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Abstract

Background: An important focus of genomic science is the discovery and characterization of all functional
elements within genomes. In silico methods are used in genome studies to discover putative regulatory genomic
elements (called words or motifs). Although a number of methods have been developed for motif discovery, most
of them lack the scalability needed to analyze large genomic data sets.

Methods: This manuscript presents WordSeeker, an enumerative motif discovery toolkit that utilizes multi-core and
distributed computational platforms to enable scalable analysis of genomic data. A controller task coordinates
activities of worker nodes, each of which (1) enumerates a subset of the DNA word space and (2) scores words
with a distributed Markov chain model.

Results: A comprehensive suite of performance tests was conducted to demonstrate the performance, speedup
and efficiency of WordSeeker. The scalability of the toolkit enabled the analysis of the entire genome of Arabidopsis
thaliana; the results of the analysis were integrated into The Arabidopsis Gene Regulatory Information Server
(AGRIS). A public version of WordSeeker was deployed on the Glenn cluster at the Ohio Supercomputer Center.

Conclusion: WordSeeker effectively utilizes concurrent computing platforms to enable the identification of putative
functional elements in genomic data sets. This capability facilitates the analysis of the large quantity of sequenced
genomic data.

Background
The importance of discovering the patterns and features
in genomic sequences is motivated by a number of
scientific contexts. The Encyclopedia of DNA Elements
project (ENCODE) seeks ‘to identify all functional ele-
ments in the human genome sequence’ [1]. Another
context, the study of co-regulated genes, involves the
analysis of the promoter sequences, introns, and
untranslated regions (UTRs) of genes that were

determined by microarray experiments to be co-regu-
lated. Similarly, transcription factor binding regions
identified by ChIP-chip and ChIP-Seq experiments are
examined to identify genomic patterns [2]. Genome-
wide pattern discovery studies, which seek to identify
vocabularies of genomes [3,4], provide yet another per-
spective on genomic data. Large scale analysis of geno-
mic data is also performed in the search for genomic
signatures (unique elements that characterize specific
organisms, tissues, pathways, and functions) [5]. All of
these problems require the discovery of patterns in
genomic sequences.* Correspondence: lichtenj@ohio.edu

1Bioinformatics Laboratory, School of EECS, Ohio University, Athens, Ohio
45701, USA
Full list of author information is available at the end of the article

Lichtenberg et al. BMC Bioinformatics 2010, 11(Suppl 12):S6
http://www.biomedcentral.com/1471-2105/11/S12/S6

© 2010 Lichtenberg et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:lichtenj@ohio.edu
http://creativecommons.org/licenses/by/2.0


Several approaches have been developed for genomic
pattern discovery. Word enumeration methods are algo-
rithmic techniques that systematically discover either
substrings (i.e., words) or sets of related substrings (i.e.,
motifs) in DNA sequences. Most enumeration methods
create a data representation of the input sequence(s)
that provides fast retrieval of elementary word statistics.
The representation serves as a central data structure for
a number of other analyses, including statistical word
scoring, word-clustering, and motif discovery. A number
of algorithmic techniques for word space enumeration
have been proposed. Each of the enumeration algo-
rithms can be classified as either index-based [6-19],
graph-based [20], or iterative [21,22].
Index-based enumeration strategies create a data struc-

ture, called the index, and provide a mapping function,
which maps the character composition of a word to a spe-
cific entry in the index data structure. Index-based strate-
gies differ in (1) the data structure used for the index and
(2) the type of mapping function employed. Popular
index-based strategies employ hash functions, radix trees,
and suffix trees. YMF[6,13,14], Wordspy[15,16], and RMES
[8,9,11] employ hash functions for enumerating the word
space. An alternative to hash functions, radix trees require
O(n2) space (where n is the total number of characters in
the input sequences), and are among the fastest represen-
tations for the retrieval of words. Seeder[7] and SMS[12]
are examples of approaches that utilize a radix tree for
storing words. A third alternative for index data structure,
suffix trees provide a semantically rich representation of a
set of input sequences. They require O(n) time and space,
and enable a number of efficient and elegant string proces-
sing algorithms. Many tools and algorithms based employ
suffix trees, including Speller[10], Weeder[17], REPuter
[18], and Verbumculus[19].
Winnower[20], a graph-based approach, has been used

for solving the Planted (l,d) Motif problem [20] (the pro-
blem of finding a motif of length l occurring among all
sequences in a set, allowing for at most d mismatches
between the instances of the motif). The Winnower
algorithm reduces the problem of finding (l, d) motifs to
the problem of finding large cliques in multi-partite
graphs. The undirected Winnower graph G contains
nodes representing words, and edges representing a
similarity relationship (e.g., hamming distance) between
words. Instead of finding maximal cliques, which is an
NP-complete problem [23], Pevzner and Sze iteratively
remove edges from G that are guaranteed not to be con-
tained in a clique of size k, resulting in an algorithm of
O(Nk+1), where N is the total number of nucleotides.
Iterative approaches, such as Teiresias[22] and

Mitra[21], incrementally concatenate short motifs
from the input sequences to discover maximal motifs.
These methods generate the set of maximal patterns

without having to enumerate the entire word-space
of an input sequence set. The Teiresias algorithm
divides the motif discovery process into two phases:
scanning and convolution. During the scanning
phase, a set of elementary patterns of length W, satis-
fying a user-defined quorum q, is enumerated for a
specific length with a required number of non-mis-
matches L. During the convolution phase, the ele-
mentary patterns are combined pair-wise and the
resulting patterns are added to the set of elementary
patterns if they satisfy the quorum. During convolu-
tion it is necessary to consistently detect and remove
patterns that are no longer maximal, but are instead
part of larger patterns with the same quorum satis-
faction. The complexity of the scanning phase is O
(NWL), with N being the total number of nucleotides,
and the complexity of the convolution phase is

O WN rc T
T

( ( ’))
’max
∑ , (where rc(T ’) represents the

matches in a pattern T’, which is a maximization of a
pattern T[24]). Taking into consideration all calls to
a maximization function, the worst-case time com-
plexity of the Teiresias algorithm is
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the time needed for locating hash entries, and P is a
pattern to be inserted into the set of maximal pat-
terns [24].
While a number of algorithms and software tools have

been developed to solve the word discovery problem,
most do not provide the scalability needed to process
large (genome-scale) data sets. For example, our single-
processor enumeration methods, based on either a radix
tree or a suffix tree, are unable to perform word enu-
meration for the ~27,000 core promoters of the Arabi-
dopsis thaliana genome for word lengths greater than
19bp (see Figure 1).
The WordSeeker software suite addresses this pro-

blem by providing scalable word discovery algorithms.
The software described herein builds upon earlier work
of the authors (reported in [32]), which developed cache
aware data layout and access strategies for a shared
memory implementation of the radix tree data structure.
WordSeeker has been used to analyze the promoter
regions of genes in the DNA repair pathways of Homo
sapiens[25], the entire genome of Arabidopsis thaliana
[26], and regulatory regions involved in gravity response
in Arabidopsis thaliana[27]. As reported in [28], results
of the WordSeeker analysis of the Arabidopsis thaliana
genome have been incorporated into AGRIS - the Ara-
bidopsis Gene Regulatory Information Server [29].
The remainder of the manuscript presents a descrip-

tion of the methods employed by WordSeeker, an
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experimental assessment of their effectiveness, and a
discussion of results.

Methods
This section presents the software design, the concur-
rent architecture, the open source repository and the
deployment guidelines for the WordSeeker software.

Software architecture
The Open Word Enumeration Framework (OWEF)
[30,31] provides the ability to employ different motif dis-
covery algorithms without changing the overall execution
logic of the software system. For example, WordSeeker
can utilize a radix tree or a suffix tree for word space
enumeration. This enables the selection of the “best”
algorithm for a specific dataset at run-time, as necessi-
tated by input parameters and dataset characteristics. For
example, it is recommended that the suffix tree be used
when enumerating long words (>24bp) and that the radix
tree be used when enumerating short words.
The OWEF controls a set of classes responsible for

specific functions. A set of input sequences is processed
by a word enumeration algorithm, which store the
words in a data structure. The stored information struc-
ture is processed by the WordScoring function to form a
statistical model. The model, and more importantly
operations on the model, are provided to other classes
via OWEFArgs. Other classes, such as SequenceCluster-
ing, WordDistribution, Cluster, ModuleDiscovery and

WordFamily, use the information to identify statistically
significant words, which are used to discover motifs,
modules, and sequence clusters.

Distributed architecture
WordSeeker uses a two-level parallelization strategy to
achieve scalability with respect to input parameters, and
with respect to the numbers of cluster nodes and pro-
cessor cores. Node-level parallelization (Figure 2) uses
the message passing interface (MPI) for coordination
and communication between nodes. A controller task
coordinates the activities of worker nodes. During the
word enumeration phase, the data structure representing
the word space (e.g., the radix tree or the suffix tree) is
distributed to worker nodes. Data partitioning is accom-
plished by creating a list of prefixes for each worker
node (as described in [32] and [33]). Thus, each node
builds a portion of the overall data structure.
During the word scoring phase, loop-level parallelism is

exploited by partitioning statistical analysis among the
cores of the worker nodes, each of which utilizes a distrib-
uted Markov chain model for the computation of scores
for a subset of the enumerated words. During word scor-
ing, nodes share word occurrence information as needed.
OpenMP compiler directives are used to define parallel
sections and to add parallel loop constructs. This allows
automatic generation of multi-threaded code, if the target
compiler supports OpenMP extensions. (If OpenMP sup-
port is not available, the directives are simply ignored.)

Figure 1 Complete run-times for the core promoters of Arabidopsis thaliana.
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Open Source implementation
WordSeeker was developed in the Ohio University
Bioinformatics Laboratory on a 5-node cluster compu-
ter. Each node contains 32GB RAM, 8 cores, 2TB hard
disk space (a RAID5 array) and a dual-channel, gigabit
ethernet.
The public version of WordSeeker, which can be

accessed at http://word-seeker.org, is deployed on the
Ohio Supercomputer Center’s Glenn cluster, an IBM
e1350 system with more than 4200 Opteron processor
cores that are connected by 10 Gbps or 20 Gbps Infi-
niband. WordSeeker ‘jobs’ are started and controlled
through the Ohio Supercomputer Center’s job manage-
ment system. The porting of the WordSeeker software
from the Ohio University cluster computer to the
Glenn cluster was easily accomplished, by observing
the open source policies that are highlighted in this
section (and detailed in the WordSeeker open source
repository).
The WordSeeker source code, released under GNU

General Public License v3, is available at http://code.
google.com/p/word-seeker/. Access to the source code
can be achieved through svn at http://word-seeker.

googlecode.com/svn/trunk. The source code is docu-
mented using the doxygen code generator.
To build an executable version of WordSeeker, the C++

compiler version, 4.1* or higher is required, as well as
OpenMP headers. The distributed version of WordSeeker
requires a working MPI environment with MPICH2,
MPIEXEC and MPICXX installed. The visualization cap-
abilities require Perl 5.8.8, the Perl TFBS module (http://
tfbs.genereg.net/) and gnuplot, version 4.2 or higher.
WordSeeker has been tested under Ubuntu 9.04 and the
linux operating system provided in the Ohio Supercompu-
ter Center environment.

Results and discussion
This section presents results of a comprehensive suite of
tests performed to evaluate the performance and scal-
ability of the different parallel and distributed modes of
WordSeeker. Specifically, the evaluations considered the
single-node version, the OpenMP-based shared-memory
multiprocessors / multicore version, the MPI-based dis-
tributed (multiple node cluster) version, and a mixed
shared-memory/distributed memory version. Shared
memory tests were performed on a 64-bit Linux

Figure 2 Distributed architecture of WordSeeker.
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machine with 4 Dual-Core 2.6 gigahertz AMD Opteron
processors and 32 GB of RAM. Distributed memory
tests were performed on a 64-bit Linux machine with 4
Quad-Core 2.5 gigahertz AMD Opteron processors and
24 GB of RAM.
WordSeeker was evaluated under diverse circum-

stances by varying (1) the size of the input DNA
sequence, (2) the length of DNA words to be analyzed,
and (3) the enumeration algorithm (a radix tree and a
suffix tree were used). The evaluation involved the mea-
surement of (1) computational performance - the overall
execution time of the software, and the execution times
for specific functions; (2) speed-up - the sequential
execution time divided by the parallel execution time;
and (3) efficiency - speed-up divided by the total number
of nodes (or cores) used.

Performance
A set of experiments analyzes the overall performance of
the WordSeeker pipeline for the core promoters of the
Arabidopsis thaliana genome (for a detailed characteriza-
tion of the Arabidopsis thaliana genome using WordSee-
ker see [26]). The tests compare the single core version
and the distributed version. The core promoters include
100 nucleotides directly upstream of 27,167 transcription
start sites. To determine the relationship between word
length and performance, the complete run-times, as well

as the run-times for the enumeration and the scoring
stages, were computed for word lengths in the range
[2bp, 30bp]. The rationale for choosing this range of
word lengths is as follows. While eukaryotic transcription
factors usually recognize 6-8bp long binding sites [34,35],
much longer functional binding sites have been discov-
ered (e.g., AGRIS [29] describes a 29bp binding site).
Figure 1 presents the total run-time, while Figures 3

and 4 present, respectively, the run-times for the enu-
meration stage and the scoring stage. While the sequen-
tial version and the distributed version exhibit similar
run-times for word lengths less than 7bp, the run-time
performance of the sequential version decreases signifi-
cantly for larger word lengths. Due to the exhaustion of
available memory in the single-node version, the
sequential analysis cannot run for word lengths greater
than 19bp. The concurrent versions were able to run for
the entire [2bp, 30bp] range.
Figures 5a and 5b compare the performance results

for a multi-threaded version of WordSeeker, which used
(1) a single computing node and (2) five computing
nodes. The single node version utilizes 1, 2, 4, and 8
cores, and the five node version uses 2 cores/node, for a
total of 10 cores. The plots of the overall execution
times for the various word lengths demonstrate that the
concurrent algorithms provide scalability by effectively
utilizing the distributed hardware.

Figure 3 Enumeration run-times for the core promoters of Arabidopsis thaliana.
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Speedup and efficiency
Speedup and efficiency experiments were performed to
assess in detail the scalability and the performance
boundaries of the WordSeeker implementation. Figures
6a and 6b show the speedup, and Figures 6c and 6d
show the efficiency, of shared memory implementations
of the radix tree and the suffix tree on 2, 4, and 6 pro-
cessor cores.

The speedup and efficiency results show a drop in per-
formance for very short words (5bp) and for very long
words, (50bp and 75bp), but yield good results for word
lengths of 10bp and 20bp. The performance drop for short
word lengths occurs because the parallelization overhead
outweighs the computational benefit; for longer word
lengths, cache inefficiency and front-side bus contention
cause performance to decrease (see [33] for a detailed

Figure 4 Scoring run-times for the core promoters of Arabidopsis thaliana.

Figure 5 Mixed distributed/shared memory results for the core promoters of Arabidopsis thaliana using the Radix Tree (a) and Suffix Tree (b)
data structures.
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analysis of caching effects in this context). The suffix tree
performed similarly to the radix tree in terms of speedup
and efficiency. The difference between Figures 6c and 6d
can be attributed to the cost of suffix tree construction.

Conclusions
WordSeeker is a general purpose, scalable, open source
approach to word enumeration. It supports an important
set of use cases, has been applied to interesting case stu-
dies, and effectively exploits parallel and distributed com-
puting hardware to provide scalable performance.
WordSeeker is being used currently to perform com-

plete word space enumerations on a genomic scale; to
construct word and motif encyclopedias for whole gen-
omes; to perform word-based characterizations of path-
ways, tissues, and co-regulated genes; and to identify
motifs in ChIP-Seq data. Ongoing work includes the
construction of OpenMotif, a project that combines a
number of motif discovery open source projects into a
cohesive framework.
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The Arabidopsis Gene Regulatory Information Server; UTR: Untranslated
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parallel DNA sequencing; OWEF: Open Word Enumeration Framework; MPI:
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RAID: Redundant Array of Independent Disks.
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