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Abstract

Background: Detecting epistatic interactions associated with complex and common diseases can help to improve
prevention, diagnosis and treatment of these diseases. With the development of genome-wide association studies
(GWAS), designing powerful and robust computational method for identifying epistatic interactions associated with
common diseases becomes a great challenge to bioinformatics society, because the study of epistatic interactions
often deals with the large size of the genotyped data and the huge amount of combinations of all the possible
genetic factors. Most existing computational detection methods are based on the classification capacity of SNP
sets, which may fail to identify SNP sets that are strongly associated with the diseases and introduce a lot of false
positives. In addition, most methods are not suitable for genome-wide scale studies due to their computational
complexity.

Results: We propose a new Markov Blanket-based method, DASSO-MB (Detection of ASSOciations using Markov
Blanket) to detect epistatic interactions in case-control GWAS. Markov blanket of a target variable T can completely
shield T from all other variables. Thus, we can guarantee that the SNP set detected by DASSO-MB has a strong
association with diseases and contains fewest false positives. Furthermore, DASSO-MB uses a heuristic search
strategy by calculating the association between variables to avoid the time-consuming training process as in other
machine-learning methods. We apply our algorithm to simulated datasets and a real case-control dataset. We
compare DASSO-MB to other commonly-used methods and show that our method significantly outperforms other
methods and is capable of finding SNPs strongly associated with diseases.

Conclusions: Our study shows that DASSO-MB can identify a minimal set of causal SNPs associated with diseases,
which contains less false positives compared to other existing methods. Given the huge size of genomic dataset
produced by GWAS, this is critical in saving the potential costs of biological experiments and being an efficient
guideline for pathogenesis research.

Background
Compared to Mendelian disorders that are monogenic
and rare in population, some common complex diseases
like various types of cancers, diabetes and hypertension
are conjectured to be caused by two types of interac-
tions related with multiple genetic factors: gene-gene
interactions and gene-environment interactions [1].

Interactions between genes or single nucleotide poly-
morphisms (SNPs) in chromosomal regions are called
epistasis [2-4]. Detecting epistasis associated with com-
plex and common diseases became an important issue
in human genetics and can build a new pavement
towards the improvement of prevention, diagnosis and
treatment of these diseases.
Recent development of high-throughput technologies

has made it possible to produce a huge amount of geno-
type data and contribute to the analysis of genome-wide
association studies (GWAS) [5-7]. Furthermore, the
international HapMap project has been used to support
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GWAS actively by the analysis of the common patterns
of DNA sequence variations in different populations
[8,9]. However, the number of SNPs from case-control
GWAS is typical more than 10 million and using tradi-
tional epistatic interactions detection methods such as
parametric regression to identify multiple loci causing
diseases simultaneously among all possible combinations
of SNPs is inappropriate from genome-wide case-control
data. Therefore, designing robust and manageable meth-
ods to address this mathematical and computational
problem presents a great challenge to scientists in
bioinformatics.
By far, a number of statistical methods have been pro-

posed to detect epistatic interactions. Among these, the
most commonly-used parametric statistical method is
logistic regression [10]. Logistic regression models the
probability of a disease as a linear function of indepen-
dent SNPs (SNPs are expressed as ternary variables) and
finds an optimal logical SNP set associated with the dis-
ease status by simulated annealing algorithm [11]. When
used for modelling high-order interactions, logistic
regression methods relates to many empty contingency-
table cells, which often leads to very large standard
errors for parameter estimation and therefore increases
the type I errors. Meanwhile, if the number of samples
is small, high-order interaction models creates a large
number of parameters and often results in an overfitting
problem. To overcome these problems in logistic regres-
sion, Richie et al proposed and developed a multifactor
dimensionality reduction (MDR) method [12-15]. MDR
first constructs a contingency table for every possible set
of SNPs and then labels the cells of the table “high risk”
or “low risk” based on the cases/control ratio of each
cell. By the label of each cell in the contingency table,
MDR runs 10-fold cross-validation to select an SNP set
with the smallest prediction error and/or the largest
consistency. The merit of MDR compared to other sta-
tistical methods is that MDR is non-parametric and
model-free. However, it has two fundamental limita-
tions: MDR selects the k-way interactions purely by the
prediction performance and moreover it employs an
exhaustive searching strategy to avoid local optima,
which makes it impractical for large-scale datasets.
Therefore, when applied to large-scale datasets, MDR
requires to use some feature selection methods such as
ReliefF [16] as a filter for the top N SNPs, which will
affect the performance of MDR significantly. Park and
Hastie [17] made efforts to detect gene-gene interactions
using a forward stepwise method based on penalized
logistic regression (stepPLR). However, regression meth-
ods are typically computationally expensive because of
the time needed for parameter estimations. Although
stepPLR adopted forward selection and penalization to
choose the causal SNPs, it can not overcome the

essential limitations of regression. Recently, Zhang and
Liu proposed a Bayesian epistasis association mapping
(BEAM) method [18]. BEAM is a Bayesian marker parti-
tion model using Markov Chain Monte Carlo to reach
an optimal marker partition with the highest posterior
probability and a new B statistic instead of the conven-
tional x 2 statistic to check each marker or set of mar-
kers for significant associations with the disease. Despite
their success to some degrees, statistical methods can
only be applied to small-scale analysis due to their com-
putational complexity.
The alternative approaches for statistical methods are

machine-learning methods since detecting epistatic
interactions is highly related to feature selection pro-
blem. Chen et al. proposed a support vector machine
approach for detecting gene-gene interactions based on
RFE (recursive feature elimination), RFA (recursive fea-
ture addition) and GA (genetic algorithm) feature selec-
tion methods [19]. Jiang et al. adopted random forests,
which is an ensemble learning technique, to the detec-
tion of epistatic interactions in case-control studies [20].
They first ranked SNPs based on gini importance of
each SNP from random forests and then performed a
greedy search for a small subset of SNPs that could
minimize the classification error by a Sliding Window
Sequential Forward feature Selection (SWSFS) algo-
rithm. The common limitation of machine learning-
based methods is that they typically identify a SNP set
that produces the highest classification accuracy, but not
necessarily has the strongest association with the dis-
eases. As a result, machine learning-based approaches
tend to introduce many false positives, since the includ-
ing of more SNPs increases classification accuracies.
In this paper, we propose a new Markov Blanket-

based method, DASSO-MB (Detection of ASSOciations
using Markov Blanket) to detect epistatic interactions in
case-control studies. The Markov Blanket is a minimal
set of variables, which can completely shield the target
variable from all other variables based on Markov condi-
tion property. Thus we can guarantee that the SNP set
detected by DASSO-MB has a strong association with
diseases and contains fewest false positives. Further-
more, DASSO-MB performs a heuristic search by calcu-
lating the association between variables to avoid the
time-consuming training process as in SVMs and Ran-
dom Forests.
We compare DASSO-MB with four other commonly

used methods (BEAM [18], SVM [19], MDR [12-15] and
stepPLR [17]) on simulated datasets generated from
three disease models [10,18,20]. The results show that
DASSO-MB significantly outperforms other methods
and is capable of finding SNPs strongly associated with
diseases. For genome-wide case-control datasets, we use
the Age-related Macular Degeneration (AMD) dataset
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containing 116,204 SNPs genotyped for 96 cases and 50
controls [7]. DASSO-MB can find the AMD associated
SNP rs380390 in the result SNP set and this demon-
strates the power and scalability of DASSO-MB.

Results and discussion
Epistatic models and simulation study
We first evaluate the proposed DASSO-MB on simu-
lated data sets, which are generated from three com-
monly-used disease models developed elsewhere [10,18].
We show the three disease models in Table 1. In each
cell of the table are the disease odds for each genotype
combination at two loci (A and B), where a is the base-
line effect and θ is the genotypic effect. In model 1, two
disease loci contribute to the disease risk independently
and produce additive effects. In model 2, the disease
risk is presented only when both loci have at least one
disease allele. Model 3 is a threshold model and is simi-
lar to model 2 except that additional disease alleles at
each locus do not further increase the disease risk.
To generate data, we need to determine three para-

meters associated with each model: the marginal effect
of each disease locus (l), the minor allele frequencies
(MAF) of both disease loci, and the strength of linkage
disequilibrium (LD) between the unobserved disease
locus and a genotyped locus. LD is a non-random asso-
ciation of alleles at different loci and is quantified by the
squared correlation coefficient r2 calculated from allele
frequencies [21]. The prevalence of a disease is the pro-
portion the total number of cases of the disease in the
population and in this paper we assume that the disease
prevalence is 0.1 for all these three disease models [10].
The marginal effect of each disease locus (l) can be
determined by the baseline effect a and the genotypic
effect θ in Table 1 and the minor allele frequencies
(MAF) of both disease loci. So first we fix l, the disease
prevalence and MAF of both disease loci. Then we
numerically derive the model parameters θ and a. Based

on θ and a, we calculate the conditional probability of
each genotype combination given disease status which is
necessary for generating data [22]. In this paper, we set
parameters for each model as follows:
• Model1: l =0.3; r2 =0.7,1.0; MAF=0.05, 0.1, 0.2, 0.5.
• Model2: l =0.3; r2 =0.7,1.0; MAF=0.05, 0.1, 0.2, 0.5.
• Model3: l =0.6; r2 =0.7,1.0; MAF=0.05, 0.1, 0.2, 0.5.
For each non-disease marker, we randomly chose its

MAF from a uniform distribution in [0.0. 0.5]. We gen-
erate 50 datasets and each dataset contains 100 markers
genotyped for 1,000 cases and 1,000 controls based on
each parameter setting for each model.
We compare the DASSO-MB algorithm with four

commonly used methods: BEAM, Support Vector
Machine, MDR and stepPLR on the three simulated dis-
ease models. We use power as our evaluation criterion,
which is defined as the proportion of simulated datasets
in which only two diseases associated markers are iden-
tified without any false positives, to measure the perfor-
mance of each method.
BEAM uses a Bayesian marker partition model to par-

tition SNPs into three groups: group 0 contains markers
unlinked to the disease, group 1 contains markers con-
tributing independently to the disease, and group 2 con-
tains markers that jointly influence the disease. After the
partition step by MCMC, candidate SNPs or groups of
SNPs are further filtered by the B statistic [18]. The
BEAM software is downloaded from http://www.fas.
harv-ard.edu/~junliu/BEAM.
For support vector machines, we use LIBSVM with a

RBF kernel to detect gene-gene interactions [23]. A grid
search is used for selecting optimal parameters. Instead
of using the exhaustive greedy search strategy for SNPs
as in [19], which is very time-consuming and infeasible
to large-scale datasets, we turn to a search strategy used
in [20]. First we rank SNPs based on the mutual infor-
mation between SNPs and disease status label that is
0 for the control and 1 for the case. Then, we use a slid-
ing window sequential forward feature selection
(SWSFS) algorithm in [20] based on SNPs rank. The
window size in SWSFS algorithm determines how
robust the algorithm could be and we set it to 20.
Since MDR algorithm can not be applied to a large

dataset directly, we first select top 10 SNPs by ReliefF
[16], a commonly-used feature selection algorithm, and
then MDR performs an exhaustive search for a model
consisting of no more than four SNPs that can maxi-
mize cross-validation consistency and prediction accu-
racy. When one model has the maximal cross-validation
consistency and another model has the maximal predic-
tion accuracy, MDR follows statistical parsimony (selects
the model with fewer SNPs).
For stepPLR, we download the R package from

CRAN (ftp://200.17.202.1/CRAN/ web/packages/stepPlr).

Table 1 Three disease models

Model 1 AA Aa aa

BB a a (1+ θ) a (1+ θ)2

Bb a (1+ θ) a (1+ θ)2 a (1+ θ)3

bb a (1+ θ)2 a (1+ θ)3 a (1+ θ)4

Model 2 AA Aa aa

BB a a a
Bb a a (1+ θ) a (1+ θ)2

bb a a (1+ θ)2 a (1+ θ)4

Model 3 AA Aa aa

BB a a a
Bb a a (1+ θ) a (1+ θ)

bb a a (1+ θ) a (1+ θ)
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StepPLR provides both stepwise forward and backward
methods for feature selection procedure. We use both
methods and set the regularization parameter l to default
value (10-4) for the L2 norm of the coefficients.
The results on the simulated data are shown in Figure

1. As can be seen, among the five methods, the DASSO-
MB algorithm performs the best. BEAM is the second
best. Interestingly, BEAM prefers to assign the two dis-
ease-associated markers to group 1, which means that
BEAM considers that the two disease SNPs affect the
disease independently. In most cases, the powers of both
MDR and SVM are much smaller than those of the
DASSO-MB and BEAM algorithms. For the MDR algo-
rithm, the poor performance may be due to the use of
ReliefF to reduce SNPs from a very large dimensionality.
In some other studies, the definition of power is not

in a strict sense. For example, in [18,20] the power is
defined as the proportion of 50 data sets in which all
associated markers are identified at a significance
threshold of 0.1 after Bonferroni correction. In other
words, false positives are allowed in the final SNP sets.
Accordingly, we also evaluate the methods in terms of
the power defined as the proportion of simulated data-
sets in which two diseases associated markers are identi-
fied with no more than two false positives. The results
of those three models are shown in Table 2. In parenth-
eses we list the average number of false positives. From
Table 2, we can see that the DASSO-MB again outper-
forms other algorithms. Furthermore, the DASSO-MB
algorithm finds SNP sets with fewer false positives.
Compared to the strict definition of power, a difference
we can see is that for MAF > 10%, SVM actually detects
the two disease associated markers in more datasets
than BEAM, however, at the cost of introducing more
false positives.

Application to real data
From the results on simulated data with 100 SNPs,
DASSO-MB demonstrates a better performance than
four other methods. Notice that a real genome-wide
case-control association study may require genotyping
of 30,000–1,000,000 common SNPs. In this section, we
show that DASSO-MB algorithm can also handle large-
scale datasets in real genome-wide case-control studies.
We consider an Age-related Macular Degeneration
(AMD) dataset, which contains 116,204 SNPs genotyped
with 96 cases and 50 controls [7]. AMD (OMIM
603075) [24] is a common genetic disease related to the
progressive visual dysfunction in age over 70 in the
developed country. A GWA study was successfully con-
ducted on this disease finding two associated SNPs,
rs380390 and rs1329428 (‘rs’: assigned reference SNP ID
by dbSNP [25]) in non-coding region of the gene for
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Figure 1 Performance comparison The power is defined as the
proportion of simulated datasets whose result only contains two
disease associated markers without any false positives.
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complement factor H (CFH), which is located on chro-
mosome 1 in a region linked to AMD [7].
In the phase of preprocessing data, we remove non-

polymorphic SNPs and those that significantly deviated
from Hardy-Weinberg Equilibrium (HWE). We also
remove all SNPs that have more than five missing geno-
types. After filtering, there are 91,495 SNPs lying in
22 autosomal chromosomes remained.
DASSO-MB detects two associated SNPs. The first

one is SNP rs380390, which is already found in [7] with
a significant association with AMD. The other SNP
detected by the DASSO-MB algorithm is SNP
rs1374431, which is also located in a non-coding region
between LOC644301 and KIAA1715 in chromosome
2q31 [26]. KIAA1715, alternatively called LNP (Luna-
park), is reported at OMIM (OMIM 610236) and usually
found in adult brain regions. Although no evidences

were reported with this gene related to AMD in the lit-
erature, it may be a plausible candidate gene associated
with AMD.

Conclusions
Detecting epistatic interactions associated with complex
and common diseases has become an important issue in
human genetics and can improve prevention, diagnosis
and treatment of those diseases. GWAS provides a huge
amount of whole genomic data and therefore an unpre-
cedented opportunity to identify causal genes or SNPs
for some complex diseases. Traditional statistical meth-
ods, however, are not suitable for dealing with large
datasets because of their computational complexity.
Machine-learning approaches can be scaled to large
datasets, but most existing machine-learning methods
do not consider the complexity of genetic mechanisms
and only focus on the selection of SNPs sets, which
show the best classification capacity. This will introduce
many false positives inevitably.
In this paper, we use a Markov Blanket-based method,

DASSO-MB, to identify epistatic interactions. We com-
pared DASSO-MB with four other methods, BEAM,
Support Vector Machine, MDR and stepwise penalized
logistic regression over simulated datasets. Our results
show that the DASSO-MB algorithm outperforms other
methods in terms of the power. It can identify a mini-
mal set of SNPs associated with diseases, which contains
less false positives. This is critical in saving the potential
costs of biological experiments and being an efficient
guideline for pathogenesis research.

Methods
Markov Blanket
Bayesian networks are probabilistic graphical models
representing a joint probability distribution J over a set
of random variables X1,X2…,Xn by a directed acyclic
graph (DAG) G and encode the Markov condition prop-
erty: each node is conditionally independent of its non-
descendents given its parents [27]. In this case, the joint
probability distribution J can be represented as

P X X P X Pa Xn i i

i

n

( ,..., ) ( | ( ))1

1



 (1)

where Pa(Xi) denotes the set of parents of Xi in G.
For three random variables X, Y and Z, if the

probability distribution of X conditioned on both Y and
Z is equal to the probability distribution of X condi-
tioned only on Y, i.e., P(X|Y,Z) = P(X|Y), X is condition-
ally independent of Z given Y. This conditional
independence is represented as ( | )X Z Y . Similarly,
( | )X Z Y represents conditional dependence.

Table 2 Comparison of performance of DASSO_MB, BEAM
and SVM algorithms

MAF

Model 1 (r2=0.7) 0.05 0.1 0.2 0.5

DASSO-MB 0(0) 0(0) 0(0) 32(0.16)

BEAM 0(0) 0(0) 0(0) 22(0.05)

SVM 1(3) 1(3) 0(0) 33(0.7)

MAF

Model 1 (r2=1) 0.05 0.1 0.2 0.5

DASSO-MB 0(0) 0(0) 0(0) 46(0.11)

BEAM 0(0) 0(0) 0(0) 36(0.07)

SVM 0(0) 0(0) 1(2) 43(0.76)

MAF

Model 2 (r2=0.7) 0.05 0.1 0.2 0.5

DASSO-MB 0(0) 8(0) 26(0.12) 18(0)

BEAM 0(0) 2(0) 10(0.3) 9(0.11)

SVM 0(0) 2(1.5) 14(0.93) 21(0.8)

MAF

Model 2 (r2=1) 0.05 0.1 0.2 0.5

DASSO-MB 10(0) 22(0.05) 42(0.05) 33(0.03)

BEAM 8(0.13) 7(0) 17(0.24) 27(0.11)

SVM 1(2) 3(0.67) 22(1.18) 33(0.94)

MAF

Model 3 (r2=0.7) 0.05 0.1 0.2 0.5

DASSO-MB 24(0.04) 44(0.14) 47(0.02) 11(0.09)

BEAM 21(0.14) 24(0) 32(0.09) 11(0.09)

SVM 1(1) 6(1.83) 29(0.83) 29(0.83)

MAF

Model 3 (r2=1) 0.05 0.1 0.2 0.5

DASSO-MB 34(0.03) 50(0.08) 49(0.04) 31(0.06)

BEAM 33(0.03) 47(0.04) 43(0.09) 31(0.1)

SVM 5(1.6) 23(1.52) 42(0.64) 38(0.55)

We show the number of datasets in which two disease-associated markers
can be identified with no more than two false positives. The average number
of false positives is in the parentheses.
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Definition 1 (Faithfulness)A Bayesian network N and
a joint probability distribution J are faithful to each
other if and only if every conditional independence
entailed by the DAG of N and the Markov Condition is
also present in J [28].
We can define the Markov Blanket of a target variable

of T, MB(T), as a minimal set for which

( | ( ))X T MB T , for all X V T MB T  { } ( ) where V

is the variable set in Bayesian network N. The Markov
Blanket of a variable T is a minimal set of variables which
can completely shield variable T from all other variables.
All other variables are probabilistically independent of
the variable T conditioned on the Markov Blanket of
variable T. We show an example of the Markov Blanket
in Figure 2. The MB(T) of the variable T is the set of
gray-filled nodes {B, L, M, D, X } and variable S and U are
independent of T conditioned on {B, L, M, D, X }.
Theorem 1. If Bayesian network N is faithful to its

corresponding joint probability distribution J, then for
every variable T, MB(T) is unique.
Given the definition of Markov Blanket, the probabil-

ity distribution of T is completely determined by the
values of variables in MB(T). Therefore, the detection of
Markov Blanket has been applied for optimal variable
selection problem [29]. In addition, the Markov Blanket
can be used for causal discovery because MB (T) is the
union of direct cause variables (parents), direct effect
variables (children), and direct cause variables (spouse)
of direct effect variables of T. Thus the Markov Blanket
learning method is suitable for detection of epistatic
interactions in genome-wide case-control studies, e.g., to

identify a minimal set of SNPs which may cause the dis-
ease for further experiments.

G2 Test
The G2 test is commonly used to test independence and
conditional independence between two variables for
discrete data as an alternative to the X2 test because G2-
values are additive and can be applied to more compli-
cated statistical designs [28,30,31]. The null hypothesis
for G2 test is that the two variables are independent.
Assume that we have a contingency table to record and

analyze the joint distribution of two variables. The count
in a particular cell in a contingency table, xij, is the value
of a random variable from N samples with a multinomial
distribution. Let xi represent the sum of elements in all
cells along the i th row, and x j denote the sum of the
counts in all cells along the j th column. If these two vari-
ables are independent based on the null hypothesis, the
expected value of the random variable xij is:

E x
x x

Nij
i j( )    (2)

We can compute the conditional independence from
appropriate marginal distributions in a similar way. For
instance, to determine whether the first variable is inde-
pendent of the second conditioned on the third, we can
calculate the expected value of a cell xijk as

E x
x x

xijk
i k jk

k

( )   


(3)

For n cells in a contingency table, assume that the
observed numbers are denoted by O1, O2, …, On and
the corresponding expected numbers by E1, E2, …, En,
then, the G2 is given by

G O
O

Ei
i

ii

n
2 2  ln( ) (4)

which has an asymptotical distribution as chi-square
(X2) with appropriate degrees of freedom. The degrees
of freedom (df) for the G2 test between two variables
A and B can be calculated as:

df = (Cat(A) – 1)×(Cat(B)-1) (5)

and the degrees of freedom (df) for the G2 test
between A and B conditional on the third variable
C can be calculated as:

df Cat A Cat B Cat Ci

i

n

    

( ( ) ) ( ( ) ) ( )1 1

1

(6)

B

XD

M

T

L

S U

Figure 2 Markov Blanket in a Bayesian Network The gray-filled
nodes are the Markov Blanket of node T.
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where Cat(X) is the number of categories of the vari-
able X and n is the number of variables in C. Here
in (5) and (6) we assume that there are no empty cells in
the contingency table. If there are some empty cells
in the contingency table, we should reduce the degrees of
freedom from (5) or (6) by the number of empty cells.
As described next, the proposed DASSO-MB uses G2

to test the association and independence between SNPs
and disease status.

DASSO-MB
We use a Markov Blanket-based algorithm, DASSO-MB,
to detect gene-gene interactions (Figure 3). Let T denote
the disease status and V the set of all variables contain-
ing T and all SNPs. There are two types of phases in
DASSO-MB: forward phase and backward phase. In
each loop of the forward phase, if one variable shows a
maximal G2 score conditioned on MB(T) and is depen-
dent on target variable T, it will be admitted into MB
(T). This admission operation is followed by a backward
phase to remove false positives by conducting condi-
tional independence tests. If no more variable will be
added into MB(T) in the forward phase, we will enter
the final backward phase to remove variables that do
not belong to MB(T).
There are several methods to find the Markov Blanket

for the target T: KS algorithm [32], GS algorithm [33],
IAMB [34], MMMB [35] and HITON-MB [29]. Differ-
ent Markov Blanket methods have their own advantages
and disadvantages. For example, IAMB is computation-
ally efficient, but tends to include some false positives
and is not sample-efficient. Comparing to IAMB,
DASSO-MB adds a backward phase after each step of
selecting a variable in the forward phase to remove false
positives, make the size of MB(T) as small as possible
and therefore improve the sample-efficiency. In addition,
it uses subset S of MB (T) rather than the remaining set
MB (T) - {Y} while conducting the conditional indepen-
dence tests in the backward phase. Here we let the size
of subset S of MB (T) be larger than zero and exclude
the empty set because of the joint effect of set of SNPs
on the disease status. These two changes can make the
detected results more reliable.

List of abbreviations used
GWAS: genome-wide association studies; DASSO-MB: Detection of
ASSOciations using Markov Blanket; SNP: single nucleotide polymorphisms;
MDR: multifactor dimensionality reduction; stepPLR: stepwise penalized
logistic regression; BEAM: Bayesian epistasis association mapping; MCMC:
Markov Chain Monte Carlo; RFE: recursive feature elimination; RFA: recursive
feature addition; GA: genetic algorithm; SWSFS: Sliding Window Sequential
Forward feature Selection; AMD: Age-related Macular Degeneration; MAF:
minor allele frequencies; LD: linkage disequilibrium; HWE: Hardy-Weinberg
Equilibrium; DAG: directed acyclic graph.

/*Initialization*/

V : set of all variables; T: Target variables; 

MB(T)=φ ;

/*DASSO-MB algorithm*/ 

Begin procedure 

  Forward-MB; 

  Backward-MB; 

End procedure 

/* Forward phase */ 

Begin Forward-MB 

Repeat  

   For all }{)( TTMBVxi −−∈ ;

))(|:()( 2 TMBTxGxg ii = ;

))(max(arg ixgX = ;

         If ))(|( TMBTX ⊥/
}{)()( XTMBTMB ∪= ;

         End If 

   End For 

   Backward-MB; 

   Until MB(T) has not changed; 

End

*/Backward phase*/ 

Begin Backward-MB

   For all )(TMBY ∈
     If }){)(( YTMBS −⊆∃

s.t. )|( STY ⊥  and 0)( >Ssize
}{)()( YTMBTMB −= ;

     End If 

   End For 

End

Figure 3 DASSO-MB algorithm
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