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Abstract

missouri.edu/fold_rate/index.html.

Background: Protein folding rate is an important property of a protein. Predicting protein folding rate is useful for
understanding protein folding process and guiding protein design. Most previous methods of predicting protein
folding rate require the tertiary structure of a protein as an input. And most methods do not distinguish the
different kinetic nature (two-state folding or multi-state folding) of the proteins. Here we developed a method,
SegRate, to predict both protein folding kinetic type (two-state versus multi-state) and real-value folding rate using
sequence length, amino acid composition, contact order, contact number, and secondary structure information
predicted from only protein sequence with support vector machines.

Results: We systematically studied the contributions of individual features to folding rate prediction. On a standard
benchmark dataset, the accuracy of folding kinetic type classification is 80%. The Pearson correlation coefficient
and the mean absolute difference between predicted and experimental folding rates (sec') in the base-10
logarithmic scale are 0.81 and 0.79 for two-state protein folders, and 0.80 and 0.68 for three-state protein folders.
SegRate is the first sequence-based method for protein folding type classification and its accuracy of fold rate
prediction is improved over previous sequence-based methods. Its performance can be further enhanced with
additional information, such as structure-based geometric contacts, as inputs.

Conclusions: Both the web server and software of predicting folding rate are publicly available at http://casp.rnet.

Background

Protein folding is one of the most important problems
in molecular biology. Two main aspects of the folding
process concern the kinetic order and the rate constant.
The kinetic order of the protein folding indicates
whether the sequence reaches its native structure
through intermediate states or not. The folding rate is
inversely proportional to the time that the protein needs
to collapse into its stable tertiary structure. Proteins
have very different rates of folding. Some of them fold
within microseconds [1]; some need an hour to fold [2].
Small proteins often (but far from always) fold faster
than the larger ones [3]. Many studies have been con-
ducted to estimate protein folding rates based on either
experimental protein structural information [4-7] or
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protein homology sequence searches using databases [8].
However, since only limited amount of experimental
folding rates is available for database search and most
proteins do not have solved experimental structures,
prediction of folding rates based on sequence only has
been a logical choice for researchers lately.

Various theories and simulations suggest a surprising
simple linear relation between the number of residues in
a protein, its length L, and the rate at which it folds. It
is in the form of log(ky) o C,L%, where ks is the
experimental folding rate, L is the length of the pro-
tein, and C1 and C2 are simple constants [3,9-12]. The
correlation between folding rates and protein sizes is
stronger for multi-state proteins that have folding
intermediates, and weaker for two-state proteins that
do not have such intermediates [3]. The above formula
is a good estimate for the multi-state folding proteins,
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but not for single-domain two-state folders. In other
words, protein length does not describe the transition
rates of direct folding well.

In 1998 Baker and co-workers [13] found a strong
correlation between the native topological complexity,
defined by the parameter contact order (CO), which
uses the information about the average sequence
separation of all contacting residues in the native state
of two-state proteins, and the folding rates of 12 two-
state proteins. The correlation between protein-folding
rates and their hierarchical structures (secondary struc-
ture and structural topology) suggests that hierarchical
information could be one of the key features for deter-
mining folding rate. Although folding rates of proteins
of both two kinetic pathways (i.e. two-state and
multi-state folding) can be roughly predicted from the
protein secondary structures [14], the prediction
scheme should be adjusted to accommodate the differ-
entiation of the two kinetic pathways to improve the
accuracy [15].

In the past years, various approaches have been
designed to estimate the logarithm of the two-state
folding rate starting from using structural information.
Several methods based on correlation between the
logarithm of the folding rate and structural predictors
such as Contact Order (CO) [13], Long-range Contact
Order (LRCO) [16] (contact between two residues that
are close in space and far in the sequence), total con-
tact distance [17], effective length of folding chain [14]
or Geometric Contact (GC) [18] have been developed.
These methods require the tertiary structure of a pro-
tein as input to predict its folding rate. Since the vast
majority of proteins’ tertiary structures are still not
solved, it is important to design methods that can pre-
dict folding rate from protein sequence directly.
Toward this goal, in the seminal work [19], Punta and
Rost first showed LRCO had better correlation with
folding rates than CO. Then they used LRO values
predicted from protein sequences for folding rate pre-
dictions and achieved 0.61 correlation between the
predicted and true folding rates for a set of two-state
folding proteins.

Most of folding rate prediction methods are knowl-
edge-based approaches that build a function to map
input predictors (e.g. contact order) to folding rates. Tra-
ditionally these methods used only a single estimator,
either CO, LRCO, or chain length to design linear models
between these predictors and protein folding rates.
Recently Huang et al. showed that the linear combination
of several predictors, such as amino acid rigidity (R),
composition vectors (CV), chain length (L), amino acid
weight (W), degeneracy (D), and composition index (CI)
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can increase the correlation between predicted and actual
two-state folding rates [15], although the relationship
between some of these predictors and the folding rate
may not be linear.

Besides folding rate prediction, some studies also have
been done to classify the proteins into different folding
classes based on their secondary structures. Some
classified folders into all-t-class, all-f-class and /-
class [20,21], and some even classified folders into 83
different classes [22]. Interestingly, not much has been
done to classify the proteins folders based on their bin-
ary folding kinetic mechanisms, such as two-state
folders or multi-state folders.

A few applications and web servers have been devel-
oped for protein rate predictions, such as FOLD-RATE
[23], and PPT-DB [8], but not yet for fold kinetic classi-
fication. In 2007, K-Fold has been developed as the only
folding kinetic classification tool so far, but it trained
the classification using experimental 3D structural infor-
mation instead of just using sequence information and it
also used same rate prediction models for both two-
state and multi-state proteins [7]. FOLD-RATE predicts
folding rate using amino acid sequence and 49 amino
acid properties. It separated proteins into all-o, all-p
and mixed class first, then used multiple regressions for
folding rate prediction, while PPT-DB is a database
which uses homology sequence search.

Here we developed a non-linear machine learning
method (Support Vector Machine classification and
regression) that can not only classify proteins into
two-state or multi-state folders, but also predict fold-
ing rates, using only the information extracted from
the amino acid sequence of a protein, without any
explicit knowledge of the experimental tertiary or sec-
ondary structures. We used a large set of features
including protein sequence length, predicted LRCO,
predicted long-range contact number (LRCN), pre-
dicted a-helical content and f-sheet content and
amino acid composition with non-linear SVM models
for both protein binary kinetic classification and fold-
ing rates prediction. Some features such as secondary
structure composition and amino acid composition are
new. And our method of deriving LRCO and LRCN
are based on predicted residue-residue contact prob-
abilities instead of binary contacts used by previous
work [19]. We used both Pearson correlation and
MAD (mean absolute difference) as accuracy measure-
ments between predicted rates and actual experimental
rates. Our method performs favorably when compared
to other sequence-based methods. We also developed a
web server with name ‘SeqRate’ for the method at our
site: http://casp.rnet.missouri.edu/fold_rate/index.html.
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Results and discussion

Predicted contact vs. Real contacts

We compared the LRCOs and LRCNs estimated from
sequence and calculated from structural information
obtained from PDB [34] to see how well they correlate
with folding rates. Table 1 shows the correlations
between two-state protein folder folding rates and each
estimated and real contact predictor using both two-
state and multi-state protein folders from IvankovData.
The correlations between estimated contacts and real
contacts are above 0.7. And the estimated contacts pre-
dicted from sequences have correlation to folding rates
only about 3 ~ 5% worse than real contacts in both
two-state folders and multi-state folders. Therefore, esti-
mated contacts can be used in place of real contacts
without losing too much information. From this onward,
if not mentioned specifically, ‘LRCO’ and ‘LRCN’ will
indicate estimated LRCO and LRCN from sequences.
The negative correlation between LRCO (resp. LRCN)
and folding rate on two-state folders is stronger than
multi-state folders.

Effectiveness of each feature in folding rate prediction

In order to test the effectiveness of each individual fea-
ture, we used each feature as input to predict folding
rate separately through SVM regression. Two different
measures were applied to evaluate the performance of
the results. One is Pearson correlation coefficient
between predicted rates and experimental rates. The
other measure is mean absolute difference (MAD),
which measures how much predicted values deviate
from real values. The correlation coefficient and MAD
were calculated for two-state and multi-state proteins
separately. Each feature-specific SVM prediction model
was trained using leave-one-out procedure and used to
predict the folding rate on the left-out protein. Table 2
demonstrates the general trend of understanding, which
is protein sequence length has more than two times
higher correlation values with multi-state folders than
two-state folders, and protein topologies (e.g. secondary

Table 1 Correlation between estimated and real contacts
and experimental folding rates

estLRCN rLRCN estLRCO  rLRCO rate
estLRCN 1 (1) 0.78 (0.75) 095 (0.84) 061 (0.54) -0.68 (-0.55)
rLRCN - (M 0.79 (0.75) 087 (0.81) -0.71 (-0.58)
estLRCO - - (1) 0.82 (0.74) -0.72 (-0.48)
rLRCO - - - 1(1) -0.77 (-0.51)

(1)

Correlation between folding rates and estimated long-range contact number
(estLRCN), estimated long-range contact order (estLRCO), real long-range
contact number (rLRCN) and real long range contact order (rLRCO) using 37
two-state proteins in IvankovData and 24 multi-stat proteins in lvankovData
(data shown in the parentheses).

rate - - - -
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structure information) have almost twice correlation
values with two-state folders as with multi-state folders.
These strongly kinetically biased features support the
need of separate prediction models for different folding
kinetic.

LRCO yields the best performance with correlation
0.72 for two-state proteins while protein sequence
length demonstrates the best negative correlation of 0.8
for multi-state proteins. For both two-state and multi-
state folders, LRCO was preferred over CO since it has
higher correlations in both folding kinetics. On multi-
state proteins contact number performs the second
best with correlation 0.55. Note that the correlation
using estimated LRCO on two-state proteins is 0.72,
higher than CO has, which is 0.61 reported in [19] on
the same data set, indicating that LRCO calculated from
contact probability map in our method might be more
informative than that derived from binary contact map
used in [19].

Coil content has low correlations, 0.13 and 0.05, with
both two-state folders and multi-state folders respec-
tively; therefore it is not used in building either folding
rate prediction model. Also o -helical content and
B-sheet content have low correlation values of -0.18 and
0.11, respectively in multi-state folders, therefore both
features are not included for the multi-state folding rate
prediction model. Actually by including a-helical con-
tent and f-sheet content as features, the prediction
results have shown no changes, neither increasing nor
decreasing accuracies.

One feature needed to be mentioned here and is not
shown on Table 2 is amino acid composition, which is a
set of 20 amino acid frequency values. It has shown to
be a relevant feature for deciding folding kinetic [29,30].
It was included as one of our classification features, but
it has shown weak correlations with folding rates of
both folding kinetic orders in our results. Our tests have
indicated the overall correlations of amino acid compo-
sitions with the folding rates are only around 0.3. There-
fore, this feature is not used for SVM regression rate
prediction model in order to avoid over-fitting.

Sequence-based folding kinetic type classification

Protein sequence length and protein topologies are both
favorable folding rate determination factors for two fold-
ing types. Protein sequence length is a good predictor in
multi-state folder rate prediction, but not in two-state
folders. And protein topologies have better correlations
with two-state folding rates than multi-state folding
rates. We built an SVM classification model based on
sequence length, estimated LRCO and CN, a-helical
content, B-sheet content and 20 frequency values of
amino acid compositions. As in other multivariate statis-
tical models, the performances of the SVM for



Lin et al. BMC Bioinformatics 2010, 11(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/11/S3/51

Page 4 of 9

Table 2 Correlation between predicted folding rates and experimental folding rates using sequence length and other

estimated predictors on IvankovData

L LRCO co LRCN a-helical content PB-sheet content Coil content
Two-state folding rate -0.32 0.72 061 0.68 -0.51 0.57 0.13
Multi-state folding rate -0.80 046 033 0.55 -0.18 0.11 0.05

L = protein sequence length, LRCO = estimated long-range contact order, CO = estimated contact order in [15], LRCN = estimated long-range contact number.
IvankovData is used and there are 37 two-state proteins and 24 multi-state proteins.

classification depend on the combination of several
parameters. In general, the SVM classification involves
two classes of parameters: the parameter C for the
trade-off between training error and margin size and
kernel function parameters such as inverse of variance y
for Gaussian kernel. To maximize the performance, we
performed the parameter optimization using a grid
search approach within a limited range. The classifica-
tion model is trained and tested using leave-one-out
cross-validation (LOOCV). Figure 1 shows the profile of
classification accuracy vs. the variations of parameters
C and y. The prediction accuracy profile peaked at
(C, v) = (1, 0.25). The best classification accuracy of
using Gaussian kernel function is 80%, to our best
knowledge, which is higher than any of other classifiers
in the literature.

We have used other kernel functions, namely linear,
sigmoid and polynomial functions on SVM model for

the same data set. The accuracies of those three kernels
were 62%, 50% and 72%, respectively, lower than that of
using the Gaussian kernel. Comparisons of different fea-
tures impacts on classifications have also been per-
formed. Interestingly, sequence length has dominant
impact on classification result. By including sequence
length, prediction accuracy is improved by 35%.

Linear regression model for fold rate prediction using
sequence-based estimated multi-predictors

To test if multiple features contain complementary
information, we started the analysis by a linear combina-
tion of multiple features. We use the linear regression
analysis to build a model for folding rate prediction. R
package [35] has been used for ANOVA analysis to
obtain the RMSE (Root mean square error), F-value and
P-value for each regression test. Four regression tests
have been devised as shown in Table 3. The table shows

x=1,y=-2
z=80

(%) uoisisaid pajdipaid

logx(C) "

\

Figure 1 Classification accuracy surface vs. variations of parameters C and .
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Table 3 Linear regression analysis using different
combinations of predictors

estCN  estLRO estLRO+ oa+p All
estCN Contents Predictors
Cor2Rate 0.64 0.66 0.69 067 0.72
RMSE 13 1.14 1.12 1.27 1.16
F-value 2127 37.03 3869 34.66 3552
P-value 6.9e-05 1.1e-06  8.7e-07 6.5e-05 7.3e-06

Results of linear regression analysis using R package [35] with different
combinations of predictors, such as etsCN (estimated Contact number),
estLRO (estimated Long range order), estLRO+estCN (using combination of
predictors estCN and estLRO), o + 8 Contents (using combination of
predictors o-helix content and 3-sheet Content) and All Predictors (using all
4 predictors). Results can be shown as Cor2Rate (correlation between
estimated rates and real rates using selected predictors), RMSE (Root mean
square error for the regression), F-value and P-value.

the linear regression using all four features yields the
best correlation, 0.72, between predicted rates and real
rates out of different selections of predictors, with
P-value of 7.3e-06. The result confirms that using multi-
ple features for protein folding rate prediction performs
better than single predictor.

Sequence-based fold rate prediction using multiple
features and non-linear SVM regression

We selected four predictors including LRCO, CN, « -heli-
cal content, and f-sheet content with SVM to predict
two-state folding rates. Besides two parameters C and y
used for SVM classification, SVM regression requires
additional important parameter ¢ (regulate regression tube
width) for performance optimization. Due to the intensive
computational nature of grid search algorithm in high
dimensions, we performed the tuning of parameter set
(G, v, €) heuristically. We first obtained the optimal para-
meter values for C and y with the fixed value of € = 0.1
(default SVM value), then searched for the best value for ¢.
With the same procedure we did for SVM classification,
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we obtained the optimal parameter set of (C, v, €) = (8,
0.125, 0.1) for constructing prediction model.

Five different sets of training and testing data were
generated. Each one was generated by randomly select-
ing 10% for testing and rest 90% for training from Ivan-
kovData. Then five different SVM prediction models
using optimal parameter set was trained using leave-
one-out cross-validation (LOOCYV) and predicted on the
test data sets. The average correlation and MAD are
0.81 and 0.78, respectively, from five test sets.
The results are substantially better than the linear com-
bination of multiple features, indicating the relationship
between the features and folding rates is probably
non-linear.

For multi-state folder rate prediction, one extra pre-
dictor, protein sequence length, besides four other pre-
dictors used for two-state folders, was included for the
SVM regression to predict multi-state folder’s rate.

Our multi-feature SVM-regression method is compar-
able with or better than other sequence-based methods
in Table 4. Our method not only has better correlation
between predicted rates and experimental rates than all
the sequence-based method except FOLD-RATE, but
also has smaller MAD values between predicted and
real rates than all the sequence-based methods. FOLD-
RATE has obtained the highest 0.91 correlation between
predicted and experimental rates, but its mean absolute
difference between predicted and experimental values is
around 1.1, which is higher than our method. The rea-
son could be due to FOLD-RATE breaks proteins into
structural classes for individual training, which largely
decrease the number of proteins per structural class,
resulting in high correlation but high variance between
predicted and real values. K-Fold uses experimental pro-
tein kinetic and structural information to estimate fold-
ing rates and has achieved 0.81 classification accuracy
for folding types, but has correlation value of 0.74

Table 4 Comparison among different folding rate prediction methods based on “IVANKOVDATA"”

Methods Method Type Fold kinetic Classification Accuracy Correlation MAD
Effective length method sequence NA 0.70 0.96
LRCO method sequence NA 061 0.81

FOLD-RATE sequence NA 091 1.1

K-Fold structure 81% 0.74 0.75
Multi-predictor SVM (two-state) sequence 80% 0.81 0.79
Multi-predictor SVM (multi-state) sequence 80% 0.80 0.68

Method 1: Effective length method [14]
Method 2: LRCO method [19]

Method 3: FOLD-RATE [16]

Method 4: K-Fold [7]

Method 5: Our multi-predictor SVM (two-state)
Method 6: Our multi-predictor SVM (multi-state)

Method-Type means if the method is using experimental structural data (structure) or using only sequence data (sequence). Correlation here means the
correlation value between predicted rates and experimental rates. MAD is mean absolute difference between predicted rates and experimental rates.
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between predicted rates and experimental rates, lower
than our method using sequence information only. Our
sequence-based method has the kinetic type classifica-
tion accuracy of 0.80, which is very close to that of
K-fold.

To study how the classification model and two sepa-
rate fold kinetic models would affect the results, we
investigated a few cases. Chromosomal protein Ubiqui-
tin (PDB ID: 1UBQ) has a sequence length of 76 amino
acids and experimental folding rate of 7.3 (in natural-
base logarithm scale) in the unit of sec-1. It has been
used by many researchers as multi-state folder
[14,18,19,36], but later it was shown experimentally to
be a two-state folder [8,37]. Assuming 1UBQ as multi-
state folder, we used the multi-state prediction model
and obtained fold rate of 3.97. But after being correctly
classified into two-state using our SVM classification
model, a value of 6.21 was obtained, which is much
close to the experimental rate. DNA-binding protein
Engrailed Homeodomain (PDB ID: 1ENH) is another
example of such a case. It has a sequence length of 16
and folding rate of 10.5 (in natural-base logarithm scale)
in the unit of sec-1. Assuming it was as multi-state [38],
then the predicted folding rate would be 2.55. However,
our classification model has classified 1IENH as a two-
state folder and we used two-state prediction model to
predict the folding rate as 10.05. 1IENH has been shown
and used as two-state folder in later literatures
[14,18,19]. These examples demonstrated that our fold-
ing type classifier can help correct errors in manual
folding type classifications.

Results of using geometric contacts derived from tertiary
structures

To test if structural information can improve our
method, we added another feature, geometric contact
(GC) derived from experimental tertiary structures
[18], to predict folding rates. The GC number, N,
which is the number of well-packed nonlocal contacts,
was shown to have significant correlations of -0.86,
-0.86 and -0.83 for two-state proteins, multi-state pro-
teins and all proteins combined, respectively [18].
Using a 20-dimensinal vector recording the number
counts of the 20 residue types in geometric contact for
rate prediction, correlation of 0.82 and MAD of 1.34
between predicted rates and experimental rates were
achieved by using linear regression for all proteins
combined [18].

To test the impact of geometric contacts on our
method, we used the geometric contact as additional
feature to predict folding rates. We were able to obtain
the singular values of geometric contacts, instead of 20-
dimensinal vector, from Zhang and Liang for the Zhang-
Data set. Therefore, we performed the SVM-regression
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prediction on two-state folders and multi-state folders
separately on the ZhangData set, and then all proteins
together. The correlation of 0.87 can be achieved for 45
two-state folders with smallest MAD value of 0.78, cor-
relation 0.85 for multi-states with MAD 0.72, and corre-
lation 0.85 for all protein folders with MAD 0.91, The
improvement over the -the results obtained by Zhang
mentioned above is probably due to two factors: robust-
ness of non-linear SVM regression and additional
sequence-based predictors.

Conclusions

We have developed a new protein fold rate prediction
method (SeqRate) using Support Vector Machine
regression with a set of features derived from protein
sequences only. As the first method that can predict
protein folding kinetic types from protein sequences, it
achieved the accuracy comparable to the methods based
on experimental structures. The accuracy of fold rate
prediction of the method was also improved over pre-
vious sequence-based prediction methods. Its perfor-
mance can be further improved with the addition of
structure-based features. SeqRate is a fast and robust
method suitable for large-scale protein folding rate pre-
diction. The web server of SeqRate for protein folding
rate prediction is available at http://casp.rnet.missouri.
edu/fold_rate/index.html.

Methods

Data sets

We used two data sets of proteins with experimentally
determined folding rates. Both data sets contain two-
state folders and multi-state folders. One data set con-
tains 24 multi-states folders and 37 two-state folders,
and is referred to as “IvankovData” composed by Ivan-
kov in 2004 and also used in [19]. This data set is used
to train and test support vector machines (SVM) to pre-
dict both folding type and folding rate. The folding rate
is in the unit of sec’’ and transformed in the base-10
logarithmic scale. The other data set [18] contains 34
multi-state folders and 45 two-state folders, and is
referred to as “ZhengData”. This data set is mainly used
to test the improvement of adapting extra predictor,
such as ‘geometric contact’, to the current prediction
model. Structural information of protein is obtained
from the Protein Data Bank (PDB) [24].

Methodology

Our method for protein folding rates was developed
based on an SVM. In this study we divide our protein
rate prediction into two steps. First we use SVM classi-
fier to classify folding types based on binary kinetic
mechanism (two-state or multi-state), instead of
using structural classes of all-a-class, all-f-class and
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o/B-class. The second step of protein rate prediction is
developing two separate SVM regression prediction
models for two-state folders and multi-state folders,
considering different folding behaviors between these
two types. In this study, multiple input features derived
from protein sequences were used in protein folding
type classification and folding rate prediction. We also
studied the impacts of using different input features,
such as protein chain length and several protein topo-
logy features [25], on folding kinetic classification and
rate prediction for two-state and multi-state folders.

Input features

Features, such as protein sequence length, long-range
contact order, long-range contact number, a-helical
content, §-sheet content and amino acid compositions,
used in SVM training models, are defined and discussed
as follows.

Protein sequence length. Protein sequence length is the
number of residues in the chain that has been used or
would be used for experimental folding rate tests. It has
been revealed that chain length is an important factor
for determination of protein folding rates [14,26,27],
although it is insufficient to just use sequence length to
determine the folding type. Smaller sequences usually
tend to fold with simpler folding mechanism without
any intermediate state like in multi-state proteins.

Contact order (LRCO) and contact number (LRCN).
LRCOs and LRCNs used in this study were both calcu-
lated based on contact map generated from the
SCRATCH suite [6] using protein sequences as inputs.
A protein contact map, a two-dimensional matrix,
represents the distance information between every two
residues’ C-alpha atoms of a three-dimensional protein
structure. SCRATCH was used to predict the contact
probability matrix P for the probabilities of any pair of
residues contacting with each other, i.e. the likelihood
that their distance is below a threshold. The distance
threshold used here is 8 A and the sequence separation
is at least 12 amino acids apart. An element P;; in the
matrix is the predicted probability that residues i and j
are in contact. As in Reference [16], only long-range
contacts (i.e. sequence separation of |i-j| > 12) were
used to derive contact order and contact number.

The LRCN is defined as the expected number of long-
rage contacts in a protein. So far, most methods first
derive a binary contact map from a probability contact
map according to a probability threshold and then
count the numbers of contacts [19]. Here, we introduce
a modified method to directly calculate contact number
from contact probability map and it is further normal-
ized by the power of sequence length. Then the contact
number is defined as following
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i )
LRCN:”""Z—EZ

where Pj; is the contact probability of residue i and j,
which should be no more then 8 A away and at least 12
sequence separation apart; L (sequence length) to the
power of ¢ is used to normalize contact number. c is set
to 1 as in [19].

Different from LRCO (Long-range Contact Order) cal-
culation based on binary contacts in [19], we calculated
contact order from contact probabilities as following

Y, @rli-jl

li-jl > 12 (2)
LC

LRCO =

where P;; is the probability of residues i and j within
8 A when at least 12 sequence separation apart; L
(sequence length) to the power of ¢ is used to normalize
contact order. Just as the calculation in LRCN, probabil-
istic real values of contacts are used in the formula. ¢ is
set to 2 as in [19].

Secondary structure composition. Rose and collabora-
tors [28] observed that folding rates correlate well with
the overall secondary structure composition in three
states (helix, strand, coil) assigned from 3D coordinates.
So we used the predicted percentages of helix, sheet and
coil contents of a protein as additional inputs for folding
rate prediction. Secondary structures were predicted by
SCRATCH [6].

Amino acid composition. Amino acid composition has
been shown to be relevant to protein folding types and
a good indicator for folding type identification [29,30].
The basic assumption is that if certain amino acids are
optimal for protein structure, natural selection should
have acted over evolutionary time to increase the fre-
quency of these amino acids. Therefore, proteins with
different amino acid composition would have different
folding rates and folding types. In 2007, Ma and his col-
leagues demonstrated some of contents of amino acids
differed between two-state and multi-state folders in a
significant level of p<0.01 [31]. Here we use the each
amino acid occurrence frequency in the protein
sequence as amino acid composition. Then, each of 20
amino acid compositions is used as one input feature
for SVM.

SVM training and learning procedure

A Support Vector Machines (SVM) is an advanced
machine learning method, characterized by usage of ker-
nels, absence of local minima, sparseness of the solution
and capacity control obtained by acting on the margin
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or number of support vectors [32]. It has a set of related
supervised learning methods and can be applied to both
classification and regression problems. In this study, we
used a well-implemented SVM toolbox, SVM-light [33]
to first build a classification training mode for folding
kinetic binary classification, and then construct the two
separated SVM regression models to predict protein
folding rates for both two-state folders and multi-state
folders using multiple predictors mentioned above as
inputs. We applied the radial basis Gaussian kernel in
our experiments. All training and testing procedures
mentioned in this study using SVM models were per-
formed and validated in strict Leave-One-Out Cross-
Validation (LOOCYV) process.
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