e., x86.

The first speedup is obtained by comparing the perfor-
mance of the H-par version of our implementation using
both the PPE and SPEs against scalar version of the
algorithm using only the PPE. This basically evaluates the
contribution of parallelism against the scalar performance
of the implementation on the CBE. From this point on we
refer to “H-Par” implementation as “CBE parallel”.

Figure 13 shows the speedup performance. We have
analyzed the properties, trends and discuss them below.

For small RNAs, the nature of the dynamic programming
algorithm will result in most of the computations
involving shorter sub-sequences. These cases do not
give rise to good opportunities to utilize the SPEs as
there is too little work to be distributed. The CBE-parallel
implementation is performing well to stay close to scalar
performance for short strings, but ultimately there is
additional overhead incurred in managing the SPEs.
However, when RNA strings get longer, we see the
parallel implementation start to close the gap as
computation time starts to dominate the overall runtime
by processing longer sub-sequences.

In Figure 13 the speedup advantage is an indication of
the parallelism starting to take effect with longer RNA
sequences. The data points are ratios and are obtained by
dividing respective CBE-scalar runtimes over CBE-paral-
lel runtime values.

The CBE-parallel implementation is configured to
receive five iterations of a loop for computation and
rejects utilizing the SPEs unless there is enough “rolls” of
the loop to parallelize between at least two SPEs. For full
utilization of six SPEs, each loop to be parallelized

Table 4: comparison of ‘D-par’ and ‘H-par’ implementations.
This table details the run times for D-Par and H-Par implemen-
tations using RNA sequences of various lengths and also
computes the speed ratio among them

Sequence Length Time (s)

D-par H-par D:H

21 8.72 1.66 5.253012048

22 11.32 2.13 5.314553991

23 14.88 2.74 5.430656934

25 23.52 4.39 5.357630979

30 71.33 12.89 5.533747091

34 147.32 27.61 5.335747917

38 289.69 54.76 5.29017531

40 399.51 75.20 5.312632979

40 397.71 75.43 5.272570595

41 467.41 87.63 5.333903914

42 541.78 101.65 5.329857354

46 913.41 177.10 5.157594579

47 1055.22 202.42 5.213022429

52 1965.62 377.72 5.203907656

59 4206.06 823.82 5.105557039
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should have at least thirty iterations. For parallel
performance to be substantial, the RNA sequence should
be sufficiently long to be dominated by computations
involving sub-sequences with lengths multiples of thirty.
This shows that for RNA with lengths in the hundreds,
the parallel performance is better than the scalar version.

Finally, in order to understand the suitability of the Cell
architecture to a dynamic programming algorithm we
compared the CBE scalar performance with an equivalent
x86 performance of the algorithm on a virtual machine.

The choice of x86 performance was mainly driven due to
the fact that it is a commonly available machine, although
one may expect that x86 with its sophisticated architecture
will outperform CBE’s PPE scalar performance. Figure 14
illustrates the speedup performance for this case.

We interpret the difference in performances among the
two scalar implementations to be due to the difference of
the hardware architectures - RISC Vs CISC. IBM Cell is a

Figure 12
Performances of 3 parallel implementations. This figure plots the run-times of the 3 implementations against a standard
set of input RNA sequences of various lengths. The X-axis plots the input data set and Y-axis plots the run-times. It can be seen
that H-Par implementation has better performance when compared to the other two implementations.

Figure 13
CBE scalar vs CBE parallel speedup. This figure
shows the performance gain or speedup that is achieved by
using parallelization in implementations. In this case, the
speedup is on the same architecture and the scalar
implementation uses only the scalar PPE processing cores of
the IBM CBE whereas the parallel implementation uses all
the available cores.
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RISC based processor while the virtual machine is CISC
based architecture.

Secondly, the limited/simple branch prediction hardware
in the PPE/Cell, absence of Out-Of-Order execution unit,
smaller cache sizes, less Instructions Per Cycle (IPC) could
possibly slow down the CBE-Scalar implementation.

Thirdly, the dynamic programming algorithms for RNA
secondary structure prediction uses deeply couple
recursive data structures. This translates to high stack
usage during run-time giving an advantage to CISC
architectures when compared to RISC architectures. Also,
Cell contains only hyper-threading while the PC had two
independent processing cores.

Finally, as documented in [14] PPE is not suitable for
performing computational work loads and more suited
for control and command tasks. Therefore, running a
full-fledged computational task like dynamic program-
ming could have slowed down the computations as well.

Conclusion
In this paper, we attempted to provide an high perfor-
mance solution for handling RNA secondary structure
prediction problem with pseudoknots. We selected IBM
Cell broadband engine as the target platform and used
Sony PS3 for implementation.

We considered dynamic programming approach pro-
posed in [9] as a representative solution in all our
implementations. We started by analyzing the existing
scalar implementation to identify sections of code that
can be safely parallelized. We designed 3 different
implementations (C-Par, D-Par, H-Par) and analyzed
the performances of them. In each of these strategies we

exploited the embedded data and/or code parallelism in
the DP. Our results conclusively show that a hybrid code
& data parallelism approach as implemented in H-Par
significantly outperforms the other two implementa-
tions that rely solely on code/data parallelism strategies.

Our results suggest a huge potential for parallelism in
predicting secondary structures for long RNA sequences.
The results also demonstrate that overheads due to
parallelism may overshadow its effectiveness for shorter
RNA sequences. One immediate and interesting exten-
sion is to use a high-end Cell-based processor such as
Power × Cell 8i [10] in which addressable main memory
is 16 GB in addition to other hardware enhancements.
With such a high-end machine it is expected that the
speedup will be more prominent even for shorter length
sequences thus eliciting the unique advantage of using
the CBE.

An alternate approach to address this RNA structure
prediction problem is by designing customized algo-
rithms that are suited solely for multi-core architectures
as opposed to parallelizing the conventional DP solu-
tions.

There are several conclusions which we draw from our
current experience:

* Fine-grain parallelism, non-uniform data dependen-
cies, locality in non-serial polyadic dynamic program-
ming may not gain much in multi-core architectures.
These concerns have been raised in [1] as well.

* The dynamic programming algorithm for RNA
secondary structure [2] prediction contains nodes of
comparison-intensive instructions (branching) as
opposed to data compute and transformation. This
puts the CBE in disadvantage.

* Dynamic Programming, due to its highly coupled
recursive nature, is inherently suited for single-threaded
execution and does not gain much from parallelization
especially when sequence lengths are smaller.

* The approach of directly porting a scalar implementa-
tion to the CBE need not necessarily be the best way to
introduce parallelism.

* Analysis of pknots may suggest the original scalar
implementation was more favoring x86 architecture than
using only the PPE in the IBM CBE architecture.

* Finally, we also believe that as more efficient compilers
for CBE [15] are created, the true power of the CBE
architecture will be evident.

Figure 14
scalar CBE performance vs x86 performance. This
figures shows the speedup performance between two scalar
implementations that are implemented in two different CPU
architectures.
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