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Abstract

sequence alignment yet.

using sequence profile.

Background: Although both conservation and correlated mutation (CM) are important information reflecting the
different sorts of context in multiple sequence alignment, most of alignment methods use sequence profiles that
only represent conservation. There is no general way to represent correlated mutation and incorporate it with

Methods: We develop a novel method, CM profile, to represent correlated mutation as the spectral feature derived
by using linear predictive coding where correlated mutations among different positions are represented by a fixed
number of values. We combine CM profile with conventional sequence profile to improve alignment quality.

Results: For distantly related protein pairs, using CM profile improves the profile-profile alignment with or without
predicted secondary structure. Especially, at superfamily level, combining CM profile with sequence profile
improves profile-profile alignment by 9.5% while predicted secondary structure does by 6.0%. More significantly,
using both of them improves profile-profile alignment by 13.9%. We also exemplify the effectiveness of CM profile
by demonstrating that the resulting alignment preserves share coevolution and contacts.

Conclusions: In this work, we introduce a novel method, CM profile, which represents correlated mutation
information as paralleled form, and apply it to the protein sequence alignment problem. When combined with
conventional sequence profile, CM profile improves alignment quality significantly better than predicted secondary
structure information, which should be beneficial for target-template alignment in protein structure prediction.
Because of the generality of CM profile, it can be used for other bioinformatics applications in the same way of

Background

Currently, the comparison of multiple sequence align-
ments (MSAs) is based on aligning the sequence profiles
that represent conservation at specific positions. How-
ever, the alignment quality of profile-profile alignment
becomes unreliable as the sequence identity of seed
sequences becomes low [1]. Even though using pre-
dicted secondary structure as additional information
slightly improves profile-profile alignment, it is still
unsatisfactory since the most protein secondary
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structure prediction methods are based on sequence
profile. In this situation, using correlated mutation
information originated from coevolution of two or more
residue positions would be informative.

Constructing alignments with high quality is impor-
tant in comparative modeling, in which target-template
alignment is a crucial step together with template selec-
tion, but the sequence alignments based solely on statis-
tical amino acid matches become undependable at low
sequence identity. Particularly, below 20% sequence
identity referred to as midnight zone, using sequence
alignment without structural evidence can be proble-
matic. Practically, it is found that many proteins with
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similar structure have low sequence identity [2], and, in
CASP7, about half of the targets have the single best
templates with <20% sequence identity [3]. This means
that the reliability of alignment in the midnight zone is
a bottleneck for protein structure prediction, and there-
fore its improvement is strongly desirable.

Correlated mutation is estimated in various ways.
McBASC algorithm [4] calculates the correlation of
amino acid substitutions at individual positions. SCA
algorithm and its variants [5-7] measure the relative
amino acid frequencies observed after perturbing the
MSA. Mutual information [8,9] is used for estimating
correlated mutation. Recently, it is also found that nor-
malizing mutual information improves the determina-
tion of coevolving residues [10,11]. In spite of these
efforts, the application of correlated mutation is
restricted mainly to inter-residue contact prediction
[12,13] and functional site prediction [5]. Moreover, it
has not been utilized for the purpose of sequence align-
ment, the most basic procedure in sequence analysis,
and there is no universal method for comparing corre-
lated mutation patterns of different proteins.

In this article, we introduce a novel method, CM profile,
which represents correlated mutation based on signal pro-
cessing technique called linear predictive coding (LPC)
[14], and apply it to the protein sequence alignment pro-
blem. The results show that the employment of correlated
mutation improves alignment quality consistently at differ-
ent SCOP levels and sequence identities. The analysis on a
few examples shows that the use of CM profile makes
alignments preserve correlated mutation and the residues
with common contacts are aligned with high scores.

Methods
Data
We prepare protein pairs which are non-redundant and
distantly related with each other. The data are derived
from SCOP [15] version 1.69 with <35% sequence iden-
tity downloaded from Astral compendium [16]. 4253
domains whose MSA is composed of less than 100
sequences are omitted because correlated mutation ana-
lysis using MSA with a small number of sequences can
be unreliable and include much noise, and 2501
domains remain. To make pairs of distantly related
homologs, we select superfamilies with at least 10
domains, and pair the domains with each other in each
superfamily. The selected domains are composed of
1105 domains of 50 folds, 60 superfamilies, and 341
families. For parameter selection we use 388 pairs con-
sisting of 200 domains randomly chosen, and for testing
use 9118 pairs consisting of the remaining 905 domains.
The frequency matrices and the position-specific score
matrices (PSSMs) representing sequence profiles are
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automatically generated by running PSI-BLAST [17] ver-
sion 2.2.19 against NCBI nr database with “—j 3 —e 0.001 —
h 0.001” options. The MSAs used for constructing CM
profiles are also generated by running PSI-BLAST with
the same option, and then thinned by removing the
sequences covering less than 50% of the seed sequence
and clustering the remaining sequences at 65% sequence
identity.

Representation of correlated mutation

If we have a sequence of length #, we build, at each
position, 400 correlated mutation vectors consisting of
n correlated mutation scores with other positions for
one of 400 possible amino acids pairs. The correlated
mutation vector for amino acid pair 4, b at position
i, m(a;, b) = [m(a;, b)) m(a; b,) ... m(a,, b,)], consists of
n log-odds scores defined as

f(a;.b)) .
ma by =1 " T
0 otherwise

where fla;, b)) is the joint frequency of amino acid a at
position i and amino acid b at position j, fla;) is the

marginal frequency calculated as zzof(ai,bj), and
b
fb)) s

20
Zu f(ai,bj). The correlated mutation score m(a;, b;)

the marginal frequency calculated as

of amino acid a at position i and amino acid b at posi-
tion j has a positive value if they have positive correla-
tion with each other, a negative value if they have
negative correlation, or zero if they evolve indepen-
dently. Because a small number of observations can make
the joint frequency very noisy, we apply low number cor-
rection [10], thereby defining the joint frequency as

N(a; b))+ 2

f(ai/bj) = N

where N(a;, b;) is the number of observations of amino
acid a at position i and amino acid b at position j in the

20 20
MSA, and N:Z Z (N(a;, b)) +2) -

Since the dimension of correlated mutation vector is
variable depending on sequence length, the correlated
mutation vectors of distinct sequences are not paral-
leled. Therefore, we extract the spectral features,
known as LPC cepstral coefficients, to represent the
correlated mutation vector. LPC cepstral coefficients
have been used for comparing DNA and protein
sequences [18].
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The basic assumption of LPC model is that the pre-
sent sample at time #, s(n), can be calculated as a linear
combination of the past p samples. The approximation
is expressed as [14]

S(n)=a;s(n—-1)+as(n—-2)+...+a,s(n-p)

= i as(n—k)
k=1

where the coefficients {a;} are constants called as LPC
coefficients, which are determined by minimizing the
sum of squared error

p

E= Y I -5 = Y [s(m) = Y ays(n-)F

k=1

To solve this equation for the predictor coefficients
{ax}, we differentiate E with respect to each a; and set
the result to zero,

% _

0, k=1,2,..,
adk p

The result gives a set of p linear equations
p
Zr(|i—k|)ak =r(i), i=12,..p
k=1

where r(i), known as the autocorrelation function of
s(n), is defined as

(i)=Y, s(m)s(n+i)

and symmetric, i.e. (— k) = r(k). The linear equations
can be expressed in matrix form as

r(0) r(1) rp=-1 || & (1)
(1) r(0) rp=2)| &) _|1(2)
r(p-1) r(p-2) r0) [ r(p)

Since the p x p matrix of autocorrelation values is a
Toeplitz matrix that is symmetric and all the diagonal
elements are equal, the solution of the linear equations
can be calculated recursively and very efficiently through
Levinson-Durbin algorithm without relatively expensive
computation such as matrix inversion. If the linear
equation is solved, more advanced spectral feature called
as LPC cepstral coefficients can be derived from the
LPC coefficients by the following recursion.
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log(E) m=0
m—1 k
a,, +2—ckam,k 1<m<p
Cm = k=1 m
&k
z_ckam—k m=>p
m
k=1

By using the LPC analysis process described above, we
transform a correlated mutation vector to the CM pro-
file consisting of the LPC cepstral coefficients. Since the
cepstral coefficients are decaying, we use only the first L
coefficients excluding ¢,. Additionally, we normalize CM
profiles of a protein by fitting the mean and variance
into zero and one, respectively, to weight them equally
regardless of the orders. We obtain consequently a L-
dimensional CM profile, ¢(a;, b), that represents the cor-
related mutations between amino acid a at position i
and amino acid b at other positions. In other word, all
the correlated mutation between position i and other
positions are represented as 400 x L coefficients.

Alignment

To compare sequences, we define the alignment score
between the position i of a protein and the position j of
another protein as follows,

S(l’ ]) = wmutSmut (l’ ]) + wcorScar (l’ ]) + wsecssec(i/ ])'

where w1, Weor» and wg,, denote the weights, and S,,,,,;
(@ J)» Scorlis j), and Sge.(i, j) denote the similarity scores of
sequence profiles, CM profiles, and secondary structure
predictions, respectively, between the positions i and ;.
S,u(iy J) is the sequence profile score defined as

QO q(a;)t(a;) +t(a;)q(a))
: ,

Smut(i' j)=

a=1

where g(a;), q(a;), t(a;), and t(a;) are the frequencies
and the PSSM scores of amino acid a at position i and j
respectively. S, (i, j) is the CM profile score defined as

20 20

. S R
Scor(l’]) - azzlog d(C(airb)’C(aj’b)’

a=1 b=1

Where d(c(a;, b), c(a;, b)) is the Euclidean distance
between CM profile c(a;, b) at position i and CM profile
c(a;, b) at position j, d is the threshold, and a is the
scaling factor. The S,,,(i, j) gives a positive score in case
that the distance between CM profiles is less than d,
and a negative score in case that the distance is more
than dy. S;e.(i, j) is the secondary structure prediction
score given as 1 if the predicted secondary structures at
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position i and j are identical, and 0 otherwise. We use
PSIPRED [19] to predict secondary structures. Based on
the score matrix consisting of S(i, ) for all i and j, we
perform the Needleman-Wunsch algorithm with affine
gap costs and baseline to find the optimal alignment.

Assessment and parameter selection

We assess the alignment quality by measuring the aver-
age MaxSub score [20] of models derived from sequence
alignments. The model is generated by directly copying
the coordinates of C-alpha atoms based on the sequence
alignment, and the MaxSub score of the model is com-
puted with default options. The MaxSub score identifies
the largest subset of C-alpha atoms of a model that
superimpose well over the experimental structure, and
provides a single normalized score in the range of 0 to 1.
The MaxSub score 0 indicates a completely wrong
model, and 1 indicates a perfect model. The parameters
of each method are selected by simulated annealing (SA)
that uses the average MaxSub score of training set as the
objective function.

Results

The selected parameters by simulated annealing are
listed in Table 1. For p and L in LPC analysis, 6 and 9
are used, respectively. For o in CM profile score calcula-
tion, 0.025 is used. Combining CM profile, sequence
profile, and secondary structure prediction (CMPA_P-
PA_SS) improves the conventional methods, the profile-
profile alignment without and with secondary structure
prediction (PPA and PPA_SS), by 7.6% and 4.7%, respec-
tively. In addition, combining CM profile only with pro-
file-profile alignment (CMPA_PPA) improves the PPA
by 6.2%, which is 2.3 times more increase than PPA_SS
which improves PPA by 2.7%. However, using CM pro-
file solely performs poorly; therefore we will exclude it
in the following test.

Table 1 Selected parameters for the different
combination of scoring terms.

Method Parameters Average
MaxSub
Winut Wsee Weor o Jopen Jee Base
PPA 1.0 - - - 60 05 05 0.3099
PPA_SS 10 15 - - 50 05 00 03183
CMPA - - 10 28 70 17 05 0.2873
CMPA_PPA 1.0 - 05 32 80 04 10 03291
CMPA_PPA_SS 10 15 05 32 80 06 00 03334

Winut: Wseer Weors and dp denote the corresponding notations in alignment
score function, and gopens gex» and base denote gap-open cost, gap-extension
cost, and baseline parameter used for dynamic programming procedure. PPA
and PPA_SS denote profile-profile alignment without and with secondary
structure prediction, respectively, CMPA denote alignment solely using CM
profile, and CMPA_PPA and CMPA_PPA_SS denote alignment combining CM
profile with PPA and PPA_SS, respectively.
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As shown in Table 2, overall, CMPA_PPA_SS and
CMPA_PPA significantly outperform the original meth-
ods, PPA_SS and PPA that do not use correlated muta-
tion information by 4.1% (p-value 2.1e-252) and 5.0%
(p-value 8.2e-232), respectively. The p-values are calcu-
lated by Wilcoxon signed rank test. At family level,
using CM profile shows almost the same improvement
that can be achieved by using secondary structure pre-
diction. However, it is seen that CMPA_PPA_SS shows
2.2 times more improvement than PPA_SS and
CMPA_PPA. A dramatic result can be seen at superfam-
ily level where the average sequence identity is 11.5%,
less than 17.4% at family level, and 96% of the protein
pairs have sequence identity less than 20%. CMPA_P-
PA_SS and CMPA_PPA improve PPA by 13.9% and
9.5%, respectively, while PPA_SS does by 6.0%. This
indicates that the use of correlated mutation is much
more effective for difficult cases, where the sequence
identity is very low, and the following analysis also con-
sistently shows more effective improvements below 20%
sequence identity. Moreover, it also implies that both
the information can be used complementarily and many
of the current alignment methods using secondary
structure prediction can be improved by incorporating
correlated mutation information. According to a pre-
vious study using data set derived from SCOP with
<75% sequence identity, the sophisticated methods
including the structural state assignment based on self-
organizing map and the scoring function based on artifi-
cial neural network, have performed best and shown the
average MaxSub score 0.22 at superfamily level [21]. In
their work, the other methods have shown the average
MaxSub scores of 0.20-0.22. The MaxSub scores of PPA
and PPA_SS of this work are also in that range.
Although the results cannot be directly compared, it is
reasonable to expect that CMPA_PPA_SS should out-
perform the previous method on their test set as well.

Figure 1 shows the average MaxSub scores of various
methods at family level as a function of sequence iden-
tity. Below 20% sequence identity, CMPA_PPA_SS

Table 2 Average MaxSub scores of test set by different
methods

Method Average MaxSub
Family Superfamily All
PPA 0.4485 0.2053 0.2851
PPA_SS 04524 02177 0.2947
CMPA_PPA 04524 0.2248 0.2994
CMPA_PPA_SS 04572 0.2338 0.3070

Family and Superfamily denote the average MaxSub score at SCOP family and
superfamily level, and All denotes the average MaxSub score of all samples.
PPA and PPA_SS denote profile-profile alignment without and with secondary
structure prediction, respectively, and CMPA_PPA and CMPA_PPA_SS denote
alignment combining CM profile with PPA and PPA_SS, respectively.
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consistently outperforms the others and improves PPA
by 3.2%. However, all the methods perform almost iden-
tically above 20% sequence identity. A reason for this
result is that closely related proteins possibly share
more common or similar sequences in their MSAs and
yield similar sequence profiles. Particularly, the key resi-
dues strongly conserved are easily aligned and guide the
global alignment optimally. According to a previous
study [22], it has been demonstrated that the model
quality generated by comparative modeling is related
with the distribution of the sequence identity between
the sequences comprised in the MSAs. Moreover, it is
more probable that MSAs share more common or simi-
lar sequences, here, at family level where evolutionary
distance is much closer than at superfamily level. Thus,
in case where there is close evolutionary relationship
and high sequence identity, sequence profiles seem to
be sufficiently informative and combining correlated
mutation or secondary structure prediction does not
improve alignment quality.

As shown in Figure 2, CMPA_PPA_SS and
CMPA_PPA outperform the conventional methods, PPA
and PPA_SS, consistently, regardless of sequence iden-
tity at superfamily level. Similarly at family level, align-
ment quality deteriorates below 20% sequence identity,
and the average MaxSub score of PPA does not exceed
0.19 below 15% sequence identity. Although CMPA_P-
PA_SS also shows a decline below 20% sequence iden-
tity, it significantly improves PPA and PPA_SS by 18.4%
and 12.5%, respectively, in the range of 0-10% sequence
identity, and by 13.0% and 8.9%, respectively, in the
range of 10-20% sequence identity.
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This result has important implications in several
aspects. It is well known that profile-profile alignment is
improved most by using secondary structure prediction
[1,23] and numerous state-of-the-art methods hence
incorporate secondary structure prediction in their
alignment scheme [21,24-26]. Also in our results, pro-
file-profile alignment is consistently outperformed by
combining secondary structure prediction. However, it
is more significantly improved by combining correlated
mutation (CMPA_PPA), and the best performance is
achieved by combining correlated mutation and second-
ary structure prediction together (CMPA_PPA_SS). Tak-
ing this into account, the state-of-the-art methods can
be improved significantly by incorporating correlated
mutation information.

Another aspect is related with the reliability of align-
ment in the midnight zone. An alignment becomes less
reliable when the sequence identity lies in the midnight
zone [1]. Since using correlated mutation is more advan-
tageous for the proteins pairs with low sequence identity
and CM profile is easily combined with conventional
methods, the coverage of current alignment methods in
the midnight zone can be increased by using CM pro-
file. The most important implication is related with the
template-based protein structure prediction. From two
other aspects described above, it is obvious that using
correlated mutation remarkably improves current align-
ment methods for the sequences with less than 20%
sequence identity. This is beneficial to target-template
alignment because most of promising templates sharing
the same structure have relatively low sequence identity
[2]. Practically, according to the recent analysis for the
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Figure 2 Average MaxSub scores of various methods, measured by different sequence identities at superfamily level Average MaxSub
scores above 25% sequence idenitty are not shown.

template-based modeling targets of CASP7 [3], almost
half of the targets, specifically 50 among 108 targets,
have the best templates with similar structure but low
sequence identity less than 20%, and a virtual predictor
based on the best templates overall outperforms all
other groups by far. The effectiveness of CM profile will
carry out more reliable target-template alignments and
subsequently provide better models for difficult target-
template pairs, thereby increasing the confidence for
template-based structure prediction.

To assess the performance of CM profile for domains
which have less MSA sequences than 100, we build two
additional test sets from the omitted domains. The first
test set is built from the domains with 50-99 MSA
sequences, and consists of 527 domains of 30 folds, 31
superfamilies, and 142 families, deriving 5586 pairs. The
second test set is built from the domains with 1-49 MSA
sequences, and consists of 752 domains of 31 folds, 37
superfamilies, and 225 families, deriving 9676 pairs.

When testing with the domains whose MSA is com-
posed of 50-99 sequences, using CM profile improves
PPA and PPA_SS by 4.3% and 3.8%, respectively, as
shown in Table 3. Also, when testing with the domains
whose MSA is composed of 1-49 sequences, using CM
profile improves PPA and PPA_SS by 2.4% and 3.5%,
respectively, as shown in Table 4. Although the
improvement rate becomes small for the domains with
less MSA sequences, correlated mutation is still valuable
as additional information for sequence alignment. More-
over, combining profile-profile alignment with both cor-
related mutation and secondary structure prediction
outperforms the others significantly, convincing that

Table 3 Average MaxSub scores of test set with 50-99
MSA sequences by different methods

Method Average MaxSub
Family Superfamily All
PPA 04708 0.1714 0.2631
PPA_SS 04762 0.1839 0.2734
CMPA_PPA 04811 0.1832 0.2744
CMPA_PPA_SS 04852 0.1949 0.2838

Family and Superfamily denote the average MaxSub score at SCOP family and
superfamily level, and All denotes the average MaxSub score of all samples.
PPA and PPA_SS denote profile-profile alignment without and with secondary
structure prediction, respectively, and CMPA_PPA and CMPA_PPA_SS denote
alignment combining CM profile with PPA and PPA_SS, respectively.

Table 4 Average MaxSub scores of test set with 1-49
MSA sequences by different methods

Method Average MaxSub
Family Superfamily All
PPA 04209 0.1816 0.2499
PPA_SS 04239 0.1925 0.2586
CMPA_PPA 04222 0.1896 0.2560
CMPA_PPA_SS 04305 02024 0.2676

Family and Superfamily denote the average MaxSub score at SCOP family and
superfamily level, and All denotes the average MaxSub score of all samples.
PPA and PPA_SS denote profile-profile alignment without and with secondary
structure prediction, respectively, and CMPA_PPA and CMPA_PPA_SS denote
alignment combining CM profile with PPA and PPA_SS, respectively.

both the information can complement each other. How-
ever, just as the quality of profile-profile alignment
decrease when the amount of sequences in MSA is not
sufficient, the performance of CM profile seems to
decrease likewise.
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Discussion

The reason for the effectiveness of CM profile is related
with the correlation between coevolution and contact. It
has been shown that the residues important for protein
function are not only conserved but also coevolved with
other inter-related residues [12,27]. This fact has been
exploited to infer the structural factor such as inter-residue
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contacts [13] and to evaluate the correctness of de novo
model [28]. Recently, it has been also shown that key
residues can be identified by analyzing residue-residue coe-
volution network [29]. In the aspect of alignment, contact-
mutation matrices derived from structural information
have been used for improving alignment quality [30]. CM
profile utilizes correlated mutation information much
more globally and progressively, implying all the correlated

Table 5 Protein pairs with the MaxSub scores of various methods

Protein 1 (SCOP classification)  Protein 2 (SCOP classification) ~ Sequence identity PPA PPA_SS  CMPA_PPA  CMPA_PPA_SS
dixd7a_ (@4.5.55) dlldjal (a4.5.34) 14.9 0.1197 0.1256 04042 04089
dimvea_ (b.29.1.2) dlulea_ (b.29.1.3) 13 00515 0.0483 0.2201 02278
dluwva? (c.66.1.40) diplca_ (c66.1.16) 94 0.0472 0.0533 0.2743 0.2996
d1lrza3 (d.108.1.4) d1tiga_ (d.108.1.1) 154 0.2458 0.2908 04420 04418

PPA and PPA_SS denote profile-profile alignment without and with secondary structure prediction, respectively, and CMPA_PPA and CMPA_PPA_SS denote

alignment combining CM profile with PPA and PPA_SS, respectively.
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Figure 3 Correlated mutation matrices of the proteins listed in Table 5 The upper-lower triangular matrix represents mutual information
between the residues of the respective protein, (a) d1xd7a_-d1ldja1, (b) d1mvea_-dTulea_, (c) dTuwva2-d1plica_, and (d) d1lrza3-d1tiga_,
respectively. Note that the intensity and the size of image are scaled differently, regarding to the distribution of mutual information and the
alignment length.
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mutation of possible residue pairs. This optimizes align-
ment to match multiple contacting residue pairs, while the
previous studies only consider at most two residue pairs,
thereby improving alignment quality noticeably.

In the following, we exemplify that combining CM pro-
file generates the alignment reflecting correlation muta-
tion, and the aligned residues with high CM profile score
are related with common contacts. As listed in Table 5,
the proteins pairs are chosen from SCOP class a, b, ¢, and
d, and share the same superfamily but different family.

If the inter-related residues of a protein are aligned
with the comparable residues of other protein, the corre-
lated mutation information should be kept mutually in
the resulted alignment. To demonstrate this, we
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investigate the correlation coefficient between correlated
mutations of proteins. As correlated mutation measure,
we calculate mutual information with low number cor-
rection [10], and the residues not aligned are excluded.
The resulting correlated mutation scores for aligned resi-
dues are shown as matrix form in Figure 3. Although the
matrices do not look completely symmetric, they have
positive correlation coefficients, (a) 0.1208, (b) 0.1952, (c)
0.1131, and (d) 0.2118, respectively. These values are
small, but all the correlations are statistically significant
(p-value < 2.2e-308). In other words, the present method
constructs an alignment that preserves coevolution.

As shown in Figure 4, the residues with high CM pro-
file scores are located spatially close with each other

{a)

()

(d)

Figure 4 High scoring residue pairs of the examples listed in Table 5 Each pair of proteins, (a) d1xd7a_-d1ldja1, (b) d1mvea_-d1ulea_, (c)
dluwva2-dipica_, and (d) d1lrza3-d1tiga_ is superimposed based on the CMPA_PPA alignment, and coded as cyan-yellow, respectively. Top-10
residue pairs ranked by sequence profile score and CM profile score are shown as spheres coded as red and blue, respectively, but the residue
pairs ranked by both are coded as green.
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even though they are distant on sequence. On the other
hand, the residues with high sequence profile scores are
dispersed or not superimposed. This shows that CM
profile reflects the structural aspect with regard to resi-
due-residue contact in alignment and the common con-
tacts of aligned proteins are ranked highly by CM
profile score. This will be very useful in template-based
protein structure prediction.

Due to the generality of CM profile, it can be success-
fully exploited for various bioinformatics applications,
particularly with machine learning approaches. Our
approach is position-specific and consists of a fixed
number of values, which allows CM profile to be
manipulated in the same way that we use sequence pro-
file. Thus, CM profile can be easily adopted into the
current methodology without serious modification to
complement them. Moreover, it should be noted that
our CM profile is not optimally generated because
sequence profiles are automatically generated by PSI-
BLAST [17]. The present method can be improved sig-
nificantly, as the accuracy of correlated mutation is
increased through various corrections and noise reduc-
tions [10,11].

Conclusions

We develop a novel method to represent correlated
mutation as the spectral features derived from LPC ana-
lysis, and we also apply it to sequence alignment of
distantly related proteins. When combined with conven-
tional sequence profile, CM profile improves alignment
quality significantly better than predicted secondary
structure information. Especially, the dramatic improve-
ment in the midnight zone is observed, which should be
beneficial for target-template alignment in protein struc-
ture prediction. Finally, because the methodology that
we have developed in this work can be generalized to
many interesting areas of bioinformatics, we expect that
CM profile can be applicable to other bioinformatics
applications equally well.
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