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Abstract

Background: Inference of causal regulators responsible for gene expression changes under different conditions is
of great importance but remains rather challenging. To date, most approaches use direct binding targets of
transcription factors (TFs) to associate TFs with expression profiles. However, the low overlap between binding
targets of a TF and the affected genes of the TF knockout limits the power of those methods.

Results: We developed a TF-centered downstream gene set enrichment analysis approach to identify potential
causal regulators responsible for expression changes. We constructed hierarchical and multi-layer regulation models
to derive possible downstream gene sets of a TF using not only TF-DNA interactions, but also, for the first time,
post-translational modifications (PTM) information. We verified our method in one expression dataset of large-scale
TF knockout and another dataset involving both TF knockout and TF overexpression. Compared with the flat
model using TF-DNA interactions alone, our method correctly identified five more actual perturbed TFs in large-
scale TF knockout data and six more perturbed TFs in overexpression data. Potential regulatory pathways
downstream of three perturbed regulators— SNF1, AFT1 and SUT1 —were given to demonstrate the power of
multilayer regulation models integrating TF-DNA interactions and PTM information. Additionally, our method
successfully identified known important TFs and inferred some novel potential TFs involved in the transition from
fermentative to glycerol-based respiratory growth and in the pheromone response. Downstream regulation
pathways of SUTT and AFT1 were also supported by the mRNA and/or phosphorylation changes of their mediating
TFs and/or “modulator” proteins.

Conclusions: The results suggest that in addition to direct transcription, indirect transcription and post-translational
regulation are also responsible for the effects of TFs perturbation, especially for TFs overexpression. Many TFs
inferred by our method are supported by literature. Multiple TF regulation models could lead to new hypotheses
for future experiments. Our method provides a valuable framework for analyzing gene expression data to identify
causal regulators in the context of TF-DNA interactions and PTM information.
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Background

With the advance of high-throughput technologies such
as DNA microarray, chromatin immunoprecipitation
DNA chip (ChIP-chip) [1-3], yeast two-hybrid assays [4]
and co-immunoprecipitation screens [5], various kinds
of whole genome scale data are available, shedding light
on the regulatory mechanisms in the biological system.
Several new computational methods have been devel-
oped to combine various kinds of data to construct reg-
ulatory networks [6-11]. In addition, several researchers
have strived to infer regulatory pathways connecting the
known causal perturbation to the affected genes using
physical interaction networks [12-15]. These inferred
pathways could explain consequences of perturbations
such as gene knockout effects. If the causal factor is
unknown, however, inference of the causal factor from
the consequences (e.g. a set of differentially expressed
genes (DEGs)) is rather challenging.

To address this, Tu et al. [16] and Sutras et al. [17]
integrated TF-DNA interactions and protein-protein
interactions to map which gene among expression quan-
titative trait loci (eQTL) was the causal factor responsi-
ble for the observed changes in the downstream gene
expression. However, the candidate causal factor was
restricted to genes located within eQTLs, and their
methods could not be widely applied if such information
was not available. In another work, Pollard et al. [18]
tried to discover underlying molecular causes of type 2
diabetes mellitus consistent with the expression changes
based on 210,000 molecular cause-and-effect relation-
ships assembled from literature. Yet the power of such
kind of approach relies greatly on the size and quality of
cause-and-effect relationships, which are often hard to
collect.

Increasing amount of molecular interactions, including
TE-DNA interactions, protein-protein interactions (PPI)
and protein post-translational modifications (PTM),
mapped from high-throughput technologies may provide
significant information about cause-and-effect relation-
ships. Previous approaches of associating TFs with
expression changes were often based on direct binding
targets of TFs [19-24], which were derived either by
upstream sequence matches to a consensus binding
motif [19-21,23], or by TF-DNA interactions from
ChIP-chip experiments [21,22,24]. Several studies, how-
ever, have pointed out the low overlap between direct
targets bound by a TF and transcriptionally affected
genes caused by perturbation to the same TF [25-28].
Backup in regulatory pathways is one possible reason
for the low overlap, which leads to no expression
changes observed for most direct targets of a TF under
this TF knockout [28]. The ability of TFs to affect gene
expression through ways other than direct transcription
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may be another reason. Given the complexity of regula-
tory networks, if only TF-DNA interactions were used
and simple flat regulation pathway was modeled, the
power of those methods for inference of associated TFs
would be limited. Integrating TF-DNA interactions with
other directed interactions and considering hierarchical
and multi-layer regulatory pathways through which TFs
affect expressions of their downstream genes may be
helpful. Protein-protein interactions provide limited
information because PPIs normally imply no regulation
direction. Protein post-translational modifications have
rarely been considered for gene expression based causal
inference, since PTM usually can not be detected at
expression level.

Here we present a TF-centered downstream gene set
enrichment analysis to identify potential causal regula-
tors responsible for gene expression changes. Integrating
TF-DNA interactions and PTM information, we con-
structed multi-layer regulation models progressively to
derive possible downstream gene sets of a specific TF.
PTM are incorporated because their regulation roles to
proteins activation status are certain. TFs activity change
would cause differential expressions of downstream
genes, even though TFs themselves do not change at
expression level. Compared with the method using only
direct TE-DNA interactions, our method correctly iden-
tified five more actual perturbed TFs in knockout
experiments [27] and six more TFs in overexpression
experiments [29]. The results suggest that in addition to
direct transcription, indirect transcription and PTM are
also responsible for the downstream effects of TFs per-
turbation, especially for TFs overexpression. Potential
regulatory pathways downstream of three perturbed
regulators — SNF1, AFT1 and SUT1 — were given to
demonstrate the power of incorporating indirect tran-
scription and/or PTM information.

Furthermore, our method successfully identified sev-
eral known and novel potential regulators involved in
the transition from fermentative to glycerol-based
respiratory growth [30] and in the pheromone response
[31], some of which were validated by their changes in
expression and/or phosphorylation status. Additionally,
downstream regulation pathways of SUT1 in the transi-
tion process and AFT1 in the pheromone response were
also supported by the mRNA and/or phosphorylation
changes of their mediating TFs and/or “modulator”
proteins.

Our results suggest that pathways through which TFs
regulate the expression of downstream genes are condi-
tion dependent. With our methodology, many novel
potential causal regulators and downstream regulation
models may be proposed and evaluated. Our method
provides a valuable framework for analyzing gene
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Figure 1 The schema of our method. The method ranked the potential causal regulators based on the overlap significance between
downstream gene sets of each TF and the changed expression profiles, namely, the list of DEGs. The downstream gene sets of each TF were
derived by integrating TF-DNA interactions and post-translational modifications (PTM) information.

expression data to identify causal regulators in the con-
text of TF-DNA interactions and PTM information,
which may benefit disease mechanism studies and identi-
fication of potential interfering targets.

Methods

The schema of our method is shown in Figure 1. For a
perturbed condition, the method ranked the potential
causal regulators based on the significance of the over-
lap between downstream gene sets of each TF and the
changed expression profiles, namely, the list of DEGs.
Compared with most previous approaches using direct
TF-DNA interactions alone [19-24], the downstream
gene sets of each TF here were derived by integrating
TE-DNA interactions and PTM information.

Recent studies have shown that gene perturbation
effects could be mediated by PPI networks as well
[12-14,16,17,28]. It has been suggested that when the
path length from the initial TF to the last TF is greater
than 2, the significance of the overlap between the
observed DEGs and the expected targets of the actual
perturbed TF is decreased [28]. Thus, we constructed
regulation models with the path length from the initial
TF to the last TF being equal to or less than 2. For
examples, paths like TE-TF-TF, or TF-kinase-TF, are
length 2 paths. Models were built progressively by

gradually adding TF-DNA regulation layers and PTM
information, as illustrated in Figure 2. Six models were
constructed in total and classified into one-layer regula-
tion models, two-layer regulation models and three-layer
regulation models, which were defined according to the
number of TE-DNA regulation layers. One-layer regula-
tion models included simple direct model (flat model,
Model I in Figure 2) and PTM-mediated direct model
(Model 1II in Figure 2). Simple direct model (Model I)
only considered direct binding targets of TF A, while
PTM-mediated direct model (Model II) extended Model
I to further include direct targets of other TFs (TF B in
Figure 2) post-translationally modified by TF A. Model II
could be further extended by another PTM layer, i.e.,
including direct targets of other TFs post-translationally
modified by TF B. It had been found that downstream
genes in this model were the same with those in model
II for all TFs and only upstream kinases, such as ELM1,
REG1, SAK1, GLC7 and TOS3, were involved in the
model. Therefore this model was not included in our pre-
sent work since the method was mainly aimed to identify
TFs but not kinases responsible for expression changes.
In the future, this model will be included when the work
is extended to discover causal signal molecules and
kinases. Two-layer regulation models consisted of two-
layer cascade regulation model (Model III in Figure 2),
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PTM-mediated two-layer cascade regulation model
(Model 1V in Figure 2), and hybrid two-layer cascade reg-
ulation model (Model V in Figure 2). Two-layer cascade
regulation model (Model III) was built by extending
Model II to further include second-layer targets of TF A
mediated by TF C and TF D, while PTM-mediated two-
layer cascade regulation model (Model IV) was con-
structed by extending Model II to further include
second-layer targets of TF A mediated by TF E which is
modified by X (a ‘modulator’ and also a direct target of
TF A). Hybrid two-layer cascade regulation model
(Model V) combined Model III and Model 1V, i.e., con-
sidering second-layer targets of TF A mediated by both
protein expression changes (TF C and D) and protein
modification changes (TF E). Three-layer regulation
model (Model VI in Figure 2) was obtained by extending
Model V to further include third-layer targets of TF A
mediated by TF F. Model VI could not be further
extended since the length of these paths TF A-TF C-TF
F, TF A-‘modulator’ X-TF E, and TF A-TF B-TF D was
all equal to 2. Thus there was only one three-layer regu-
lation model.

Possible downstream genes of a TF were defined
as the expected targets of this TF. Six possible
expected targets for TF A were denoted as
Gﬁ,k =LILIILIV,V,VI . The observed set of DEGs was
denoted as D={DEGs}. The overlap significance between
six expected targets and the observed set of DEGs was
calculated using the hypergeometric distributions (equa-
tion 1).

Gl N-Gk
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Six p-values were obtained for TF A to evaluate the
significance of the overlap between six possible expected
targets of TF A and the observed DEGs. To determine
the most likely model through which TF A was respon-
sible for expression changes, we selected the model in
which the most significant overlap occurred (k* in equa-
tion 2). In this way, the overlap significance between the
expected targets of TF A and the observed DEGs under
this TF perturbation would be improved. However, the
overlap significance between expected targets of other
non-perturbed TFs and the DEGs might increase simul-
taneously, which would introduce much noise and des-
cend the rank of the actual perturbed TF in the
candidate list (Additional file S1). We assumed that if a
TF functioned through a model rather than Model I, the
overlap of its expected targets with the DEGs would be
more significant in this model than that in Model I,
while the overlap of most of other TFs in this model
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would not be more significant than that in Model I. On
the contrary, if many TFs got more significant overlap
between their expected targets and the observed DEGs
in a model than that in Model I, these TFs would rank
before the actual perturbed TF and thus the actual per-
turbed TF would be missed. That is, the model in which
many TFs obtained more significant overlap than that in
Model 1 was unacceptable. We compared the distribu-
tion of overlap p-values obtained by Model I and other
models using the Wilcox rank sum test. Those models
whose distribution of overlap p-values was significant
different from Model I (p<=0.005) were unacceptable.
The minimum p-value obtained at all acceptable models
for each TF was used to rank and evaluate the TF as
the potential causal regulators (equation 3). By selecting
acceptable models based on the background distribution
of overlap significance, we could correctly identify the
actual perturbed TF and discover the most possible reg-
ulation pathway downstream of this TF perturbation
(Additional file 1).

=mi >=| D NGk
P{* min p(x > A |), k = LILIILIV,V,VI  (2)
k™ =argmin(p,)

= mi 4 DAGk
pa =min plx>=[D NGy |), k € acceptable models (3)
k" =argmin(p,)

For the observed list of DEGs, we inferred the most
likely causal regulators and the underlying pathways.
P-values being equal to or less than 0.01 were considered
to be significant and the corresponding TFs were reported
as valid findings. If the actual perturbed TF was a valid
finding and ranked at the top 20 of candidates, this TF
was said to be correctly identified. We also tested our
method using different numbers of top rank candidates to
decide the correct identifications (top 15, top 25 and top
30 etc.). We found that the criterion about the number of
top ranks had little impact on the performance of the
method (Additional file 2), suggesting that the standard
we used for the valid finding (p-value<=0.01) was quite
stringent and most of valid findings ranked at the top. For
previous methods that downstream genes of TFs were
obtained through simple direct model (Model I) using TF-
DNA interactions, only those TFs that affected gene
expression through direct transcription could be correctly
identified. In contrast, constructing hierarchical and multi-
layer regulation models by the integration of TF-DNA
interactions and PTM information, our method was
expected to find not only TFs that affected gene expres-
sion through direct transcription, but also those that
affected gene expression through indirect transcription
and post-translational modifications.
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We also built models in the following ways and com-
pared the results from them with those from the six
models: 1) We constructed models progressively without
any constraint on the path length, i.e. with the path
length from the initial TF to the last TF being greater
than 2. We found that many TFs eventually got almost
the same set of downstream genes when the path length
was long enough and the method failed to infer most of
the actual perturbed TFs. 2) We did not construct all
six models fixedly but tried to infer which model
explains the expression data best. For example, unlike
direct targets of TF A, B, C and D comprising the
downstream genes of TF A in the two-layer cascade reg-
ulation model (Model III), which combinations of TF B,
C and D were inferred to comprise the regulation mod-
els of TF A in the case that regulation effects of TF A
could be mediated by TF B, TF C and TF D. If direct
targets of TF A and TF B obtained the most significant
overlap with observed DEGs, this p-value was consid-
ered as the overlap significance obtained by TF A as
causal regulators and used to rank the candidates. It was
found that much more noise was introduced in this way
and many actual perturbed TFs ranked lower in the can-
didate list. It is very likely that six models may not cover
all the possible regulation topologies. However, we think
some topologies happen at very low frequencies in real
biological systems. If all the possible models were con-
sidered, it would increase the model space and lower
the performance. Therefore, we limited our work to
the six models with the belief that most frequent regula-
tory scenarios in the biological systems were well
represented.

Data collection

Post-translational modifications (PTM) information was
obtained from S. cerevisiae phosphorylation network
[32] and PTM-Switchboard [33]. The former contains
the majority of the well-characterized kinase- and pho-
phatase-substrate relationships in S. cerevisiae (654 and
141, respectively) manually curated from literature. The
latter constitutes the relationship between the TF and
its “modulator” protein, which alters the TF’s activity
through post-translational modifications. TF-DNA inter-
actions were obtained from [34], which presented a fra-
mework for integrating seven distinct sources of
evidences to score all possible TF-target interactions.
We extracted all TF-target interactions with LLS (Log
Likelihood Score)>4, yielding a total of 13,239 high con-
fidence interactions. By integrating PTM and TF-DNA
interactions, 139 TFs with the number of downstream
genes being no less than 4 in any one of the six models
were selected as candidates (Names and the number of
downstream genes of 139 TFs in each model are listed
in Additional file 3).

Page 6 of 17

Two TF perturbation data sets [27,29] were used to
verify the method. Hu et al. [27] profiled the transcrip-
tional response in S. cerevisiae strains with individual
deletions of 269 TFs. Among 269 TFs, 128 are in afore-
mentioned list of 139 candidates. The transcription
responses of these 128 TFs knockout strains were
selected to evaluate the power of the method. Chua
et al. [29] provided the microarray expression data
resulting from overexpression and/or deletion of 55 TFs,
among which, those experiments of overexpression and/
or deletion of TFs common with 139 candidates were
selected. As a result, overexpression data of 39 TFs and
deletion of 35 TFs were chosen. The standard p<=0.01
was used to select DEGs for Hu et al. data [27] and |z|
>=2 was used for Chua et al. data [29] here. We also
tested our method using different standards. We found
that similar overlap p-values were obtained for most
TFs even though different standards were used. Several
TFs with very different overlap p-values often ranked at
the top of the candidates. Furthermore, their ranks at
the candidate list changed little, though their overlap
p-values between the expected targets and the observed
DEGs (chosen at different standards) changed a lot
(detailed information in Additional file 2). Therefore, it
may be concluded that our method is robust against the
standard to select DEGs.

Our method was further applied to two datasets with
no primary knockout or overexpression perturbation to
discover important regulatory TFs involved in certain
biological processes. Expression profiles during a transi-
tion from fermentative to glycerol-based respiratory
growth were obtained from [30]. Expression data and
phosphorylation information under pheromone response
were from [31] and [52].

Results and discussion

Method verification by the knockout data of 128 TFs

The results showed that 36 actual perturbed TFs out of
128 knockout data were correctly inferred. If only simple
direct model (Model I) was considered, 31 were correctly
inferred, among which, HSF1 was missed by our method
due to its slightly dropped rank beyond the threshold.
HSF1 ranked 20" if only Model I was used but ranked
22" by our method. It may be due to the increased
noise level introduced by considering more regulation
models. Figure 3 shows the overlap significance of the
expected targets of 36 TFs and the observed DEGs under
these TFs’ knockout, obtained from the most likely
model versus that obtained from Model I. It could be
seen from the figure that Model I was employed by most
TFs, suggesting that deletion of these TFs strongly
affected expressions of their immediate direct targets. Six
TFs — PHO4, GLN3, AFT2, SNF1, ARO80 and PDR1 —
were correctly identified by our method but missed if
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only Model I was used. All of the TFs with the exception
of AFT2 got more significant overlap in the most likely
model, and their ranks in the candidate list were also
improved. For example, PHO4 ranked 64™ if only Model
I was used, while it ranked 14™ if Model IV was also
considered. As another example, PDR1 ranked 26™ by
using Model I alone, but ranked 3™ if Model III was also
considered. The more significant overlap and the
improved ranks in the most likely model, rather than
Model I alone, suggested that the effects of these TFs
knockout might transmit through more complex models.
Especially for PHO4 and SNF1, the overlaps between the
downstream genes from the most likely model (PHO4
from Model 1V, SNF1 from Model II) and the DEGs
under their knockouts were 100 times more significant
than that from Model 1. This finding suggested that it
was highly likely that the regulation pathway of PHO4
knockout was PTM-mediated two-layer cascade regula-
tion model and pathway of SNF1 knockout was highly
likely to be PTM-mediated direct model. Another two
TFs, AFT1 and GAL8O, were both correctly identified by
our method and by Model I. However, their overlaps
between the expected targets from the most likely model

and the observed DEGs under their knockout were also
much more significant than that from Model I and their
ranks were also improved, suggesting the potential regu-
lation pathways of AFT1 (Model IV) and GAL80 (Model
III) knockout. These results demonstrated that PTM and
cascade regulation helped explain TFs’ knockout effects.
However, Hu et al. [27] did not observe any indication
that indirect transcriptional or post-transcriptional regula-
tion was responsible for the effects of a TF deletion. They
drew the conclusion by comparing TF deletion target sets
against each other or by comparing binding targets
against deletion ones. This led to bias since the effects of
a TF deletion might not be mediated by only one TF, but
by cooperation or combination of several TFs. For exam-
ple, the effects of SNF1 deletion are mediated by MSN2,
MIG1, SIP4 and GLN3 (Figure 4). In another example,
the effects of AFT1 deletion are mediated by cooperation
of several TFs including MSN2, MSN4, DIG1 and STE12
(Figure 5).

In higher eukaryotes, multiple TFs simultaneously,
cooperatively or competitively, regulate genes. For those
TFs forming transcription complex to coordinate the
expression of genes, such as ARG80/ARG81, SWI14/SW16
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Figure 4 a) Possible downstream regulatory pathway of SNF1 knockout. b) Possible downstream regulatory pathway of SNF1 in MAS1
mutant experiment. note: TFs and genes with red fonts denote they are differentially expressed.

and MBP1/SW1I6, they were all identified as causal regula- and ARG80 ranked 19 (p-value=6.97e-4) in the ARG80
tors when one of their cooperative TFs was knocked out. ~ knockout experiment. For those partially functionally
For examples, ARG81 ranked 1** (p-value=6.61e-11) and  redundant TFs (e.g., MSN2/MSN4) or promoter occu-
ARG80 ranked 6™ (p-value=2.12e-5) in the ARG81 knock-  pancy competitive TFs (e.g., YRR1/YRM1), however, they
out experiment, and ARG81 ranked 1** (p-value=9.81e-9)  could not be correctly identified as causal regulators in
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their knockout experiments. It is possibly because that
those TFs’ knockout effects can be partially or fully com-
pensated by their backup TFs or competitive TFs.

The results (including the number of downstream
genes of every TF in each model, the number of DEGs,
the number and the p-value of the overlap between
downstream genes and DEGs in each model, the mini-
mum p-value obtained from six models and the mini-
mum p-value obtained from acceptable models) of the
knockout data of 128 TFs are listed in Additional file 4.

Possible regulatory pathways downstream of SNF1
knockout

SNF1 achieved the most significant overlap p-value
(0.0077) from PTM-mediated direct model (Model II),
while the overlap p-value was 1 (the number of the
overlap between the observed DEGs of SNF1 knockout
and the expected targets was 0) when only simple
direct model was used. This may suggest that SNF1
affects gene expression through a PTM-mediated way,
i.e,, SNF1 functions as a kinase rather than a TF. This
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finding is consistent with previous literature. The
SNF1p kinase complex, which phosphorylates serine
and threonine residues, is essential for regulating the
transcriptional changes associated with glucose depres-
sion through its deactivation of the transcriptional
repressor MIG1 [35]. SNF1 is involved in the activa-
tion of S. cerevisiae heat shock transcription factor
under glucose starvation conditions [36]. SNF1p is also
known or predicted to phosphorylate a wide range of
substrates, including SIP4 [37], MSN2 [38], GAT1 and
GLN3 [39].

To further verify whether or not SNF1 functions
through a PTM-mediated way, we selected those
expression experiments in which SNF1 was up/down-
regulated [40] assuming that differential expression of
SNF1 would lead to expression changes of its down-
stream genes, thus SNF1 could be inferred as the causal
regulator. We compared the overlap significance
between the DEGs of those data and the expected tar-
gets of SNF1 in the six models. When PTM-mediated
direct model was used, the overlaps between the
observed DEGs and the expected targets of SNF1 were
highly significant (Table 1, p-value<=0.001), while the
number of the overlap was 0 (p-value=1) when other
models were used. This further supports that SNF1
functions as a kinase. Figure 4 shows possible regula-
tory mechanisms downstream of SNF1 knockout and in
MAS1 promoter mutant experiments [40]. Though the
overlap of DEGs between these two conditions is low,
gene expressions are affected through similar pathways.
SNF1 regulates gene expressions through its modifica-
tion of HSF1, MSN2, MIG1, SIP4, GAT1 and GLN3 in
the MAS1 promoter mutant experiment, while SNF1
affects expressions through MSN2, MIG1, SIP4 and
GLN3 in the knockout experiment. The low overlap
may be due to the involvement of other TFs unrelated
to SNF1.

Table 1 Differential expression of SNF1 and the overlap
p-values of the observed DEGs and the expected
downstream genes using PTM-mediated direct model
(Model I1)

Experiments Fold Number of p-value at Model
change DEGs Il

ARC40 promoter -33 1887 7.77931e-4

mutant

RPT2 promoter 32 879 343575e-4

mutant

MAST promoter -3.3 500 3.11418e-10

mutant

GPI2 promoter mutant 3.2 319 20351e-4

ESF1 promoter 32 392 2.1737e-06

mutant
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Possible regulatory pathways downstream of AFT1
knockout
When simple direct model was used, the overlap p-value
between the expected targets of AFT1 and the observed
DEGs under AFT1 knockout was 0.0001, while the over-
lap p-value was 7.35e-11 when PTM-mediated two-layer
cascade regulation model (Model IV) was used. Figure 5
illustrates PTM-mediated two-layer cascade regulation
pathway downstream of AFT1 knockout. AFT1 affects
the expression of two protein kinases, TPK1 and KSS1.
TPK1 modifies the protein states of MSN2 and MSN4,
while KSS1 modifies the protein states of DIG1 and
STE12. Then these TFs lead to differential expressions
of their target genes. TPK1 was differentially expressed
in the AFT1 knockout experiment, which supported the
possibility of this regulatory pathway. The expression of
KSS1 was not changed, possibly due to the feedback
regulation control of DIG1, STE12 and MSN4 on KSS1.
To further verify whether or not AFT1 functions
through Model IV under specific conditions, expression
data with great down expression of AFT1 were selected
[41]. In the response to environmental changes under
YPD stationary phase 28 d, AFT1 showed 9.6 fold
change of down expression. We compared the DEGs
under this condition with the expected targets in the six
models of AFT1, the most significant overlap was also
achieved at PTM-mediated two-layer cascade regulation
model (p-value:e-17).

Method verification by the overexpression of 39 TFs and
deletion of 35 TFs

11 Actual perturbed TFs out of 35 TFs deletion experi-
ments were correctly identified, while 17 perturbed TFs
out of 39 TFs overexpression data were correctly identi-
fied. In comparison, 11 perturbed TFs out of 35 TFs
deletion experiments and 11 out of 39 TFs overexpres-
sion ones were correctly inferred if only Model I was
used. HAP4 and ROX1 were correctly identified by
Model I but missed by our method in their knockout
experiments. Although the same p-values were obtained
(0.002675), HAP4 ranked 4™ if Model I was used but
ranked 22" by our method. The dropped rank of HAP4
may be partially due to the increased noise level intro-
duced by considering more models in our method.
Additionally, considering no cooperative or competitive
interactions between TFs may be another reason. In the
HAP4 knockout experiment, HAP5 forming HAP com-
plex with HAP4 ranked 1%, though HAP4 itself ranked
22", If such cooperative interaction between HAP5 and
HAP4 was integrated into the method, HAP4 would
rank much higher. The situation was similar for ROX1,
which ranked 4™ if Model I was used and ranked 29"
by our method. Our method correctly identified SOK2
and SUT1, which were missed by Model I in deletion
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experiments. Our method also correctly identified six
more perturbed TFs (MIG1, YAP1, INO2, MBP1, XBP1
and SUT1) from their corresponding overexpression
experiments. The result showed that considering PTM
and cascade regulation helped explain effects of TFs
perturbation, especially effects of TFs overexpression.
The results (including the number of expected targets of
every TF in each model, the number of DEGs, the num-
ber and the significance of the overlap between the
expected targets and the DEGs, the minimum p-value
obtained from the six models and the minimum p-value
from acceptable models) of the deletion of 35 TFs and
overexpression of 39 TFs are listed in Additional file 5.
Figure 6 shows the overlap significance of 11 TFs and
19 TFs between the expected targets obtained from the
most likely model and the observed DEGs in deletion
and/or overexpression experiments versus that obtained
using Model I only. In deletion experiments, the
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significance of the overlaps between the expected targets
from their most likely models for SKO2 and SUT1 and
the observed DEGs was not only much higher than that
from Model I (100 times more significant), their ranks
in the candidate list were also improved, which sug-
gested that the effects of SOK2 deletion were mediated
by Model III and the effects of SUT1 deletion were
mediated by Model V. For overexpression experiments
of six TFs, MIG1, YAP1, INO2, MBP1, XBP1 and
SUT1, the overlaps between their expected targets from
their most likely models and observed DEGs were much
higher than that from Model I (100 times more signifi-
cant), their ranks were also improved a lot. This indi-
cated that the effects of those TFs’ overexpression were
mediated by their most likely models other than Model
I. HAP4 could be correctly identified by Model I, how-
ever, it achieved higher overlap significance between the
expected targets from Model III and the observed DEGs
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under HAP4 overexpression, and it ranked 1** in Model
II1. This indicated that the effects of HAP4 overexpres-
sion might be mediated through Model III.

With the exception of ABF1, HSF1, MET4 and RAPI,
which appeared only in overexpression experiments, the
remaining 32 TFs were performed with both overexpres-
sion and deletion experiments. 7 of 32 TFs (MSN2,
MSN4, GCN4, SWI4, STE12, SKN7 and PHO4) showed
higher overlap significance between the direct targets of
these TFs and the observed DEGs in overexpression
experiments than those in deletion ones. This is partially
due to the redundancy of TFs. For example, MSN2 and
MSN4 are paralogous TFs with BLASTP E-value less
than E-20, SWI4 and SKN7 have paralogous TFs with
BLASTP E-value less than E-10. A subset of the homo-
logous TFs bind to an overlapping group of targets, and
thus it is not surprising that knocking out one of them
has a small effect on the expression of its targets. In
contrast to deletion, overexpression increases binding of
TFs, and thus would activate most of their downstream
targets. 2 out of 11 TFs in deletion experiments (SUT1
and SOK2), and 6 out of 17 TFs in overexpression
experiments showed more significant overlap between
the DEGs and the expected targets in other models than
in Model I by 100 times. This may suggest that effects
of TFs overexpression are more involved in indirect
transcriptional or post-transcriptional regulation than
those of TFs deletion.

We also compared our results on deletion experiments
from [27] and those from [29]. Simple direct model was
responsible for the effects of two SWI4 deletion experi-
ments. For some TFs, however, different pathways were
involved in the downstream of two deletion experiments
of the same TF. For example, simple direct transcription
explained the effects of PHO4 deletion experiment pro-
vided by [29], while PTM-mediated two-layer cascade
regulation model was the most likely model for the
effects of the PHO4 deletion experiment provided by
[27]. This may imply that indirect transcriptional or
post-transcriptional regulatory pathways downstream of
TFs are condition-dependent, even in the case of the
same TF deletion.

It should be noted that despite our prediction rate was
less than 50%, it was much higher than that by random
guess. If we randomly selected 20 TFs from the 139 can-
didates as causal regulators, the prediction rate was
14% (20/139). It would be even much lower if the
quite stringent standard we used about valid findings
(p-value<=0.01) was also required since only small num-
ber of TFs satisfied the standard. In comparison, the
prediction rate of our method achieved 28% (36/128) on
Hu et al. data, 31% (11/35) on Chua et al. deletion data
and 44% (17/39) on Chua et al. overexpression data.
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Possible regulatory pathways downstream of SUT1
overexpression

When simple direct model was used, the overlap p-value
between the expected downstream genes of SUT1 and the
observed DEGs under SUT1 overexpression was 0.017,
while p-value was 7.37e-19 when hybrid two-layer cascade
regulation model (Model V) was used, and SUT1 ranked
2™ as the causal regulator out of 139 TF candidates.
Figure 7 shows the possible regulatory pathway down-
stream of SUT1 overexpression. The effects of SUT1 over-
expression are mediated by GLN3, MSN2, MSN4 and
HAP4. Among them, activity of GLN3 is mediated by the
phosphatase SIT4. SIT4, MSN2, MSN4 and HAP4 are all
direct targets of SUT1. Down expression was also
observed for HAP4 when SUT1 was overexpressed, which
further supported this regulatory pathway of SUT1.

Method applied to transcriptome profiling during a
transition from fermentative to glycerol-based respiratory
growth

To demonstrate the utility of the method to identify
activated TFs in real biological process, we applied the
method on transcriptome profiling during a transition
from fermentative to glycerol-based respiratory growth
[30]. We constructed a gold positive set as true activated
TFs by selecting those TFs with two-fold or more differ-
ential expression from 139 candidates. The gold positive
set consisted of 33 TFs.

Our method identified 55 TFs with overlap p-value
being equal to or less than 0.01. Among 55 TFs, 18 TFs
were true positives (TP, i.e., their expression were up-
regulated or down-regulated two-fold or more), expres-
sion of 35 TFs were changed less than two-fold (i.e.,
these 35 TFs were false positives, FP), MAL63 and
MATA2 were not profiled by the microarray. 15 TFs of
the gold positive set were not detected by our method
(false negatives, FN). In comparison, only 14 TFs with
overlap significance p-value being equal to or less than
0.01 were inferred if only simple direct model was used.
Among them, 6 TFs were two-fold or more differentially
regulated (TP), 8 TFs were less than two-fold differen-
tially expressed (FP). 27 TFs of the gold positive set
were missed (FN). We compared the Jaccard Similarity
Score of our results with that obtained from simple
direct model (Table 2). The Jaccard Similarity Score was
defined as TP/(TP+FP+FN) [8]. The higher the Jaccard
Similarity Score, the better the method performs. The
result showed that although our method got higher false
positives, it achieved higher Jaccard Similarity Score
than that from Model I, suggesting that taking multi-
layer-wise regulation models and PTM information into
consideration was helpful for identifying activated TFs
in the biological process.
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The high false positives of our method may be due to
the incomplete selection of positive set, where only those
TFs with differential mRNA expression were chosen.
This standard would miss those activated TFs with chan-
ged protein status (e.g. changed protein level or changed
protein modifications status). Among the top 20 causal
regulators identified by our method (Table 3), 15 regula-
tors could not be inferred if only simple direct model was
used (p-value>=0.01 in Model I). 4 of 15 regulators

Table 2 Jaccard similarity score obtained by our method
and by simple direct model during a transition from
fermentative to glycerol-based respiratory growth

TP FP FN Jaccard similarity score

Our method 18 35 15 0.265

Direct model 6 8 27 0.146

(SUT1, XBP1, AZF1 and HAP1) were differentially
expressed, which suggested the possibility of their activity
changes in the process. The remaining 11 regulators
were treated as false positives. However, the involvement
of these 11 regulators in the diauxic shift is known or can
be inferred by literature. For example, SNF1 and SSN3
are both important regulators involved in the diauxic
shift [42-45]. The SNF1 protein kinase controls the
induction of genes of the iron uptake pathway at the dia-
uxic shift [43]. In glucose-grown cells, SSN3 negatively
regulates 173 genes, including 75 that are induced during
the diauxic shift [44]. Moreover, SSN3 protein levels are
depleted during the diauxic shift [44] and SSN3 is also
required for phosphorylation of SIP4 during growth in
nonfermentable carbon sources [45]. As another exam-
ple, PHO4 is an in vivo substrate of PHOB85, one of the
yeast nutrient-sensing kinases involved in the changes in
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Table 3 The top 20 identified activated TFs during a transition from fermentative to glycerol-based respiratory growth

ORF TF name p-value at Model | p-value at most likely model Differentially expressed
YGL0O35C MIG1 0.004279 3.72E-09

YHR206W SKN7 0.007001 5.73E-09

YDR043C NRG1 3.69E-06 1.81E-08 YES
YGL162W SUT1 0.030191 1.87E-08 YES
YDR259C YAP6 0.054747 744E-08

YPRO65W ROX1 0.008967 1.38E-07 YES
YKLO43W PHD1 0.685377 2.97E-07

YOR028C CIN5 0.024372 4.84E-07

YKL112W ABF1 0.687202 5.10E-07

YDR477W SNF1 1 9.05E-07

YIL101C XBP1 0.19727 2.27E-06 YES
YORT13W AZF1 0.068534 2.75E-06 YES
YMLOO7W YAP1 0.01445 6.76E-06

YKL109W HAP4 4.69E-05 1.09E-05 YES
YKLOT5W PUT3 0.036939 1.15E-05

YLR256W HAP1 0.068331 141E-05 YES
YOR372C NDD1 0402404 2.37E-05

YJRO6OW CBF1 0.029986 2.54E-05

YPLO42C SSN3 1 4.34E-05

YFR034C PHO4 0503024 4.53E-05

gene expression profiles when yeast cells undergo a dia-
uxic shift [46]. Additionally, PHO4 functions to repress
or down-regulate the transcription of SNZ1, which is
expressed specifically in the postdiauxic to stationary
phase [47]. In another example, CBF1 DNA binding is
necessary for repression of PHOS8 basal expression at the
diauxic shift [48]. It has been reported that carbon depri-
vation caused the nuclear localization of YAP1 [49] and
the proportion of cells with the nuclear YAP1 concen-
trated during the diauxic shift [50], which suggests that
YAP1 is involved in the process. PUT3 is also predicted
to be involved in the process [51]. These regulators are
possibly true positives and are activated in the process
via changes of protein status.

ROX1 and SUTI ranked 6™ and 4", respectively,
which were both differentially expressed. SUT1 was the
target of ROX1, and SUT1 affected the expression of
genes through hybrid two-layer cascade regulation
model (Model V). This was consistent with the pathway
of SUT1 illustrated in Figure 7, where the perturbation
of SUT1 was mediated by GLN3, MSN2, MSN4 and
HAP4. SIT4 (mediating the activity of GLN3), MSN2
and HAP4 were differentially expressed in the transition
process, which further supported the possibility of the
regulatory pathway of SUT1I.

The overlap p-values of each TF in six models and the
minimum p-value of each TF are listed in Additional file

6. TFs are ranked as causal regulators by their minimum
p-values.

Results on the expression profiles in the transition from
fermentative to glycerol-based respiratory growth.
Having demonstrated that our method identified those
activated TFs with differential expression, we tested
whether our method could find activated TFs that were
both differentially expressed and post-translationally
modified. We applied our method to infer activated TFs
for mRNA profiling data sets for yeast responding to
the mating pheromone factor (wild-type cells after treat-
ment with 50 nM a.-factor for 120 min) [31].Those
identified TFs were evaluated by the transcriptional data
and phosphoproteomics data after treatment with 2 mM
o-factor for 120 min [52]. Although the treatment con-
centrations were different between these two datasets,
there was evidence that the transcriptional response to
o-factor saturated at concentrations above 15.8 nM [31].
Table 4 lists the top 10 identified TFs by our method.
Among them, five TFs were differentially regulated and/or
differentially phosphorylated, out of which, MSN4 would
be missed if only simple direct model was used. SWI4 and
STE12 were both differentially regulated and phosphory-
lated. Increased phosphorylation was observed for DIG1
(3.8 fold) and MSN4 (two fold). Increased mRNA expres-
sion was observed for TEC1. The involvement of the
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Table 4 The top 10 identified activated TFs in the pheromone response

TF name p-value at Model | p-value at the most likely model Differentially expressed Differentially phosphorylated
SWI6 7.13E-15 4.77E-29

AFT1 0.153789 6.78E-29

STE12 3.82E-20 1.02E-27 YES YES
DIG1 5.27E-12 2.11E-24 YES
MSN4 0.04847 243E-23 YES
MCM1 2.25E-10 3.87E-22

TECT 7.84E-07 4.36E-21 YES

SSN3 1 6.19E-21

SWi4 1.01E-12 1.05E-20 YES YES
SKN7 0.02109 1.15E-20

remaining five TFs (SWI16, MCM1, SSN3, SKN7 and
AFT1) is known or can be inferred from literature. MCM1
in cooperation with STE12 (differentially regulated and
phosphorylated) regulates cell cycle-dependent transcrip-
tion of FAR1 (differentially regulated and phosphorylated)
[53], which are essential for pheromone-induced cell cycle
arrest. FAR1 is activated by MSN2 and repressed by the
SSN3 kinase [54], indicating the possible involvement of
SSN3 in the process. CDC28-CLN3 complex activates SBF
(SWI14-SW16) and MBF (MBP1-SW14), and the function of
CLN3 in G1 phase, including control of cell size and pher-
omone sensitivity, requires the protein of SWI6 [55].
Decreased phosphorylated sites were observed for SW14
and CDC28. Therefore, it can be inferred that SWI6 is also
involved in the process. To survive pheromone stress, the
yeast S. cerevisiae activates signaling through the Ca2
+-activated phosphatase calcineurin to the transcription
factor Crzlp , SKN7 are necessary for Crzlp-dependent
transcriptional activation and Crzlp stabilization by SKN7
in vivo[56], which suggests that SKN7 is also an important
regulator in the process. For AFT1, significant overlap (p-
value=e-18) was obtained when PTM-mediated two-layer
cascade regulation model (Model IV) was used. We found
that the regulation pathway of AFT1 ( Figure 5) was sup-
ported by mRNA expression and phosphorylation changes
of mediating TFs and kinases, where TPK1 was up-regu-
lated, and MSN4, DIG1 and STE12 were all observed for
hyperphosphorylation. In addition, overexpression of AFT1
leads to growth arrest of the G1 state [57], while phero-
mone also induces arrest in G1 phase. AFT1 was also pre-
dicted to be involved in the pheromone response [58].

The overlap p-values of each TF in six models and the
minimum p-value of each TF are listed in Additional file
7. TFs were ranked as causal regulators by their mini-
mum p-values.

Conclusions
Our work provides an initial step toward analyzing gene
expression data to find causal regulators by integrating

TF-DNA interactions and PTM information. We tested
our method on large-scale TF deletion and overexpres-
sion experiments. The method correctly identified more
actual perturbed TFs than the approach using only
direct transcription, suggesting that indirect transcrip-
tion and post-translation regulation are also responsible
for TFs’ deletion/overexpression effects, especially for
TFs” overexpression effects. Our method successfully
identified known causal regulators and also inferred
some novel TFs, which could lead to new hypotheses
for future experiments during the processes of a transi-
tion from fermentative to glycerol-based respiratory
growth and pheromone response. Furthermore, possible
regulatory pathways downstream of TFs in these pro-
cesses were presented. Expression and phosphorylation
states of genes/proteins in the regulatory pathways pro-
vided further evidence to support the validity of these
pathways.

Although our method was developed to find causal
TFs, it could be easily extended to discover causal signal
molecules and kinases. For example, CDC28 is a cataly-
tic subunit of the main cell cycle cyclin-dependent
kinase. If downstream gene set of CDC28 was con-
structed by PTM-mediated direct model, the number of
the overlap between the observed DEGs (number:1072)
in pheromone response and expected targets of CDC28
(number: 969) was 270 and the p-value was 1.229705e-
18. This suggests that CDC28 is involved in pheromone
response, a finding that is supported by literature and
consistent with experiments showing reduced phosphor-
ylation of CDC28 [52].

In future work, we can further improve the method in
several ways: 1) It could be beneficial to integrate into
the framework information of transcriptional complexes
and cooperative and competitive interactions. For exam-
ple, although GCR1 was not correctly identified, RAP1
was identified with the 2™ rank (p-value: 5.53e-32) in
GCR1 knockout experiment. It is known that the RAP1/
GCR1 regulatory complex is required for efficient



Liu et al. BMC Bioinformatics 2010, 11(Suppl 11):S5
http://www.biomedcentral.com/1471-2105-11-S11

transcription of ribosomal protein (RP) and glycolytic
genes [59]. If such information of the cooperative inter-
action between RAP1 and GCR1 was integrated into the
framework, GCR1 could be correctly identified as the
causal regulator. 2) It could be helpful to integrate into
the framework proteomics data. Protein abundance
together with protein post-translational modifications
status could be used to calculate the probability of exis-
tence of pathways, and then evaluate the possibility of
the regulator as the cause. 3) It may be helpful to add
sign in the model to represent the regulatory effects
(activation or repression), to enhance the preciseness of
the framework. 4) Our method would miss those TFs
only responsible for small subset of DEGs because over-
laps between downstream genes of those TFs and the
whole set of DEGs would not be significant. Construct-
ing downstream genes of combination of TFs may be
beneficial in these cases. 5) The performance of our
method relies heavily the size and quality of TF-DNA
interactions and PTM information. However, all of the
interactions, especially PTM information, are incomplete
and variable in different cellular conditions. Limited and
inaccurate information could mislead to biased paths
and causal regulators. More abundant and accurate data
available in the future would improve the power of the
method.

Additional file 1: Rank distribution of the perturbed TF obtained by the
method only using Model |, by the method selecting the minimum p-
value from the six models and by the method selecting the minimum p-
value from acceptable models.

Additional file 2: the effects of parameters to determine proper TFs and
select DEGs on the results.

Additional file 3: 139 TFs with the number of downstream genes being
no less than 4 in any one of the six models. ORF names, gene names,
and the number of downstream genes obtained by each model for 139
TFs are listed.

Additional file 4: Results on knockout data of 128 TFs.

Additional file 5: Results on deletion experiments of 35 TFs and
overexpression ones of 39 TFs.

Additional file 6: Results on the expression profiles in the transition
from fermentative to glycerol-based respiratory growth.

Additional file 7: Results on the expression data in the pheromone
response.
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