
PROCEEDINGS Open Access

An intuitive Python interface for Bioconductor
libraries demonstrates the utility of language
translators
Laurent Gautier

From The 11th Annual Bioinformatics Open Source Conference (BOSC) 2010
Boston, MA, USA. 9-10 July 2010

Abstract

Background: Computer languages can be domain-related, and in the case of multidisciplinary projects, knowledge
of several languages will be needed in order to quickly implements ideas. Moreover, each computer language has
relative strong points, making some languages better suited than others for a given task to be implemented. The
Bioconductor project, based on the R language, has become a reference for the numerical processing and
statistical analysis of data coming from high-throughput biological assays, providing a rich selection of methods
and algorithms to the research community. At the same time, Python has matured as a rich and reliable language
for the agile development of prototypes or final implementations, as well as for handling large data sets.

Results: The data structures and functions from Bioconductor can be exposed to Python as a regular library. This
allows a fully transparent and native use of Bioconductor from Python, without one having to know the R
language and with only a small community of translators required to know both. To demonstrate this, we have
implemented such Python representations for key infrastructure packages in Bioconductor, letting a Python
programmer handle annotation data, microarray data, and next-generation sequencing data.

Conclusions: Bioconductor is now not solely reserved to R users. Building a Python application using Bioconductor
functionality can be done just like if Bioconductor was a Python package. Moreover, similar principles can be
applied to other languages and libraries. Our Python package is available at: http://pypi.python.org/pypi/rpy2-
bioconductor-extensions/

Background
The Bioconductor project [1], based on the R language
[2], has become a reference for the numerical processing
and statistical analysis of data coming from high-
throughput biological assays. Starting with microarray
data, it became an integrated suite of data structures
and functions to perform tasks ranging from reading
raw data files to processing algorithms and to data ana-
lysis. The project soon expanded to data analysis in
bioinformatics at large and to other assays, providing a

rich selection of methods and algorithms to the research
community.
At the same time, the Python language [3] has

matured as a dependable platform for prototype devel-
opment and data handling. Python is used by many
organizations in need of processing or analyzing large
volumes of data (Google, NASA, CERN, ILM). Python is
a very accessible language and is used in introductory
courses to programming for non-computer scientists
[4,5]. It is also used by professional programmers in
need of increased productivity [6] and agile prototyping.
In the context of bioinformatics, the Biopython project

[7] was one of the first Python libraries for bioinfor-
matics, and while a few utilities offered by the Biocon-
ductor project were ported to it, both projects grew

Correspondence: laurent@cbs.dtu.dk
DMAC, Centre for Biological Sequence Analysis, Department of Systems
Biology, Technical University of Denmark, Matematiktorvet, 2100 Lyngby,
Denmark

Gautier BMC Bioinformatics 2010, 11(Suppl 12):S11
http://www.biomedcentral.com/1471-2105/11/S12/S11

© 2010 Gautier; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://pypi.python.org/pypi/rpy2-bioconductor-extensions/
http://pypi.python.org/pypi/rpy2-bioconductor-extensions/
mailto:laurent@cbs.dtu.dk
http://creativecommons.org/licenses/by/2.0


independently. A collection of other bioinformatics-
related Python libraries has also appeared during the
last few years: PyCogent [8], pygr [9], and bx-python
[10], to name a few.
We choose the R/Bioconductor-Python duo in the

context of bioinformatics to demonstrate how bridging
software libraries in different languages can be per-
formed. There exists other bioinformatics libraries in
other languages [11-14] with which similar principles
could be applied, given the relevant tools for bridging
the different languages.

Results and discussion
Communities and translation
Whenever a project spans across several communities,
the issue of language arises. Bioinformatics is an exam-
ple of that: being at the interface between biology, com-
puter science, information technology, and statistics, it
requires translating terms when experts in the different
fields communicate. Here we are focusing on computer
languages but the very same principles apply to disci-
plines. The analogy is even more appropriate when the
practitioners of the different disciplines favor one com-
puter language over another one.
Having a bilingual community is a good way to make

cross-language barriers fall, but it has the substantial
drawback of being relatively difficult and expensive to
achieve. When hiring technical specialists, finding
experts in a field can be a difficult task, let alone experts
in two fields. Moreover, requiring a bilingual community
to operate could cause insidious problems: the imperfect
mastery of at least one of the two computer languages
can help create issues and keep them unnoticed.
A smaller community of bilingual individuals, we shall

call translators or interpreters, is able to bridge two lar-
ger communities and is easier to obtain than a bilingual
community even when setting high standards of fluency
for both languages. Translators can be in charge of
exposing written blocks in one language, which are here
Bioconductor data structures and functions written in R,
into meaningful blocks in another language, here
Python. The result is an interface layer that can be used
without knowing much of the original language in
which the libraries were developed.
The software package presented here demonstrates

that a translation layer can provide Python developers
access to the Bioconductor project, and allow them to
develop applications without knowing R.
Exposing Bioconductor/R structures as native Python
structures
The role of translators/interpreters can be restricted to
wrapping Bioconductor libraries as Python classes. Here
we propose to expose Bioconductor to a Python user,
and we rely on the Python-to-R bridge rpy2 [15]. This

bridge embeds an R interpreter into a Python process
and allows seamless access to R objects and functions.
This bridge removes the need to deal with the technical
issues related to accessing R from Python and lets us
focus on presenting Bioconductor libraries to Python
programmers.
In essence, Bioconductor packages contain functions,

data structure definitions (classes), and data objects
(instances). The task of translators is to represent these
in Python. This can be done manually, or semi-automa-
tically when relying on the meta-programming tools
found in the rpy2 package (See Figure 1). Functions
usually do not need much work as they are already
automatically exposed by rpy2.
The object system in Python is fairly unified, despite

the remaining existence of old and new objects in the
Python 2.x series, and is very much central to the lan-
guage. Most, if not all, Python programmers will be
familiar with it. In contrast, the Bioconductor project
makes extensive use of the S4 class system for R, a sys-
tem that remains less known to many R users. The S4
system is related to the one of Common Lisp Object
System (CLOS) [16], and offers multiple dispatch for
methods. The S4 system is only present in a limited
number of languages (beside CLOS, Clojure’s multi-
methods can be mentioned [17]), and is not available in
Python. In this context, the difference in object-oriented
programming paradigms have to be resolved by transla-
tors/interpreters.
Rpy2 exposes classes and methods from Bioconductor

are exposed in such a way that differences in program-
ming languages are alleviated. The resulting overall
structure matches the canons of Python programming,
which Python programmers refer to as being Pythonic.
The translation proposed creates Python classes corre-
sponding to the Bioconductor classes, and creates
Python methods for the relevant S4 methods. The class
and method names are kept across the translation, with
minor exceptions for methods. Suffixes are added to the
method name when S4 multiple dispatch results in
naming conflicts on the Python side, and in that case,
the type of the arguments in the signature are added to
the method names. For example, the biostrings class
PairwiseAlignedXStringSet has three static methods
fromXString_XString(), fromCharacter_Character(), from-
Character_missing() to represent the three correspond-
ing constructors of PairwiseAlignedXStringSet in
Bioconductor. This approach helps keeping a high
ressemblance between Python and Bioconductor for the
functionalities translated.
Bioconductor packages can define numerous classes, so

it is important that the task of exposing them to Python
programmers remains as simple and as short as possible.
The Bioconductor package Biostrings alone contains close

Gautier BMC Bioinformatics 2010, 11(Suppl 12):S11
http://www.biomedcentral.com/1471-2105/11/S12/S11

Page 2 of 6



to 40 classes exposed to Python, as illustrated Figure 2,
while the code base for the translation remains of rela-
tively modest size: Biostrings is exposed in less than 600
lines of code, so less than 15 lines of Python code per class
exposed on average. In our implementation Python classes
are essentially wrappers for R methods of Bioconductor
classes, limiting the need for extensive testing.

In addition to the above, the task of the translators/
interpreters can go beyond exposing the classes. Trans-
lating idioms specific to one language into the other lan-
guage will increase the quality of the translation (for
example Python has iterators, not available by default in
R and not used in Bioconductor). Translators can also
present data structures a different way, and build a new

Figure 1 Implementing a Bioconductor class in Python. Implementing a Bioconductor class can be performed by either declaring all class
components explicitly (right), or by relying on meta-programming utilities found in the rpy2 package (left). Meta-programming helps reduce the
amount of boilerplate code by automating part of the translation work.

Figure 2 Class diagram for the translation of Biostrings. Class from the Bioconductor package Biostrings are exposed to Python as native
classes. Parent-child relationships are represented by arrows.

Gautier BMC Bioinformatics 2010, 11(Suppl 12):S11
http://www.biomedcentral.com/1471-2105/11/S12/S11

Page 3 of 6



API from the existing Bioconductor libraries. This is of
interest in the context of different communities with dif-
ferent views on data structures and methods, as one can
quickly rewrap the existing libraries. This can also be
helpful for hiding sophisticated options and simplifying
the interface, or wrapping sequences of function calls.
The implementation presented here covers several

Bioconductor infrastructure packages, and is sufficient
to handle annotation data, genome sequences, microar-
ray data, and next-generation sequencing.
annotationdbi: infrastructure for handling biological

annotations.
biobase: infrastructure for handling data from high-

throughput assays.
biostrings: infrastructure for handling biological

strings (DNA, RNA, protein sequences)
bsgenome: infrastructure for handling genome

sequences
edger: differential digital expression data
geoquery: query data resources from the Gene

Expression Omnibus (GEO) repository.
ggbase: infrastructure for genetics of gene expression
ggtools: software and data for genetics of gene

expression
goseq: Gene Ontology analysis for RNAseq
gseabase: infrastructure for Gene Set Enrichment

Analysis (GSEA) types of methods
iranges: infrastructure for handling interval data
shortread: infrastructure for handling datasets of

short reads

Case-study: providing a web-based interface to edgeR
The egdeR method [18] is a popular statistical method
for measuring differential abundance in RNA molecule
when the measurement technology is based on counts.

It is useful for SAGE and RNAseq data. Having the
method easily accessible to a community outside the
regular Bioconductor user-base expands its reach to
the scientific community. In this scenario a simple
web application is considered, and the application is
written in Python. One strong advantage of Python
over R is the presence of many industry-grade solu-
tions for developing web applications, and we choose
to demonstrate how to build such a application with
edgeR.
Reproducing R code
The Bioconductor/R edgeR library is exposed to Python
in the module bioc. edger, and following the documenta-
tion written for R users is straightforward (See Figure 3).
As outlined earlier, classes and methods present in the
Bioconductor package are represented by matching
Python classes and methods, as the translator/inter-
preter focused on keeping a high resemblance between
R and Python code.
Building a prototype web server
The code used to perform an edgeR analysis can be
wrapped by the Python developer into a Python func-
tion, and building a web application that calls this func-
tion is trivial (See Figure 4).
A fully functioning self-sufficient prototype, including

a web-server, a web-form to upload data, data proces-
sing, computation of results from the data uploaded,
and an answer returned to a client web browser, can be
implemented in less than 100 lines of code.
Having the web server implemented in Python is

deemed better because Python has a strong track record
of agile web frameworks, the language possesses better
error handling mechanisms, and it allows a decoupling
of the implementation of data analysis (in R) from the
implementation of the application. This separation is

Figure 3 Case study: edgeR with Python. The Python code (left) differs from the R code (right) mostly in the top part, where the Python code
is using explicit import procedures.

Gautier BMC Bioinformatics 2010, 11(Suppl 12):S11
http://www.biomedcentral.com/1471-2105/11/S12/S11

Page 4 of 6



important since it allows a programmer specialized in
the development of web applications to utilize code
developed in R/Bioconductor by data analysts. The
translation layer ensures that the code in Bioconductor
is exposed in such a way that it can be integrated into
the application while retaining all the benefits of the
host language.
This example emphasizes the ease with which applica-

tions can be built, and relies on a minimal web develop-
ment framework. There exist more comprehensive and
more complex frameworks, such as Django [19] and
Plone [20]. Similar implementations have been per-
formed with them. In these cases the development of
applications requires highly specialized skills in the cor-
responding frameworks. In a context where there is spe-
cialization of people because of increasingly complex
domain-specific knowledge, the availability of a transla-
tion layer such as the one proposed is crucial: data ana-
lysts can therefore focus on developing algorithms while
application developers can focus on the application.

Conclusions
A relatively small community of people fluent in two
languages and disciplines can expose data structure defi-
nitions and functions from libraries in one language as
code directly usable by practitioners of the other lan-
guage. We demonstrate here how this can be achieved
by creating a bridge from the Bioconductor project, a
popular set of R libraries for the analysis of

bioinformatics data, to the Python language. Work that
requires extensive knowledge of both languages can be
restricted to a small community of translators/inter-
preters, and their code be used by Python programmers
without the knowledge of R or Bioconductor. The
implementation presented here shows that the amount
of translation work can be minimal, yet enable the
development of Python applications using Bioconductor
easily. Our implementation covers key infrastructure
packages in the Bioconductor project and can constitute
a basis for extending this to more packages in
Bioconductor.
As an example we demonstrated how a complete web

application computing differential expression for digital
gene expression can be implemented.

Methods
Software and operating systems
R/ Bioconductor
The principles detailed here were applied to Bioconduc-
tor Release 2.6 (April 2010). Bioconductor packages
evolve quickly and new versions do not always maintain
backward compatibility. Minor adaption might be neces-
sary in order to run what is presented here with other
releases. The Bioconductor release 2.6 requires R-2.11,
available on the project’s website [21].
Python and libraries
Python 2.6.4 was mainly used for development. Other
version in the 2.6 series will work. Python is available

Figure 4 A full webserver for edger. In this scenario Python developers have to develop quickly a prototype website letting users upload a
CSV file of gene counts and obtain the table of top differentially counted genes. The main application is minimal (left), relying on three helper
functions derived from the earlier example with running edgeR (right). Rendering the result table is not detailed in order to keep the example
concise.

Gautier BMC Bioinformatics 2010, 11(Suppl 12):S11
http://www.biomedcentral.com/1471-2105/11/S12/S11

Page 5 of 6



with most Linux distribution, and is shipped with OS X
Leopard and Snow Leopard (version 2.5 and 2.6
respectively).
A development snapshot of the rpy2[15] package (2.2-

dev) was used in this work. Minor adaptations will be
required for it to work with the current rpy2 release 2.1.
The lightweight web-framework bottle[22] was used to

demonstrate the implementation of a web-based
interface.
Operating system
The solution was developed and tested under both
Ubuntu Linux 10.04 and 10.10 [23] and Apple OS X
Leopard.

List of abbreviations
CERN: Conseil Européen pour la Recherche Nucléaire; CLOS: Common Lisp
Object System; DNA: Desoxyribonucleic Acid; GEO: Gene Expression
Omnibus; GSEA: Gene Set Enrichment Analysis; ILM: Industrial Light and
Magic; NASA: National Aeronautics and Space Administration; RNA:
Ribonucleic Acid; RNAseq: Whole Transcriptome Shotgun Sequencing;
SAGE: Serial Analysis of Gene Expression

Acknowledgments
Users, and communities from R, Bioconductor, Python, Biopython. Vincent
Davis, Nicolas Rapin, Brad Chapman for discussions. Anonymous reviewers
for helping improve the original manuscript. Kam Dahlquist, Editor, for
language corrections. LG is funded by an infrastructure grant from the
Technical University of Denmark.
This article has been published as part of BMC Bioinformatics Volume 11
Supplement 12, 2010: Proceedings of the 11th Annual Bioinformatics Open
Source Conference (BOSC) 2010. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2105/11?issue=S12.

Authors contributions
LG designed and implemented the software, and wrote the manuscript.

Competing interests
The author declares he has no competing interests

Published: 21 December 2010

References
1. Gentleman RC, Carey VJ, Bates DM, et al: Bioconductor: Open software

development for computational biology and bioinformatics. Genome
Biology 2004, 5:R80.

2. R Development Core Team: R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing Vienna,
Austria;3-900051-07-0 2010 [http://www.R-project.org].

3. Python. [http://www.python.org].
4. A Gentle Introduction to Programming Using Python. [http://ocw.mit.

edu/courses/electrical-engineering-and-computer-science/ 6-189-a-gentle-
introduction-to-programming-using-python-january-iap-2010/].

5. Introduction to Programming using Python. [http://www.pasteur.fr/
formation/infobio/python/].

6. Prechelt L: An empirical comparison of seven programming languages.
Computer 2002, 33.

7. Cock PJ, Antao T, Chang JT, et al: Biopython: freely available Python tools
for computational molecular biology and bioinformatics. Bioinformatics
2009, 25(11):1422-1423.

8. Knight R, Maxwell P, Birmingham A, et al: PyCogent: a toolkit for making
sense from sequence. Genome Biol 2007, 8:R171.

9. pygr - Scalabable bioinformatics interfaces in Python. [http://code.google.
com/p/pygr/].

10. bx-python. [http://bitbucket.org/jamestaylor/bx-python/overview].
11. Stajich JE, Block D, K KB, et al: The Bioperl toolkit: Perl modules for the life

sciences. Genome Res 2002, 12(10):1611-1618.

12. BioRuby - Open source bioinformatics library for Ruby. [http://bioruby.
org].

13. Holland RCG, Down T, Pocock M, et al: BioJava: an Open-Source
Framework for Bioinformatics. Bioinformatics 2008.

14. McKenna A, Hanna M, Banks E, et al: The Genome Analysis Toolkit: A
MapReduce framework for analyzing next-generation DNA sequencing
data. Genome Research .

15. rpy2. [http://rpy2.sourceforge.net].
16. Bobrow DG, Kahn K, Kiczales G, Masinter L, Stefik M, Zdybel F:

CommonLoops: merging Lisp and object-oriented programming.
SIGPLAN Not 1986, 21(11):17-29.

17. Clojure. [http://clojure.org].
18. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package

for differential expression analysis of digital gene expression data.
Bioinformatics 2010, 26:1.

19. The Web framework for perfectionists with deadlines. [http://www.
djangoproject.com].

20. Plone CMS: Open Source Content Management. [http://www.plone.org].
21. R project. [http://www.r-project.org].
22. Bottle: Python Web Framework. [http://www.bottle.paws.de].
23. Ubuntu. [http://www.ubuntu.org].

doi:10.1186/1471-2105-11-S12-S11
Cite this article as: Gautier: An intuitive Python interface for
Bioconductor libraries demonstrates the utility of language translators.
BMC Bioinformatics 2010 11(Suppl 12):S11.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Gautier BMC Bioinformatics 2010, 11(Suppl 12):S11
http://www.biomedcentral.com/1471-2105/11/S12/S11

Page 6 of 6

http://www.biomedcentral.com/1471-2105/11?issue=S12
http://www.ncbi.nlm.nih.gov/pubmed/15461798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15461798?dopt=Abstract
http://www.R-project.org
http://www.python.org
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/ 6-189-a-gentle-introduction-to-programming-using-python-january-iap-2010/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/ 6-189-a-gentle-introduction-to-programming-using-python-january-iap-2010/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/ 6-189-a-gentle-introduction-to-programming-using-python-january-iap-2010/
http://www.pasteur.fr/formation/infobio/python/
http://www.pasteur.fr/formation/infobio/python/
http://www.ncbi.nlm.nih.gov/pubmed/19304878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19304878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17708774?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17708774?dopt=Abstract
http://code.google.com/p/pygr/
http://code.google.com/p/pygr/
http://bitbucket.org/jamestaylor/bx-python/overview
http://www.ncbi.nlm.nih.gov/pubmed/12368254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368254?dopt=Abstract
http://bioruby.org
http://bioruby.org
http://www.ncbi.nlm.nih.gov/pubmed/18689808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20644199?dopt=Abstract
http://rpy2.sourceforge.net
http://clojure.org
http://www.ncbi.nlm.nih.gov/pubmed/19850757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19850757?dopt=Abstract
http://www.djangoproject.com
http://www.djangoproject.com
http://www.plone.org
http://www.r-project.org
http://www.bottle.paws.de
http://www.ubuntu.org

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Communities and translation
	Exposing Bioconductor/R structures as native Python structures

	Case-study: providing a web-based interface to edgeR
	Reproducing R code
	Building a prototype web server


	Conclusions
	Methods
	Software and operating systems
	R/ Bioconductor
	Python and libraries
	Operating system


	List of abbreviations
	Acknowledgments
	Authors' contributions
	Competing interests
	References

