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Abstract

Background: Recent advancements of experimental techniques for determining protein tertiary structures raise
significant challenges for protein bioinformatics. With the number of known structures of unknown function
expanding at a rapid pace, an urgent task is to provide reliable clues to their biological function on a large scale.
Conventional approaches for structure comparison are not suitable for a real-time database search due to their
slow speed. Moreover, a new challenge has arisen from recent techniques such as electron microscopy (EM), which
provide low-resolution structure data. Previously, we have introduced a method for protein surface shape
representation using the 3D Zernike descriptors (3DZDs). The 3DZD enables fast structure database searches, taking
advantage of its rotation invariance and compact representation. The search results of protein surface represented
with the 3DZD has showngood agreement with the existing structure classifications, but some discrepancies were
also observed.

Results: The three new surface representations of backbone atoms, originally devised all-atom-surface
representation, and the combination of all-atom surface with the backbone representation are examined. All
representations are encoded with the 3DZD. Also, we have investigated the applicability of the 3DZD for searching
protein EM density maps of varying resolutions. The surface representations are evaluated on structure retrieval
using two existing classifications, SCOP and the CE-based classification.

Conclusions: Overall, the 3DZDs representing backbone atoms show better retrieval performance than the original
all-atom surface representation. The performance further improved when the two representations are combined.
Moreover, we observed that the 3DZD is also powerful in comparing low-resolution structures obtained by
electron microscopy.

Background
The number of protein structures deposited to the
Protein Data Bank (PDB) is increasing at a rapid pace.
Particularly, more and more protein structures of
unknown function are being solved by structural geno-
mics projects [1,2]. The flood of structures raises signifi-
cant challenges to develop computational methods that
will provide critical information for hypothesizing

function and evolution of the proteins from their struc-
tural information [3]. The study of protein structures
has now entered the informatics era, just as biological
sequence analyses has done in the previous decade
when efficient reuse of knowledge from existing data-
bases became crucial. Speed is an essence in such ana-
lyses, since biologists would need to run various
database searches using different tools, and such ana-
lyses would be conveniently performed if they are done
in real-time. Most of the current structure comparison
methods [4], such as those that compare main-chain
orientations or corresponding residue positions[5,6], are
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designed for pair wise comparison and are not suitable
for a fast database search.
There are other new tasks which have been brought

up by recent experimental techniques, such as electron
microscopy (EM), which provides low-resolution struc-
ture data. Here, challenges include how to use a low-
resolution EM density map for fitting high resolution
structures [7-9] or guiding protein structure prediction
[10], and how to efficiently and accurately compare glo-
bal and local structures [11,12]. Thus, development of a
new generation of structure analysis tools, which allow a
fast screening of large structure databases and can han-
dle low resolution structure data, is needed. With this in
mind, we represent protein structures as surface shapes
by the 3D Zernike descriptors (3DZD) [13-17]. There
have been previous works which employ a protein sur-
face representation [15], such as volumetric representa-
tion [18], convex hull [19], and the spin image [20].
Compared to those works, the 3DZD has the following
properties that make it ideal for use in protein shape
analyses. First, it is rotation and translation invariant.
Thus, prior time-consuming structure alignment is not
necessary for structure comparison since their position
in space does not change their 3DZDs. This property
enables direct comparison of the EM density maps
where atomic coordinates are not available. Another
advantage is its compact representation; a 3D shape is
effectively represented in only 121 (when the order is
20) numbers called the invariants. The 3DZD can also
represent physicochemical properties such as the elec-
trostatic potential and the hydrophobicity on the protein
surfaces [16]. Recently the 3DZD has been further
applied for protein-protein docking prediction [21], local
surface comparison [22], pocket shape matching for
structure-based function prediction [23], and ligand
molecule screening [13,24].
In the previous work, we showed that the all atom sur-

face representation by the 3DZD agrees sufficiently with
the main-chain based structure comparison by CE [6], but
some differences were also observed due to the variations
in the representation [14]. The new contribution of this
paper is two fold. First, we introduce three main-chain
atom based surface representations which are found to
better agree with the two existing structure classifications,
the CE and the SCOP database [25], as compared with the
previous all-atom surface representation. Second, we show
that the proposed representation also allows for a fast and
accurate database search for EM density maps.

Methods
Datasets
To examine structure retrieval performance of the pro-
posed methods, we use a data set of 2337 representative
protein structures, which are arbitrarily selected from

185 fold groups defined in a protein classification data-
base by CE (ftp://ftp.sdsc.edu/pub/sdsc/biology/CE/db/
ata_3.8_jul-2004.txt.gz). CE is one of the frequently used
protein structure comparison programs that compares
Ca positions of proteins using a dynamic programming
algorithm. These representative structures have a resolu-
tion of 3.0 Å or better, have no more than 10 missing
residues in the solved structure, have all heavy atom
positions solved, and are longer than 100 residues. In
addition, the structure similarity of each pair is less than
a Z-score of 3.8 by CE.
This dataset also provides the SCOP classification

code of proteins, which classifies the proteins into 8
class groups, 149 folds groups, 187 superfamily groups,
and 279 family groups. We use both CE-based and
SCOP classifications in our study since they have the
following complementary features: The CE classification
is automatic without human intervention and considers
main-chain orientation, while SCOP is curated manually
at a certain degree to take evolution into account.
At this juncture, it is important to note that there is

no golden standard in classification of proteins. The
structure similarity measured for different representa-
tions can be largely different for distantly related pro-
teins since they capture different aspects of the
structures [4]. In our previous paper [14], we showed
that CE and SCOP do not fully agree and also that
DALI [26], which compares distance maps of proteins,
and CE have poorer agreement than CE and the 3DZD.
Each method has its own strength and thus an appropri-
ate method should be selected depending on the pur-
pose of each study. We have further shown examples of
proteins whose surface shape similarity infers functional
similarity, which are not detected by the conventional
sequence or main-chain structure comparison methods
[14]. In this study, we demonstrate that the new main-
chain surface representations encoded by the 3DZD
have a better agreement to CE and SCOP as compared
to the original all-atom surface representation intro-
duced in the previous study [16].

Computing protein surfaces
For a protein structure, four different surface representa-
tions are computed: one that uses all heavy atoms
(AASurf), the backbone conformation with all heavy atoms
in the main-chain, i.e. Ca, C, N, and O atoms (CACNO),
the backbone with Ca, C, and N atoms (CACN), and the
backbone Ca atoms only (CA). For the set of extracted
atoms, the surface is generated using the MSMS program
[27]. MSMS rolls a probe sphere on the atoms and defines
the surface as the path of the center of the probe. The
radius of the probe sphere is set to default value of 1.5Å
for AASurf, CACNO, and CACN and the radius is set to
2.0Å for CA to generate a smoother representation.
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The generated surface is then mapped on a 3D grid. A grid
cell (voxel) is assigned a value of 1 if it is on the surface
and 0 otherwise. Because the 3DZD is defined within a
unit sphere, the protein surfaces represented by voxels are
scaled into a unit sphere. Therefore, the size information
of the protein is lost. The resulting voxels are considered
as an input 3D function, f(x), which is used as input for
computing the 3DZD as described in the next section.

3D Zernike descriptors
The 3DZD is a series expansion of an input 3D func-
tion, which allows for a compact representation of the
3D object (i.e. the input 3D function) [17,28]. The math-
ematical foundation of the 3DZD was laid out by
Canterakis (1999) and was applied on 3D object retrieval
by Novotni and Klein (2003). For readers’ convenience,
a brief mathematical derivation of the 3DZD is shown
below. For detailed derivations and discussions, refer to
the aforementioned two papers Canterakis [29] and
Novotni and Klein [30].
The first step of computing the 3DZD is derivation of

the 3D Zernike moments. For an input 3D function,
f(x), the 3D Zernike polynomials defined on order n,
degree l, and repetition m, are given by
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m( , , ) ( ) ( , ),J Jj j= (1)
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that Z rnl
m( , , )J j are polynomials when written in terms

of the Cartesian coordinates. The 3D Zernike moments
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After computing the 3D Zernike moments, a normali-
zation step is necessary to obtain rotation invariance.
This is done by taking the L2 norm of the 3D Zernike
moments as the descriptor. That is, the moments
are collected into (2l+1) dimensional vectors
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The size of the 3DZD vector is set by the parameter n,
called the order, which determines the resolution of the
descriptor. The 3DZD is a series of invariants (Eqn. 3)
for each combination of n and l, where n ranges from 0
to the specified order. For example, n ranges from 0 to
20 for a 3DZD of an order 20. The order of n=20,
which yields a total of 121 numbers, or invariants, is
used in our study based on the success of the previous
works [14,30]. The last step is to normalize the descrip-
tor by the norm of the descriptor. This normalization is
found to reduce dependency of the 3DZD on the num-
ber of voxels used to represent a protein [14]. Figures
1A through D show the surface generated from the four
representations. Figure 1E shows the 3DZD of the four
representations for the protein PDB:1hdmA. It can be
seen that there is little difference in the 3DZD of
CACNO, CACN, and CA as compared to the 3DZD of
AASurf in this particular case. The correlation coeffi-
cients among the three backbone representations
(CACNO, CACN, and CA) range between 0.997 to
0.999. The correlation coefficients between CACNO,
CACN, and CA to AASurf are 0.934, 0.938, and 0.941,
respectively. Although there is little difference between
the four representations in this particular example,
we will show later that the four representations
make a difference in terms of overall database retrieval
performance.

Evaluating database retrieval performance
The database retrieval performance of the four surface
representations is evaluated with precision-recall curves.
The precision-recall curves are often confused with the
receiver operator characteristic curves. Although these
two curves are related, the precision-recall curve is con-
sidered to be a better measure when the dataset is
skewed [31]. The number of proteins in a group in the
dataset used varies from 3 to 180 and thus a precision-
recall is used here. For each protein in the dataset, the
rest of the proteins described with the 3DZD are sorted
by the Euclidean distance (L2 norm) to the 3DZD of the
query protein. Then, the precision and the recall values
are computed at each distance threshold value. The pre-
cision is defined as the fraction of the retrieved proteins
of the same group with the query among all proteins
retrieved above the distance threshold. The recall is
defined as the fraction of the retrieved proteins of the
same group with the query among all the proteins in
the same group. Finally, we calculate the average preci-
sion and recall for each distance threshold. The preci-
sion-recall curves of different representations are
evaluated by the area under curve (AUC).
As employed in the previous work [14], we also apply

pre-filtering of the proteins by their sequence length.
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For a query, a protein in the database is filtered out if it
is longer than 135% or shorter than 65% to the length
of the query protein. This is done because of the loss of
the size of the proteins during the process of computing
the 3DZD, since the proteins are scaled to fit into a unit
sphere.

Combining 3DZD of AASurf and CACNO
We also examine database retrieval with combinations
of the 3DZDs of the AASurf and a backbone surface
representation. Among the three backbone representa-
tions, we choose CACNO since no significant difference
in performance was observed among the three (see
Results). CACNO would also be a natural choice since
it is the full heavy atom representation of protein back-
bone. For the AASurf and CACNO combination, the
distances measured independently are linearly combined
with weighting factors:
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where y and x are the two proteins compared and i is
the index of 3DZD invariants of AASurf, S, and
CACNO, B. wyS and wyB are weights for AASurf and
CACNO of the query protein y, and m1 and m2 are the
number of invariants in the 3DZD of AASurf and

CACNO, respectively. In this study, the 3DZD of
AASurf and CACNO is set to the same size, i.e.
m1=m2=121. Eqn. 4 is asymmetric since the weights wyS

and wyB depend on the query protein, y.
The weights for AASurf and CACNO for a query pro-

tein are determined by two characteristics of its protein
shape: 1) the existence of a tail-like structure and 2) the
sphericity. The tail is an elongated region in the struc-
ture which is longer than three amino acids locating
further than two times of the radius of gyration (RG) of
the protein from the center of the gravity. The radius of
gyration is defined as follows:
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where N is the number of atoms in protein xj, cog, is
center of gravity of protein xj, and R is the approximate
radius of atoms in which 1.5Å is used [32].
The sphericity measures how compactly a protein

structure fits to a sphere:

Sphericity( )
RS( ) RG( )

RG( )
x

x x
x

= −
, (6)

where RS(x) is the radius of a sphere that has the same
volume as the protein all-atom surface representation

Figure 1 Examples of four different representations of the protein (1hdmA). A is surface representation using all-atoms (AASurf). B is a
backbone representation using all heavy atoms in the main-chain (CACNO). C and D are simplified backbone representations which are
composed of the atoms Ca, C, and N (CACN) and only the Ca atoms, respectively. E shows the 3DZD invariant values of the four
representations.
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computed by the MSMS program. A larger value indi-
cates that the protein is more spherical.

Results and discussion
Database retrieval performance
The database retrieval performance of the four surface
representations is first tested on the CE classification. In
all the precision-recall curves shown in Figure 2 (A-F),
the four representations show significantly better perfor-
mance than the random retrieval, which shows a preci-
sion-recall AUC value of 0.017. The random retrieval
curve of the precision-recall graph is computed by gen-
erating random distance values between the pair of pro-
teins. Readers should not be confused with the AUC
value of the precision-recall used in this work with the
one for the receiver operator characteristics (ROC)
curves, which gives 0.5 for a random retrieval. Figure
2A and 2B show results without and with pre-filtering

by protein length. All three backbone surface represen-
tations, CACNO, CACN, and CA, show similar perfor-
mance, which is significantly better than that of AASurf.
Note that AASurf showed much higher performance
than DALI and four other shape-comparison methods
in our previous work [14]. The length-based pre-filtering
improves the AUC by around 0.03 for all the backbone
representations and by 0.06 for AASurf representation.
The length-based pre-filtering also improves the retrie-
val performance by incorporating the size information
that is lost in the computation of 3DZD when a protein
is scaled normalized. On the other hand, one could see
that the improvement by the length filter is marginal,
which implies it is not common to observe two proteins
of different sizes with similar shape, which is consistent
with the previous results [14].
Figure 2C, D, E, and F shows the retrieval performance

based on the four hierarchical SCOP classifications: the

Figure 2 Precision-recall curves using the CE and the SCOP classification. The L2 norm is used to compute the distance between the two
3DZDs. A and B show precision-recall curves using the CE classification. In B, the length pre-filtering is applied. C, D, E and F are precision-recall
graphs using the SCOP class, fold, superfamily, and family classification, respectively, as the base truth. The length pre-filtering is not used. The
AUC values for the curves are shown inside brackets.
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class, the fold, the superfamily, and the family. The
length-based pre-filtering was not applied. The improve-
ment of the retrieval by the backbone representations
over AASurf becomes more obvious as a more detailed
level hierarchy is used, depicting that the backbone struc-
ture is more relevant in the family classification. In all
the graphs in Figure 2 except for Figure 2C, CACN has
the best retrieval performance followed by CACNO, CA,
and AASurf. The reason of the better performance by
CACNO, CACN, and CA over AASurf is that the former
representations have more ruggedness, which can reflect
the trace of the main-chain orientation better than
AASurf. Using all atoms by AASurf makes many proteins
look close to spheres or ellipsoids, and it is not advanta-
geous in general to distinguish proteins of different folds.
Although CACN performs the best, the difference in

performance by CACNO and CA is marginal with a
average AUC difference of 0.003. Since the three back-
bone representations show almost identical perfor-
mance, we will only show results of CACNO along with
AASurf for further analyses.

Comparison of CACNO and AASurf
Close examination of the individual cases of the data-
base retrieval revealed interesting trends on the perfor-
mance of the AASurf and the CACNO representations.
In Figure 3, the effect of the sphericity (Fig. 3A) and the
tail-like structures (Fig. 3B) in the individual proteins
are examined in respect of the database retrieval. Here,

the CE classification is used as the base truth. The
y-axis shows the difference of the AUC of the precision-
recall curves with CACNO being subtracted from that
of AASurf. Thus, a positive value indicates that the
AASurf performs better than the CACNO and a nega-
tive value indicates the opposite.
Figure 3A indicates that CACNO tends to perform

better than AASurf for spherical proteins (proteins with
positive sphericity value). This is because CACNO gives
more distinctive structural features which are character-
istics for each group. For spherical proteins, AASurf
shapes alone do not clearly separate proteins of the
same group from spherical proteins from the other
groups. On the other hand, AASurf performs better for
proteins with a long tail structure (Fig. 3B). The 3DZD
also tends to overestimate the similarity of the tail-like
structures for proteins of different fold groups. A larger
volume and structural information from the main body
of the structure seems to help AASurf in recognizing
the correct structure from the same group with the
query.
Figure 4 shows the AUC difference with the AASurf

and CACNO representations of individual proteins. On
the x-axis, proteins are ordered in a way that proteins of
the same classification are located next to each other.
For many proteins, the two representations do not make
much difference (51.8% of the proteins have a precision-
recall AUC difference of less than 0.1), however, there
are proteins for which the two representations show a

Figure 3 Effect of the sphericity and the tail-like structure on the retrieval performance. The effect of the sphericity and the tail-like
structure to the precision-recall AUC of AASurf and CACNO representations is shown. A shows the effect of the sphericity, and B shows the
effect of the number of the residues which reside further than two times of the radius of gyration (tail-like structures).
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large difference in the AUC value. Four examples are
presented. The first two proteins, PDB:1tme1 in Group
25 and PDB:1r1a3 in Group 64, are cases where AASurf
performs better, while CACNO performs better in the
following two cases: PDB:1rtwA in Group 102 and
PDB:1bio in Group 124. The data points for these four
proteins are specified in Figures 3 and 4. Obviously the
first two examples have long tails, whereas the latter
two are spherical structure with no tails.
The observed difference by AASurf and CACNO for

individual cases inspired us to combine the two repre-
sentations to improve the retrieval performance. Those
results are shown in the next section. For this combined
representation, spherical proteins (those which have the
sphericity value of larger than 0.15, the gray regions in
Fig. 3A) and proteins with tail-like structures (those
which have more than 3 residues in a tail, the gray
regions in Fig. 3B) use different weights when combin-
ing the distance.

Improvement by combining AASurf and CACNO
representations
Next, we examine combining the distances defined by
AASurf and CACNO using Eqn. 4. Query proteins with
tail-like structures are given a higher AASurf weight
(wyS) and ones with high sphericity are given a higher
value for the CACNO weight. All others are given fixed
weights for AASurf (0.4) and CACNO (0.6). With the
threshold value of three residues for the tail-like struc-
ture and 0.15 for the sphericity, 383 and 150 structures
in the dataset fall into the category of structures with
tails and spherical structures, respectively. Table 1
shows the database retrieval results of the AASurf and
CACNO combination (named Surf(ace)-Back(bone)
representation) with different weight values. Again note
that the random retrieval has the precision-recall AUC
value of 0.017.
Among the different weight values tested, the weight

combination 0.3 and 0.7 performed the best. In this

Figure 4 Differences in database retrieval performance of AASurf and backbone representations. The graph at the bottom shows the
precision-recall AUC difference of AASurf to CACNO. The positive value indicates that the AASurf has a better performance. Four proteins are
shown as examples. The first two, PDB:1tme1 in Group 25 (G25) and PDB:1r1a3 in G65 are examples where AASurf shows a better performance,
while the latter two, PDB:1rtwA in G102 and PDB:1bio in G124 are cases where CACNO performs better. 1tme1 has the AUC difference of 0.0656,
the sphericity (sp) of -0.104, and has 8 residues further than two times of the radius of gyration from the center. 1r1a3: AUC difference: 0.146, sp:
-0.199, and 5 tail-like residues. 1rtwA, the AUC difference: -0.387, sp: 0.152, and no tail residues 1bio, the AUC difference: -0.597, sp: 0.165, and no
tail residues.
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combination, the weights for AASurf (wyS) and CACNO
(wyB) are set to 0.7 and 0.3, respectively, for query pro-
teins with a tail-like structure. On the other hand, if a
query protein is spherical and has no tail-like structure,
wyS is set to 0.3 and wyB is set to 0.7. Otherwise wyS and
wyB are set to 0.4 and 0.6, respectively. Overall, the 0.3/
0.7 weight combination results in an AUC increase of
0.015 and 0.138 when compared with the retrieval
results using CACNO and AASurf, respectively. Out of
185 fold groups in the dataset, 116 groups show
improvement by Surf-Back. There are 53 groups where
CACNO shows a better performance and 16 groups
where AASurf performs better than Surf-Back.
Figure 5 shows examples of precision-recall graphs of

three fold groups. In the case of Group 48 (Fig. 5A),
where AASurf performs better than CACNO, Surf-Back
improves the AUC by 0.018 as compared to AASurf and
improved by 0.086 as compared to CACNO. Group 74
(Fig. 5B) is an opposite example where CACNO per-
forms better than AASurf. Surf-Back makes improve-
ment by 0.154 and by 0.067 as compared to AASurf and
CACNO, respectively. However, the linear combination
of AASurf and CACNO does not always improve the
retrieval accuracy. It cannot improve cases where one
representation performs significantly worse than the
other. The fold group 124 in Figure 5C shows such an
example. Surf-Back performs significantly better than
AAsurf but worse than the performance of CACNO by
an AUC value of 0.021.

Application to EM density maps
Finally, we show that the 3DZD is readily applicable for
comparing EM density maps. In Figure 6, low-resolution
structures of isosurfaces of EM density maps and recon-
structed structures of the 3DZDs (i.e. structural infor-
mation coded in the 3DZDs) are visually compared. The
EM density maps are generated with the pdb2mrc pro-
gram which simulates EM density of protein structures
[33]. The grid interval size is set to 1Å and three differ-
ent resolutions (r=10, 15, and 20Å) are employed. In

Fig. 6A, the original AASurf representations of proteins
are reconstructed from their 3DZDs of three different
orders (o=20, 15, and 10). The order which gives a simi-
lar resolution of the protein surface to each of the simu-
lated EM density maps is chosen. For Figure 6B, 3DZDs
of the CACNO representations are used for the recon-
struction. Figure 6 shows that surface representation by
3DZD is visually similar to EM isosurfaces and thus
would be suitable for describing EM density maps at dif-
ferent levels of resolutions.
Observing the agreement between the EM isosurface

and structures coded by the 3DZD, we investigate
further if the 3DZD can be used for searching similar
EM density maps of protein structures (Table 2). To
perform this experiment, we prepared datasets of the
3DZDs of EM density maps as follows: First, EM density
maps of the 2337 representative protein structures are
computed with pdb2mrc for two different resolutions,
10 and 15Å. Then, for an EM density map of a protein,
two 3DZDs are computed, one using voxels with a high
density value range (e.g. 9-11 for the resolution of 10)
and another one using voxels with a low density value
range (e.g. 5-8 for the resolution of 10; Table 2). Thus, a
total of four datasets of 3DZDs of simulated EM isosur-
faces are prepared. Voxels with a high density value in
an EM density map locate at the core of a protein and
thus its isosurface resembles the CACNO representation
of the protein structure. On the other hand, the isosur-
face of a lower density value in the EM map looks more
similar to the AASurf representation of the protein
structure.
Table 2 summarizes the retrieval performance of the

surfaces extracted from the simulated density maps
described by the 3DZD. Here, the CE classification is
used as base truth. To our surprise, the AUC values
shown in Table 2 are as good as that of the AASurf
representation of protein structures shown in Table 1
and Fig. 2A (0.481). Among those tested in Table 2, the
3DZDs of the order of 20 computed for EM density
maps of 15Å resolution shows the highest AUC value,
0.489 (note again that this is much better than random
retrieval). Indeed, this is higher than the result for the
structural retrieval results with AASurf (Table 1). The
results show that the EM density map of a relatively low
resolution (15Å) can be as accurately compared as regu-
lar protein tertiary structures by using the 3DZD.
Recent EM techniques can solve protein structures in
much higher resolution, such as 4-6Å [34]. The signifi-
cance of our results (Table 2) is that the 3DZD does not
need such high resolutions for accurately comparing and
searching EM density maps. Moreover, of course, the
3DZD should work better for EM maps with a higher
resolution.

Table 1 Precision-recall AUC improvement using
weighted distance

Representation Weights AUC Improvement a)

AASurf - 0.481 -

CACNO - 0.604 -

Surf-Back 0.5/0.5 0.605 0.001 (0.124)

0.4/0.6 0.617 0.013 (0.136)

0.3/0.7 0.619 0.015 (0.138)

0.2/0.8 0.612 0.008 (0.131)

Note that a random retrieval has a precision-recall AUC of 0.017.

a) Difference of Precision-recall AUC of Surf-Back to CACNO. Difference to
AASurf is shown in the parentheses.
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Speed improvement of 3DZD over CE
A significant advantage of the 3DZD is its fast speed.
Due to its compact vector representation and rotation
invariance, 3DZD allows real-time search of the entire
Protein Data Bank (PDB) [35] once 3DZDs of structures
are computed offline and stored in the database. To
illustrate, the speed by 3DZD is compared with CE in
Table 3. This evaluation was performed on a computer
with Intel core2 CPU 6400 (2.13GHz) processor with 5
Giga bytes memory. The pairwise structure comparison
with 3DZD takes only 1.46x10-4s. Simply multiplying

this execution time by the current size of PDB (64098
proteins) gives 9.36 seconds, while the same procedure
by CE results will need almost 2 days. The speed of
3DZD is significantly faster than previous similar works
on EM density map search [11,12].

Conclusions
In this work we examined the applicability of the 3DZD
for two important tasks in structural bioinformatics.
The first task is the real-time protein structure database
search. In contrast to our previous work [14] in which

Figure 5 Examples of precision-recall curves using the combination of AASurf and CACNO. A, B, and C are precision-recall curves of
Group 48, 74, and 124. AUC values for each curve are shown in brackets.
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the 3DZD is used to represent an all-atom surface of
protein structures (called in AASurf representation in
this work), we have now examined backbone amino
acid-based surface representations (e.g. CACNO). The
backbone-based representations showed significantly
better performance than the AASurf when the retrieval
performance was evaluated on the agreement to the CE
and SCOP classifications. Combinations of AASurf and
CACNO showed further improvement over CACNO.
The second task explores the applicability of the 3DZD

on representation and comparison of low-resolution

Figure 6 Comparisons of isosurfaces of EM maps and reconstructed molecular surface from the 3DZD. Three different EM resolutions
(r=10, 15, and 20) and comparable surface shape reconstructed from the 3DZDs (order o = 20, 15, and 10) are shown. A, the 3DZDs are
computed for AASurf representation of proteins, from which the surfaces are reconstructed. B, the CACNO representation is used to compute
the 3DZDs.

Table 2 Precision-recall AUC value of database retrieval
of EM isosurfaces

AUC

EM Resolution Density Range a) 3DZD order 15 3DZD order 20

10 5-8 0.427 0.451

9-11 0.446 0.454

15 7-11 0.466 0.489

12-15 0.460 0.480

a) Voxels with the specified density value range are chosen as input of
computing 3DZD.
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structural data by evaluating the database retrieval per-
formance of simulated EM density maps. Intuitively, iso-
surfaces of the density maps and molecular surfaces
represented by 3DZDs look similar to each other. Indeed,
we showed that the 3DZD is well suited for database
retrieval of EM maps, achieving comparable accuracy to
regular protein structure database retrieval in identifying
proteins of the same fold to the query protein. This is the
most comprehensive study so far published in identifying
the fold class of proteins by comparing EM density map
of proteins. It is noteworthy that the 3DZD can identify
proteins of the same fold with EM maps even at 15Å
resolution. Using EM maps of a higher resolution, which
have now become more and more available, the retrieval
accuracy will only get better. Here we compared the EM
maps of single proteins as the proof of concept that
3DZD is suitable for handling EM maps. We expect this
work will stimulate further investigations for applying
3DZD or similar descriptors for handling EM maps of
multiple protein complexes and other low-resolution
structure data, such as electron tomography.
Altogether, we are in a new exciting informatics era of

structural biology, and we believe surface representation
with the 3DZD will provide new directions and ideas
that lead us to new findings through surfing ever
expanding molecular structural information.
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