
PROCEEDINGS Open Access

WordSeeker: concurrent bioinformatics software
for discovering genome-wide patterns and
word-based genomic signatures
Jens Lichtenberg1*, Kyle Kurz1, Xiaoyu Liang1, Rami Al-ouran1, Lev Neiman1, Lee J Nau1, Joshua D Welch1,
Edwin Jacox2, Thomas Bitterman3, Klaus Ecker1, Laura Elnitski4, Frank Drews1, Stephen Sauchi Lee5,
Lonnie R Welch1,6,7

From The 11th Annual Bioinformatics Open Source Conference (BOSC) 2010
Boston, MA, USA. 9-10 July 2010

Abstract

Background: An important focus of genomic science is the discovery and characterization of all functional
elements within genomes. In silico methods are used in genome studies to discover putative regulatory genomic
elements (called words or motifs). Although a number of methods have been developed for motif discovery, most
of them lack the scalability needed to analyze large genomic data sets.

Methods: This manuscript presents WordSeeker, an enumerative motif discovery toolkit that utilizes multi-core and
distributed computational platforms to enable scalable analysis of genomic data. A controller task coordinates
activities of worker nodes, each of which (1) enumerates a subset of the DNA word space and (2) scores words
with a distributed Markov chain model.

Results: A comprehensive suite of performance tests was conducted to demonstrate the performance, speedup
and efficiency of WordSeeker. The scalability of the toolkit enabled the analysis of the entire genome of Arabidopsis
thaliana; the results of the analysis were integrated into The Arabidopsis Gene Regulatory Information Server
(AGRIS). A public version of WordSeeker was deployed on the Glenn cluster at the Ohio Supercomputer Center.

Conclusion: WordSeeker effectively utilizes concurrent computing platforms to enable the identification of putative
functional elements in genomic data sets. This capability facilitates the analysis of the large quantity of sequenced
genomic data.

Background
The importance of discovering the patterns and features
in genomic sequences is motivated by a number of
scientific contexts. The Encyclopedia of DNA Elements
project (ENCODE) seeks ‘to identify all functional ele-
ments in the human genome sequence’ [1]. Another
context, the study of co-regulated genes, involves the
analysis of the promoter sequences, introns, and
untranslated regions (UTRs) of genes that were

determined by microarray experiments to be co-regu-
lated. Similarly, transcription factor binding regions
identified by ChIP-chip and ChIP-Seq experiments are
examined to identify genomic patterns [2]. Genome-
wide pattern discovery studies, which seek to identify
vocabularies of genomes [3,4], provide yet another per-
spective on genomic data. Large scale analysis of geno-
mic data is also performed in the search for genomic
signatures (unique elements that characterize specific
organisms, tissues, pathways, and functions) [5]. All of
these problems require the discovery of patterns in
genomic sequences.* Correspondence: lichtenj@ohio.edu

1Bioinformatics Laboratory, School of EECS, Ohio University, Athens, Ohio
45701, USA
Full list of author information is available at the end of the article

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6
http://www.biomedcentral.com/1471-2105/11/S12/S6

© 2010 Lichtenberg et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:lichtenj@ohio.edu
http://creativecommons.org/licenses/by/2.0

Several approaches have been developed for genomic
pattern discovery. Word enumeration methods are algo-
rithmic techniques that systematically discover either
substrings (i.e., words) or sets of related substrings (i.e.,
motifs) in DNA sequences. Most enumeration methods
create a data representation of the input sequence(s)
that provides fast retrieval of elementary word statistics.
The representation serves as a central data structure for
a number of other analyses, including statistical word
scoring, word-clustering, and motif discovery. A number
of algorithmic techniques for word space enumeration
have been proposed. Each of the enumeration algo-
rithms can be classified as either index-based [6-19],
graph-based [20], or iterative [21,22].
Index-based enumeration strategies create a data struc-

ture, called the index, and provide a mapping function,
which maps the character composition of a word to a spe-
cific entry in the index data structure. Index-based strate-
gies differ in (1) the data structure used for the index and
(2) the type of mapping function employed. Popular
index-based strategies employ hash functions, radix trees,
and suffix trees. YMF[6,13,14], Wordspy[15,16], and RMES
[8,9,11] employ hash functions for enumerating the word
space. An alternative to hash functions, radix trees require
O(n2) space (where n is the total number of characters in
the input sequences), and are among the fastest represen-
tations for the retrieval of words. Seeder[7] and SMS[12]
are examples of approaches that utilize a radix tree for
storing words. A third alternative for index data structure,
suffix trees provide a semantically rich representation of a
set of input sequences. They require O(n) time and space,
and enable a number of efficient and elegant string proces-
sing algorithms. Many tools and algorithms based employ
suffix trees, including Speller[10], Weeder[17], REPuter
[18], and Verbumculus[19].
Winnower[20], a graph-based approach, has been used

for solving the Planted (l,d) Motif problem [20] (the pro-
blem of finding a motif of length l occurring among all
sequences in a set, allowing for at most d mismatches
between the instances of the motif). The Winnower
algorithm reduces the problem of finding (l, d) motifs to
the problem of finding large cliques in multi-partite
graphs. The undirected Winnower graph G contains
nodes representing words, and edges representing a
similarity relationship (e.g., hamming distance) between
words. Instead of finding maximal cliques, which is an
NP-complete problem [23], Pevzner and Sze iteratively
remove edges from G that are guaranteed not to be con-
tained in a clique of size k, resulting in an algorithm of
O(Nk+1), where N is the total number of nucleotides.
Iterative approaches, such as Teiresias[22] and

Mitra[21], incrementally concatenate short motifs
from the input sequences to discover maximal motifs.
These methods generate the set of maximal patterns

without having to enumerate the entire word-space
of an input sequence set. The Teiresias algorithm
divides the motif discovery process into two phases:
scanning and convolution. During the scanning
phase, a set of elementary patterns of length W, satis-
fying a user-defined quorum q, is enumerated for a
specific length with a required number of non-mis-
matches L. During the convolution phase, the ele-
mentary patterns are combined pair-wise and the
resulting patterns are added to the set of elementary
patterns if they satisfy the quorum. During convolu-
tion it is necessary to consistently detect and remove
patterns that are no longer maximal, but are instead
part of larger patterns with the same quorum satis-
faction. The complexity of the scanning phase is O
(NWL), with N being the total number of nucleotides,
and the complexity of the convolution phase is

O WN rc T
T

((’))
’max
∑ , (where rc(T ’) represents the

matches in a pattern T’, which is a maximization of a
pattern T[24]). Taking into consideration all calls to
a maximization function, the worst-case time com-
plexity of the Teiresias algorithm is

O NW N W N t rc PL
H

P
(log () ())

max
+ + ∑ , where tH is

the time needed for locating hash entries, and P is a
pattern to be inserted into the set of maximal pat-
terns [24].
While a number of algorithms and software tools have

been developed to solve the word discovery problem,
most do not provide the scalability needed to process
large (genome-scale) data sets. For example, our single-
processor enumeration methods, based on either a radix
tree or a suffix tree, are unable to perform word enu-
meration for the ~27,000 core promoters of the Arabi-
dopsis thaliana genome for word lengths greater than
19bp (see Figure 1).
The WordSeeker software suite addresses this pro-

blem by providing scalable word discovery algorithms.
The software described herein builds upon earlier work
of the authors (reported in [32]), which developed cache
aware data layout and access strategies for a shared
memory implementation of the radix tree data structure.
WordSeeker has been used to analyze the promoter
regions of genes in the DNA repair pathways of Homo
sapiens[25], the entire genome of Arabidopsis thaliana
[26], and regulatory regions involved in gravity response
in Arabidopsis thaliana[27]. As reported in [28], results
of the WordSeeker analysis of the Arabidopsis thaliana
genome have been incorporated into AGRIS - the Ara-
bidopsis Gene Regulatory Information Server [29].
The remainder of the manuscript presents a descrip-

tion of the methods employed by WordSeeker, an

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6
http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 2 of 8

experimental assessment of their effectiveness, and a
discussion of results.

Methods
This section presents the software design, the concur-
rent architecture, the open source repository and the
deployment guidelines for the WordSeeker software.

Software architecture
The Open Word Enumeration Framework (OWEF)
[30,31] provides the ability to employ different motif dis-
covery algorithms without changing the overall execution
logic of the software system. For example, WordSeeker
can utilize a radix tree or a suffix tree for word space
enumeration. This enables the selection of the “best”
algorithm for a specific dataset at run-time, as necessi-
tated by input parameters and dataset characteristics. For
example, it is recommended that the suffix tree be used
when enumerating long words (>24bp) and that the radix
tree be used when enumerating short words.
The OWEF controls a set of classes responsible for

specific functions. A set of input sequences is processed
by a word enumeration algorithm, which store the
words in a data structure. The stored information struc-
ture is processed by the WordScoring function to form a
statistical model. The model, and more importantly
operations on the model, are provided to other classes
via OWEFArgs. Other classes, such as SequenceCluster-
ing, WordDistribution, Cluster, ModuleDiscovery and

WordFamily, use the information to identify statistically
significant words, which are used to discover motifs,
modules, and sequence clusters.

Distributed architecture
WordSeeker uses a two-level parallelization strategy to
achieve scalability with respect to input parameters, and
with respect to the numbers of cluster nodes and pro-
cessor cores. Node-level parallelization (Figure 2) uses
the message passing interface (MPI) for coordination
and communication between nodes. A controller task
coordinates the activities of worker nodes. During the
word enumeration phase, the data structure representing
the word space (e.g., the radix tree or the suffix tree) is
distributed to worker nodes. Data partitioning is accom-
plished by creating a list of prefixes for each worker
node (as described in [32] and [33]). Thus, each node
builds a portion of the overall data structure.
During the word scoring phase, loop-level parallelism is

exploited by partitioning statistical analysis among the
cores of the worker nodes, each of which utilizes a distrib-
uted Markov chain model for the computation of scores
for a subset of the enumerated words. During word scor-
ing, nodes share word occurrence information as needed.
OpenMP compiler directives are used to define parallel
sections and to add parallel loop constructs. This allows
automatic generation of multi-threaded code, if the target
compiler supports OpenMP extensions. (If OpenMP sup-
port is not available, the directives are simply ignored.)

Figure 1 Complete run-times for the core promoters of Arabidopsis thaliana.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6
http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 3 of 8

Open Source implementation
WordSeeker was developed in the Ohio University
Bioinformatics Laboratory on a 5-node cluster compu-
ter. Each node contains 32GB RAM, 8 cores, 2TB hard
disk space (a RAID5 array) and a dual-channel, gigabit
ethernet.
The public version of WordSeeker, which can be

accessed at http://word-seeker.org, is deployed on the
Ohio Supercomputer Center’s Glenn cluster, an IBM
e1350 system with more than 4200 Opteron processor
cores that are connected by 10 Gbps or 20 Gbps Infi-
niband. WordSeeker ‘jobs’ are started and controlled
through the Ohio Supercomputer Center’s job manage-
ment system. The porting of the WordSeeker software
from the Ohio University cluster computer to the
Glenn cluster was easily accomplished, by observing
the open source policies that are highlighted in this
section (and detailed in the WordSeeker open source
repository).
The WordSeeker source code, released under GNU

General Public License v3, is available at http://code.
google.com/p/word-seeker/. Access to the source code
can be achieved through svn at http://word-seeker.

googlecode.com/svn/trunk. The source code is docu-
mented using the doxygen code generator.
To build an executable version of WordSeeker, the C++

compiler version, 4.1* or higher is required, as well as
OpenMP headers. The distributed version of WordSeeker
requires a working MPI environment with MPICH2,
MPIEXEC and MPICXX installed. The visualization cap-
abilities require Perl 5.8.8, the Perl TFBS module (http://
tfbs.genereg.net/) and gnuplot, version 4.2 or higher.
WordSeeker has been tested under Ubuntu 9.04 and the
linux operating system provided in the Ohio Supercompu-
ter Center environment.

Results and discussion
This section presents results of a comprehensive suite of
tests performed to evaluate the performance and scal-
ability of the different parallel and distributed modes of
WordSeeker. Specifically, the evaluations considered the
single-node version, the OpenMP-based shared-memory
multiprocessors / multicore version, the MPI-based dis-
tributed (multiple node cluster) version, and a mixed
shared-memory/distributed memory version. Shared
memory tests were performed on a 64-bit Linux

Figure 2 Distributed architecture of WordSeeker.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6
http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 4 of 8

http://word-seeker.org
http://code.google.com/p/word-seeker/
http://code.google.com/p/word-seeker/
http://word-seeker.googlecode.com/svn/trunk
http://word-seeker.googlecode.com/svn/trunk
http://tfbs.genereg.net/
http://tfbs.genereg.net/

machine with 4 Dual-Core 2.6 gigahertz AMD Opteron
processors and 32 GB of RAM. Distributed memory
tests were performed on a 64-bit Linux machine with 4
Quad-Core 2.5 gigahertz AMD Opteron processors and
24 GB of RAM.
WordSeeker was evaluated under diverse circum-

stances by varying (1) the size of the input DNA
sequence, (2) the length of DNA words to be analyzed,
and (3) the enumeration algorithm (a radix tree and a
suffix tree were used). The evaluation involved the mea-
surement of (1) computational performance - the overall
execution time of the software, and the execution times
for specific functions; (2) speed-up - the sequential
execution time divided by the parallel execution time;
and (3) efficiency - speed-up divided by the total number
of nodes (or cores) used.

Performance
A set of experiments analyzes the overall performance of
the WordSeeker pipeline for the core promoters of the
Arabidopsis thaliana genome (for a detailed characteriza-
tion of the Arabidopsis thaliana genome using WordSee-
ker see [26]). The tests compare the single core version
and the distributed version. The core promoters include
100 nucleotides directly upstream of 27,167 transcription
start sites. To determine the relationship between word
length and performance, the complete run-times, as well

as the run-times for the enumeration and the scoring
stages, were computed for word lengths in the range
[2bp, 30bp]. The rationale for choosing this range of
word lengths is as follows. While eukaryotic transcription
factors usually recognize 6-8bp long binding sites [34,35],
much longer functional binding sites have been discov-
ered (e.g., AGRIS [29] describes a 29bp binding site).
Figure 1 presents the total run-time, while Figures 3

and 4 present, respectively, the run-times for the enu-
meration stage and the scoring stage. While the sequen-
tial version and the distributed version exhibit similar
run-times for word lengths less than 7bp, the run-time
performance of the sequential version decreases signifi-
cantly for larger word lengths. Due to the exhaustion of
available memory in the single-node version, the
sequential analysis cannot run for word lengths greater
than 19bp. The concurrent versions were able to run for
the entire [2bp, 30bp] range.
Figures 5a and 5b compare the performance results

for a multi-threaded version of WordSeeker, which used
(1) a single computing node and (2) five computing
nodes. The single node version utilizes 1, 2, 4, and 8
cores, and the five node version uses 2 cores/node, for a
total of 10 cores. The plots of the overall execution
times for the various word lengths demonstrate that the
concurrent algorithms provide scalability by effectively
utilizing the distributed hardware.

Figure 3 Enumeration run-times for the core promoters of Arabidopsis thaliana.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6
http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 5 of 8

Speedup and efficiency
Speedup and efficiency experiments were performed to
assess in detail the scalability and the performance
boundaries of the WordSeeker implementation. Figures
6a and 6b show the speedup, and Figures 6c and 6d
show the efficiency, of shared memory implementations
of the radix tree and the suffix tree on 2, 4, and 6 pro-
cessor cores.

The speedup and efficiency results show a drop in per-
formance for very short words (5bp) and for very long
words, (50bp and 75bp), but yield good results for word
lengths of 10bp and 20bp. The performance drop for short
word lengths occurs because the parallelization overhead
outweighs the computational benefit; for longer word
lengths, cache inefficiency and front-side bus contention
cause performance to decrease (see [33] for a detailed

Figure 4 Scoring run-times for the core promoters of Arabidopsis thaliana.

Figure 5 Mixed distributed/shared memory results for the core promoters of Arabidopsis thaliana using the Radix Tree (a) and Suffix Tree (b)
data structures.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6
http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 6 of 8

analysis of caching effects in this context). The suffix tree
performed similarly to the radix tree in terms of speedup
and efficiency. The difference between Figures 6c and 6d
can be attributed to the cost of suffix tree construction.

Conclusions
WordSeeker is a general purpose, scalable, open source
approach to word enumeration. It supports an important
set of use cases, has been applied to interesting case stu-
dies, and effectively exploits parallel and distributed com-
puting hardware to provide scalable performance.
WordSeeker is being used currently to perform com-

plete word space enumerations on a genomic scale; to
construct word and motif encyclopedias for whole gen-
omes; to perform word-based characterizations of path-
ways, tissues, and co-regulated genes; and to identify
motifs in ChIP-Seq data. Ongoing work includes the
construction of OpenMotif, a project that combines a
number of motif discovery open source projects into a
cohesive framework.

List of abbreviations used
ENCODE: Encyclopedia of DNA Elements; DNA: Deoxyribonucleic acid; AGRIS:
The Arabidopsis Gene Regulatory Information Server; UTR: Untranslated
Region; ChIP-chip: Chromatin Immunoprecipitation with microarray

technology; ChIP-Seq: Chromatin Immunoprecipitation with massively
parallel DNA sequencing; OWEF: Open Word Enumeration Framework; MPI:
Message Passing Interface; A, C, G, T: Adenine, Cytosine, Guanine, Thymine;
RAID: Redundant Array of Independent Disks.

Acknowledgements
The Ohio University team acknowledges the financial support of the Ohio
University Graduate Research and Education Board (GERB), the Ohio
University Stocker Endowment, the Ohio Plant Biotechnology Consortium,
the Ohio Supercomputer Center, and the Choose Ohio First Program of the
University System of Ohio.
The Ohio University team would to thank Prof. Sarah Wyatt, who provided
the initial motivating biological problem for the WordSeeker project. The
authors would like to express appreciation to Mohit Alam, Jasmine Bascom,
Kaiyu Shen, Nathaniel George, Dazhang Gu, Chase Nelson, Chris Wagner, Eric
Stockinger, Alper Yilamz, Erich Grotewold, Susan Evans, Pooja Majmudar, Eric
Petri, Josiah Seaman, Zekai Huang, Haiquan Zhang, Terry Lewis, Ashok
Krishnamurthy, and Dave Hudak for discussions and support during the
development of the WordSeeker.
LE and EJ were supported by the Intramural Program of the National
Human Genome Research Institute.
This article has been published as part of BMC Bioinformatics Volume 11
Supplement 12, 2010: Proceedings of the 11th Annual Bioinformatics Open
Source Conference (BOSC) 2010. The full contents of the supplement are
available online at http://www.biomedcentral.com/1471-2105/11?issue=S12.

Author details
1Bioinformatics Laboratory, School of EECS, Ohio University, Athens, Ohio
45701, USA. 2Developmental Biology Institute of Marseille, Luminy F-13009,
Marseille, France. 3Cyberinfrastructure Group, Ohio Supercomputer Center,
Columbus, Ohio 43212, USA. 4Genomic Functional Analysis Section, National
Human Genome Research Institute, NIH, Rockville, Maryland 20892 USA.
5Department of Statistics, University of Idaho, Moscow, Idaho 83844, USA.

Figure 6 Shared memory speedups for Radix Tree (a) and Suffix Tree (b) implementations as well as shared memory efficiencies for Radix Tree
(c) and Suffix Tree (d) implementations.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6
http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 7 of 8

http://www.biomedcentral.com/1471-2105/11?issue=S12

6Biomedical Engineering Program, Ohio University, Athens, Ohio 45701, USA.
7Molecular and Cellular Biology Program, Ohio University, Athens, Ohio
45701, USA.

Authors’ contributions
JL contributed to the design, implementation and validation of the
algorithms and models, the generation of the results and the writing of this
document. KK, LN, LJN contributed to the development and implementation
of the models and algorithms and the generation of the results. XL, RA
contributed to the generation of the results. JDW, EJ and TB contributed to
the development and implementation of the models and algorithms. KE and
SSL contributed to the development of the models and algorithms. LE
contributed to the development of the biological models. In addition to
conceptualizing the architecture employed in this research, FD and LRW
contributed to the design and validation of models and algorithms, and to
the writing of this manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 21 December 2010

References
1. The ENCODE Project Consortium: The ENCODE (ENCyclopedia Of DNA

Elements) Project. Science 2004, 306:636-640.
2. Blahnik KR, Dou L, O’Geen H, McPhillips T, Xu X, Cao AR, Iyengar S,

Nicolet CM, Ludascher B, Korf I, Farnham PJ: Sole-Search: an integrated
analysis program for peak detection and functional annotation using
ChIP-seq data. Nucl Acids Res 2010, 38(3):e13.

3. Feng J, Naiman DQ, Cooper B: Coding DNA repeated throughout
intergenic regions of the Arabidopsis thaliana genome: evolutionary
footprints of RNA silencing. Molecular BioSystems 2009, 5:1679-1687.

4. Rigoutsos I, Huynh T, Miranda K, Tsirigos A, McHardy A, Platt D: Short
blocks from the noncoding parts of the human genome have instances
within nearly all known genes and relate to biological processes. Proc
Natl Acad Sci U S A 2006, 103:6605-6610.

5. Heath L, Pati A: Genomic Signatures from DNA Word Graphs. In
Bioinformatics Research and Applications. Springer Berlin/Heidelberg;Mandoiu
I, Zelikovsky A 2007:317-328, Lecture Notes in Computer Science, vol 4463.

6. Blanchette M, Sinha S: Separating real motifs from their artifacts.
Bioinformatics 2001, 17:S30-38.

7. Fauteux F, Blanchette M, Stromvik MV: Seeder: discriminative seeding DNA
motif discovery. Bioinformatics 2008, 24:2303-2307.

8. Hoebeke M, Schbath S: R’MES: Finding Exceptional Motifs, version 3. User
Guide L’institut nationl de la recherché agronomique;; 2006.

9. Prum B, Rodolphe F, Turckheim Ed: Finding Words with Unexpected
Frequencies in Deoxyribonucleic Acid Sequences. Journal of the Royal
Statistical Society Series B (Methodological) 1995, 57:205-220.

10. Sagot M-F: Spelling Approximate Repeated or Common Motifs Using a
Suffix Tree. In LATIN’98: Theoretical Informatics. Springer: Berlin/Heidelberg;
Lucchesi C, Moura A 1998:374-390, Lecture Notes in Computer Science vol
1380.

11. Schbath S, Prum B, de Turckheim E: Exceptional motifs in different
Markov chain models for a statistical analysis of DNA sequences. J
Comput Biol 1995, 2:417-437.

12. Sharma D, Rajasekaran S: A Simple Algorithm for (l, d) Motif Search.
Proceedings of the 6th Annual IEEE conference on Computational Intelligence
in Bioinformatics and Computational Biology IEEE Press: Piscataway; 2009,
148-154, 30 March-02 April 2009; Nashville.

13. Sinha S, Tompa M: A statistical method for finding transcription factor
binding sites. In Proceedings of the Eighth International Conference on
Intelligent Systems for Molecular Biology: 19–23 August 2000; La Jolla. The
AAAI Press, Menlo Park;Russ Altman, Timothy L. Bailey, Philip Bourne,
Michael Gribskov, Thomas Lengauer, Ilya N. Shindyalov, Lynn F.Ten Eyck,
and Helge Weissig 2000:344-354.

14. Sinha S, Tompa M: YMF: a program for discovery of novel transcription
factor binding sites by statistical overrepresentation. Nucl Acids Res 2003,
31:3586-3588.

15. Wang G, Yu T, Zhang W: WordSpy: identifying transcription factor
binding motifs by building a dictionary and learning a grammar. Nucl
Acids Res 2005, 33:W412-416.

16. Wang G, Zhang W: A steganalysis-based approach to comprehensive
identification and characterization of functional regulatory elements.
Genome Biol 2006, 7:R49.

17. Pavesi G, Mereghetti P, Mauri G, Pesole G: Weeder Web: discovery of
transcription factor binding sites in a set of sequences from co-
regulated genes. Nucl Acids Res 2004, 32:W199-203.

18. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R:
REPuter: the manifold applications of repeat analysis on a genomic
scale. Nucl Acids Res 2001, 29:4633-4642.

19. Apostolico A, Bock ME, Lonardi S, Xu X: Efficient detection of unusual
words. J Comput Biol 2000, 7:71-94.

20. Pevzner PA, Sze SH: Combinatorial approaches to finding subtle signals
in DNA sequences. In Proceedings of the Eighth International Conference on
Intelligent Systems for Molecular Biology: 19–23 August 2000; La Jolla. The
AAAI Press, Menlo Park;Russ Altman, Timothy L. Bailey, Philip Bourne,
Michael Gribskov, Thomas Lengauer, Ilya N.Shindyalov, Lynn F.TenEyck, and
Helge Weissig 2000:269-278.

21. Eskin E, Pevzner PA: Finding composite regulatory patterns in DNA
sequences. Bioinformatics 2002, 18:S354-363.

22. Rigoutsos I, Floratos A: Combinatorial pattern discovery in biological
sequences: The TEIRESIAS algorithm. Bioinformatics 1998, 14:55-67.

23. Karp RM: Reducibility Among Combinatorial Problems. In Complexity of
Computer Computations. New York: Plenum;Miller RE, Thatcher JW
1972:85-103.

24. Floratos A, Rigoutsos I: On the Time Complexity of the TEIRESIAS
Algorithm. Research Report IBM T.J. Watson Research Center; 1998.

25. Lichtenberg J, Jacox E, Welch J, Kurz K, Liang X, Yang M, Drews F, Ecker K,
Lee S, Elnitski L, Welch L: Word-based characterization of promoters
involved in human DNA repair pathways. BMC Genomics 2009, 10(Suppl
1):S18.

26. Lichtenberg J, Yilmaz A, Welch J, Kurz K, Liang X, Drews F, Ecker K, Lee S,
Geisler M, Grotewold E, Welch L: The word landscape of the non-coding
segments of the Arabidopsis thaliana genome. BMC Genomics 2009,
10:463.

27. Liang X, Shen K, Lichtenberg J, Wyatt SE, Welch LR: An integrated
bioinformatics approach to the discovery of cis-regulatory elements
involved in plant gravitropic signal transduction. International Journal of
Computational Bioscience 2010, 1(1):33-54.

28. Lichtenberg J, Yilmaz A, Kurz K, Liang X, Nelson C, Bitterman T,
Stockinger E, Grotewold E, Welch LR: Encyclopedias of DNA elements for
Plant Genomes. In Advances in Genomic Sequence Analysis and Pattern
Discovery. Hackensack: World Scientific Publishing Company; (in press);
Elnitski L, Piontkivska H, Welch L 2011:.

29. Davaluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M,
Grotewold E: AGRIS Arabidopsis Gene Regulatory Information Server, an
information resource of Arabidopsis cis-regulatory elements and
transcription factors. BMC Bioinformatics 2003, 4(1):25.

30. Kurz K, Lichtenberg J, Nau L, Drews F, Welch LR: An Open Source
Framework for Bioinformatics Word Enumeration and Scoring. 10th
Annual Bioinformatics Open Source Conference BOSC: 27-28 June 2009;
Stockholm 2009, 37.

31. Kurz K: A Parallel, High-Throughput Framework for Discovery of DNA
Motifs. Ohio University Electrical Engineering and Computer Science; 2010.

32. Tian Y, Tata S, Hankins RA, Patel JM: Practical methods for constructing
suffix trees. The VLDB Journal 2005, 14(3):281-299.

33. Drews F, Lichtenberg J, Welch L: Scalable parallel word search in
multicore/multiprocessor systems. J Supercomput 2010, 51:58-75.

34. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV,
Frith MC, Fu Y, Kent WJ, et al: Assessing computational tools for the
discovery of transcription factor binding sites. Nature Biotechnology 2005,
23:137-144.

35. Grotewold E, Springer N: The Plant Genome: Decoding the
Transcriptional Hardwiring. Annual Plant Reviews 2009, 35:196-227.

doi:10.1186/1471-2105-11-S12-S6
Cite this article as: Lichtenberg et al.: WordSeeker: concurrent
bioinformatics software for discovering genome-wide patterns and
word-based genomic signatures. BMC Bioinformatics 2010 11(Suppl 12):S6.

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6
http://www.biomedcentral.com/1471-2105/11/S12/S6

Page 8 of 8

http://www.ncbi.nlm.nih.gov/pubmed/15499007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15499007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19906703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19452047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19452047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19452047?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16636294?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11472990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18718942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18718942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8521272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8521272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824371?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16787547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16787547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15215380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11713313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11713313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10890389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169566?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9520502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9520502?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19594877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19594877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19814816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19814816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12820902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12820902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12820902?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637633?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Software architecture
	Distributed architecture
	Open Source implementation

	Results and discussion
	Performance
	Speedup and efficiency
	Conclusions
	List of abbreviations used
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

