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Abstract

recently published g-Norm MKL algorithm.

Background: The lack of sufficient training data is the limiting factor for many Machine Learning applications in
Computational Biology. If data is available for several different but related problem domains, Multitask Learning
algorithms can be used to learn a model based on all available information. In Bioinformatics, many problems can
be cast into the Multitask Learning scenario by incorporating data from several organisms. However, combining
information from several tasks requires careful consideration of the degree of similarity between tasks. Our
proposed method simultaneously learns or refines the similarity between tasks along with the Multitask Learning
classifier. This is done by formulating the Multitask Learning problem as Multiple Kernel Learning, using the

Results: We demonstrate the performance of our method on two problems from Computational Biology. First, we
show that our method is able to improve performance on a splice site dataset with given hierarchical task
structure by refining the task relationships. Second, we consider an MHC-I dataset, for which we assume no
knowledge about the degree of task relatedness. Here, we are able to learn the task similarities ab initio along with
the Multitask classifiers. In both cases, we outperform baseline methods that we compare against.

Conclusions: We present a novel approach to Multitask Learning that is capable of learning task similarity along
with the classifiers. The framework is very general as it allows to incorporate prior knowledge about tasks
relationships if available, but is also able to identify task similarities in absence of such prior information. Both
variants show promising results in applications from Computational Biology.

Background

In Machine Learning, model quality is most often lim-
ited by the lack of sufficient training data. In presence
of data from different but related tasks, it is possible to
boost the performance of each task by leveraging all
available information. Multi-task learning (MTL), a sub-
field of Machine Learning, considers the problem of
inferring models for each task simultaneously while
imposing some regularity criteria or shared representa-
tion in order to allow learning across tasks. There has
been an active line of research exploring various meth-
ods (e.g. [1,2]), providing empirical findings [3] and
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theoretical foundations [4,5]. Most of these methods
assume uniform relations across tasks. However, it is
conceivable to leverage MTL methods by taking into
account the degree of relatedness among tasks. Recently,
this direction has been investigated in the context of
hierarchies [6,7] and clusters [8] of tasks, where the rela-
tion across tasks as well as the models for each task are
inferred simultaneously.

In this paper, we follow this line of research and
investigate Multitask Learning scenarios where there
exists a latent structural relation across tasks. In particu-
lar, we model the relatedness between tasks by defining
meta-tasks. Here, each meta-task corresponds to a sub-
set of all tasks, representing the common properties of
the tasks within this subset. Then, the model of each
task can be derived by a convex combination of the
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meta-tasks it belongs to. Moreover, the latent structure
over tasks can be represented by a collection of the
meta-tasks. Information is transferred between two tasks
t, t' with respect to their relatedness according to the
latent structure (number of meta-tasks in which ¢, ¢’ co-
occur and the importance of each of these meta-tasks
defined by the mixture weights).

Clearly, such an approach is highly sensitive to the
chosen structure and in the absence of prior knowledge,
learning the latent structure is a crucial component of
MTL with non-uniform relatedness. Starting from a spe-
cial case, where there exists a single meta-task consist-
ing of all tasks (standard MTL), we show that inferring
the latent structure can be cast as a Multiple Kernel
Learning problem, where the base kernels are defined
with respected to Dirac kernels [9] that establish relat-
edness of all possible task combinations and hence cor-
respond to all possible meta-tasks.

Kernel methods are used in a wide-range of problems,
as the kernel abstracts the input space from the
Machine Learning algorithm. One can use several ker-
nels to incorporate different aspects of the same
instance (e.g. genomic sequence data and data from
blood measurements for one patient) and combine them
into the same optimization problem. Multiple Kernel
Learning can be used to determine the combination of
kernels that is best for the problem at hand. This is
done by learning an optimal weighting of the individual
kernels along with training a predictor.

Our contribution is the combination of MTL and
MKL to address the central question in Multitask Learn-
ing, of how to identify the relationships between tasks
and to translate them into meaningful parameters in the
formulation of the used learning algorithm. We show
that MKL can be used to 1) refine a given hierarchical
structure that relates the tasks at hand and 2) to identify
subsets of tasks for which information transfer pays off
in absence of prior information on task relations.

Besides applications in Natural Language Processing
[10] and Medical Domains, Multitask Learning is parti-
cularly relevant to Computational Biology. In this set-
ting, tasks often correspond to organisms, giving rise to
a whole range of problems. The fact that the availability
of data describing the same biological mechanism in
several organisms is a reoccurring theme makes the
Multitask Learning approach particularly well suited for
many applications in the field. There has been previous
work using Domain Adaptation (closely related to Mul-
titask Learning) in the context of splice site prediction
[3]. Furthermore, it was shown [9] that Multitask Learn-
ing can be used to leverage the state-of-the-art in pep-
tide MHC-I binding prediction, which is a problem
relevant for vaccine design. Given the success of MTL
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in Computational Biology and highly structured relation
across organisms (tasks), we apply our method to two
important Computational Biology problems, namely
MHC-I binding prediction and splice site prediction.
The competitiveness of our results shows the validity of
our approach.

Preliminaries
In a single-task supervised learning scenario, a sample of
example-label pairs D = {(x;,y:)}i=1,..» is given, where the
x; live in an input space X and y; € {-1,1} (for binary
classification). The goal is to learn a function f such that
flx;) = y; that generalizes well to unseen data.

Before we describe our formulation of MTL as MKL
approach, we briefly review the formulations of MTL
and MKL that lay the foundations for our approach.

Multitask Learning

In MTL [1], we are given one labeled sample D, for each
of T tasks. Similar to the single-task supervised learning
scenario, we are now interested in obtaining T hypoth-
eses f, one for each task.

We will formulate our method based on the Support
Vector Machine (SVM), which has proven to generalize
well [11], scales to large amounts of training data
[12,13] and is able to incorporate arbitrary data sources
by means of kernels (e.g., [14]). The generalization to
other learning approaches appears straight-forward as
we mainly consider the extension of kernels to reflect
task similarity, although details regarding the learning of
their linear combination may differ.

Therefore, we start out with a regularization-based
Multitask Learning method that was similarly proposed
in the context of SVMs [2,10,15]. The basic idea is that
models w, are learned simultaneously for all tasks.
Information transfer between tasks is achieved by shar-
ing a general component w, =lZ[T:1 w, and enforcing
similarity of each w, to wy in the joint optimization pro-
blem via regularization. We use the following formula-
tion, leaving out some constants for readability

_min 72“%“ +2Hw, wol +c2 D i w)y),

t=1 (x,y)e D,

where [ is the hinge loss, I(z, y) = max{1 - yz, 0}.

It was shown in [15], that the dual formulation of the
above corresponds to the standard SVM using a modi-
fied kernel function:

ax——ZZa a]y,y]K(x,,x])+z

i=1 j=1

st. a'y=0, 0<q;<CV,;e{l,n},
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where K denotes the base kernel that captures the
interactions between examples from all tasks and

K(x;,%;) = K(x;, %) + 8,00y, jy K (%, X))- 1)

Here, t(i) denotes the task of example x;. In the above
formulation, K is composed of the general kernel Kp
and the kernel d,; «;Kg(x; x;) that captures only intra-
domain interactions. In [9], the latter kernel is referred to
as Dirac kernel. A slightly more general formulation of
K is the following, which allows to adjust the trade-off
between the general kernel and the task-specific kernel:

R(xiij) = BiKp(xi, %)) + BabSyiy, o) Kp(Xis %),

where B}, B, > 0and B; + B, = 1.

Clearly, g is a convex combination of base kernels
and thus a valid kernel. MKL is a technique to learn the
individual weights of a weighted linear combination of
kernels. Thus, it seems natural to utilize MKL to learn
an optimal weighting for [ .

Multiple Kernel Learning

Lanckriet et al. considered conic combinations of kernel
matrices for classification [16], leading to a convex
quadratically constrained quadratic program. Later on, it
was shown that the problem can be formulated as a
semi-infinite linear program, allowing to use standard
SVM solvers (e.g. SVMLight [17], LibSVM [18]) for sol-
ving the reoccurring sub-problems [13]. Only recently,
methods were proposed to generalize MKL to an arbi-
trary [,-norm [19].

Learning with multiple kernels gives rise to M differ-
ent feature mappings ¢,: X »> H,,, m = 1,..., M, each
leading to a kernel K,,, for a Hilbert space H,,. In MKL,
we consider linear mixtures of kernels K :Zi"il BiK;>
where f; = 0. To avoid non-convexity, the original para-
meter vector w is substituted w,, « /g;w. For an in
depth discussion of this, please consider [19].

We use the following formulation in the primal:

il N
rﬁlﬁnizﬁwi D, (=) wy).p),

m=1(x,y)e D,, (2)

st. Bl <120

where [ is the hinge loss, I(z, ) = max{l - yz, 0} and q
denotes the norm used to penalize the weights 8. To
solve the above optimization problem, we follow ideas
presented in [13],[19] to iteratively solve a convex opti-
mization problem involving only the f’s and then to
solve for w only. This method is known to converge fast
even for a relatively large number of kernels [13].
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Multitask Multiple Kernel Learning

To be able to use MKL for Multitask Learning, we need
to reformulate the Multitask Learning problem as a
weighted linear combination of kernels. In the spirit of
Equation 1, the basic idea of our decomposition is to
define task-based block masks on the kernel matrix of
Kp. Given a list of tasks T = {t,,...,t7}, we define a kernel
K on a subset of tasks S € T as follows:

Kg(x,y), ift(x)e Sat(y)eS
Kg(x,y) = {
0, else
where £(x) denotes the task of example x. Here, each S
corresponds to a meta-task as defined in the introduc-
tion. In the most general formulation, we define a collec-
tion I = {Sy,...,S,} of an arbitrary number p of task sets S;
which defines the latent structure over tasks. This collec-
tion leads to the following linear combination of kernels,
which is positive semi-definite:

R(xy) =Y BiKs (x,7)

S;el

Using g, we can readily utilize existing MKL meth-
ods to learn the ;. This corresponds to identifying the
groups of tasks S; for which sharing information leads
to improved performance. After training using MKL, we
have obtained a classifier f; for each task ¢

N
£ =D o Y, BiKs (xiy),
i=0 S;elite;

where N is the total number of training examples of
all tasks combined.

What remains to be discussed is how to define a col-
lection I of candidate subsets S; (i.e. meta-tasks), which
are subsequently to be weighted by MKL. We consider
two scenarios, one where we assume to have access to a
hierarchical structure relating the tasks at hand and one,
where we assume no prior knowledge given about task
relations. Generally, however, it is possible to utilize
prior domain knowledge indicating how tasks are related
to design an appropriate .

Powerset MT-MKL
With no prior information given, a natural choice is to
take into account all possible subsets of tasks. Given a set
tasks T, this corresponds to considering the power set P
of T (excluding the empty set) I, = {S|Se P(T) A S = ©}.
Clearly, this gives us an exponential number (i.e. 27)
of task sets S; of which only a few will be relevant. To
identify the relevant task sets, we propose to use an L1-
regularized MKL approach (i.e. ¢ = 1 in Equation 2) to
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yield a sparse solution. Most subset weights will be set
to zero, yielding only a few relevant subsets with weights
greater than zero. We expect that the examples in these
subsets come from similar distributions and that it is
therefore beneficial to consider interactions between
them, when obtaining a multitask predictor.

While L1-regularization of MKL results in a sparse
combination of kernels, it does not address the compu-
tational complexity of the optimization problem over
this exponential search space. With the current imple-
mentation, the method is limited to approximately 10
tasks depending on the number of training examples
and available resources. However, there are techniques
to handle the case where the number of tasks may
become prohibitive, for instance, as proposed in [20].
The idea is to iteratively generate new kernels based on
the current solution (8, w). These methods are known
to converge to the optimal solution, if one can identify
appropriate kernels in a larger set. In the current case,
this could be done by solving an integer linear program.

Hierarchical MT-MKL

In the second scenario, we assume that we are given a tree
structure G that relates our tasks at hand (see Figure 1). In
this context, a task ¢; corresponds to a leaf in G. Assuming
hierarchical relations between tasks is particularly relevant
to Computational Biology where often different tasks cor-
respond to different organisms. In this context, we expect
that the longer the common evolutionary history between
two organisms, the more beneficial it is to share informa-
tion between these organisms in a MTL setting. We can
exploit the hierarchical structure G to determine which
subsets might play a role for Multitask Learning. In other
words, we use the hierarchy to restrict the space of task
sets. Let leaves(n) = {{|/ is descendant of #} be the set of
leaves below the sub-tree rooted at node #n. Then, we can
give the following definition for the hierarchically decom-
posed kernel function

R(x' )/) = 2 ﬂiKleaves(ni)

neG
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As an example, consider the kernel defined by a hier-
archical decomposition according to Figure 1. Clearly,
the number of 8; corresponds to the number of nodes.
For a perfect binary tree this leads to 2m - 1 nodes,
where m is the number of leaves/tasks. We expect that
learning the contributions of the individual levels of the
taxonomy makes sense for cases, where the edge lengths
of G are unequal.

Relation to task similarity

The learned weights f3; reflect the importance of the
subset S;. Clearly, if two tasks £z and ¢; are often jointly
present in subsets with high weights, we expect those
tasks to be similar to each other. One can infer a mea-
sure of pairwise similarities between tasks y;; from the
weights ; of the subsets S;. We define the collection of
task sets containing task £ as T, = {S|te SASeT}.
Using this definition, we can define the similarity y;,
between two tasks by summing up the weights of the
shared task sets S;

Vil = Z Bi. (3)

Si € Ttk nTtl

This similarity measure can be used for downstream
analyses, as it provides insight about the task relation-
ships. A high v, ; between tasks suggests a considerable
resemblance between tasks and could help to generate
domain knowledge (e.g., evidence that two cell-receptors
bind to similar class of proteins, or the molecular
mechanisms of the splicing machinery particularly
similar).

Results and discussion

We performed experiments in two settings. In the first
setting, we considered a set of MHC-I (major histocom-
patibility complex) proteins. Here, we assume we are
not given any prior information to relate them. In the
second setting, we used splice site data from 15 organ-
isms and assumed that the task relationship is given by
a hierarchical structure according to their evolutionary
history. The examples are string data over an alphabet

Q
éoée

/p} @ /O\
f%nb ingg

Figure 1 Example of a hierarchical decomposition. According to a simple binary tree, it is shown how each node defines a subset of tasks
(a block in the corresponding kernel matrix on the left). Here, the decomposition is shown for only one path: The subset defined by the root
node contains all tasks, the subset defined by the left inner node contains t; and t, and the subset defined by the leftmost leaf only contains t;.
Accordingly, each of the remaining nodes defines a subset S; that contains all descendant tasks.
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{A,T,G,C} (DNA) in the splicing case and the alphabet of
20 amino acids in the MHC-I case. To incorporate
string features, we used the Weighted Degree String
Kernel [21], which amongst other kernels such as the
Spectrum Kernel [22], has been successfully employed
in problems from Computational Biology.

In addition to the two MKL-based methods, we evalu-
ated the following baseline methods:

+ Union - One global model is obtained on the
union of examples from all tasks.

¢ Plain - For each task, a model is trained indepen-
dently, not taking into account any out-of-domain
information.

» Vanilla MTL - Our algorithms consists of two
components - the MTL formulation and the adjust-
ment of weights B; with MKL. In the vanilla
approach, we fix all weights at 3; = 1.

Experiments were performed by using cross-validation
for model-selection on the training splits. We only
tuned one hyper-parameter C, for which we considered
values between 0. 01 and 1000 on a logarithmic scale in
8 steps. After having obtained an optimal regularization
parameter, a classifier is retrained on all training splits
and final performance is obtained on a dedicated test
set, that was not involved in hyper-parameter selection.

MHC-I binding prediction using Powerset MT-MKL

In this experiment, the task is to predict whether a peptide
binds to a certain MHC molecule (binder) or not (non-
binder). It has been previously shown that sharing infor-
mation between related molecules (alleles) and thus cast-
ing the problem in a Multitask Learning scenario, can be
beneficial [9]. In the MHC setting, different tasks corre-
spond to different MHC proteins. The data consists of
peptide sequences of length [ = 9 for 7 tasks. In total, we
are given 7367 examples (A_2403=254, A_6901=833,
A_0201=3089, A_0202=1447, A_0203=1443, A_2402=197,
A_2301=104). For cross-validation, the data was split ran-
domly into 5 splits of the same size. Unlike the setting of
splice site prediction, we do not have a hierarchical struc-
ture relating our tasks at hand. To demonstrate that
meaningful groups of tasks can be identified by Powerset
MT-MKL, we do not assume any prior knowledge of task
relationships. Please note, however, that we do have access
to the sequences of the MHC-I proteins. We use these
sequences to evaluate the task similarities obtained by our
approach.

We report the area under the precision recall curve
(auPRC) for the individual tasks in Figure 2 and the
summary of performances in Table 1.

From Figure 2, we observe that the MKL-based
approach outperforms the baseline methods. Furthermore,
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simply combining the data for different tasks to obtain a
single model (Union) does not outperform the naive
method of obtaining an individual classifier for each task
(Plain). This hints at rather large differences between the
tasks. Learning the weights with MKL, improves perfor-
mance compared to the Vanilla MTL approach, which
already outperforms the other two baselines.

Figure 3 shows the distribution of weights obtained by
the L1-regularized MKL approach. As expected, we
observe that most task sets are assigned a weight of zero
(or close to zero). Only a few get assigned a higher
weight, so it is worthwhile to investigate the list of tasks
that get assigned a weight 8; > 0.05. From Table 2, we
observe that the tasks A_0201, A_0202, A_0203, are often
grouped in the same task set, which is in agreement with
domain knowledge. Based on the assigned weights, we
compute the task similarity as defined in Equation (3).
For evaluation of the learned similarities, we compare
them to the hamming distance (or similarity) between
the amino acids in the binding pocket [23] of the MHC-I
molecules (Figure 4). By visual inspection, we find a good
agreement between the inferred task similarity and the
molecule-based similarity.

Using MKL, we successfully identify groups of tasks
among which information sharing is sensible, thus
allowing for a smart combination of information from
different tasks in the absence of prior knowledge.

The improvement in performance over the Vanilla
MTL method is relatively small (a property most likely
inherited from MKL). However, we are compensated for
this by simultaneously obtaining a sensible task structure.

Splice-site prediction using hierarchical MT-MKL

In this setting, we take into account a given hierarchy
(see Figure 5) relating the 15 organisms in our data set.
The data set consists of 6000 examples for 15 tasks,
each at a positive to negative ratio of 1:100, similar to
the one used in [3]. The data is split into 4 splits, three
splits with 333 examples each and a large test split with
5000 examples. The dataset was created that way to
establish a scenario where positive training examples are
extremely rare.

We report the area under the precision recall curve
(auPRC), which is well suited for unbalanced data sets.
For the Vanilla MTL method, we use the given hierar-
chy G to define the initial task sets, but not further opti-
mize their individual influence.

From Figure 6, we can make a few very interesting
observations. First, in accordance with the results from
the MHC-I experiment (see Table 3), the non-sparse
Hierarchical MT-MKL methods outperform the base-
lines Union and Plain.

The second observation is that we get different results
for different g-norms. In particular, we see a degraded
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Figure 2 Result for the MHC experiments. Performance is shown for each of the 7 tasks. The performance averaged over all organisms is

A 2402 A 2403 A 6901  mean

Table 1 Results for the MHC experiment in auPRC for the
model selection step and the final prediction on the test
set. Reported is the average performance over all tasks

auPRC Plain Union Vanilla MTL Powerset MT-MKL
cross-validation 0668 0637 0676 0.692
test set 0671 0576 0.679 0.699
P
120
100
80
€
3 60
o
40
20
(9.00 0.05 0.10 0.15 0.20
weight
Figure 3 Histogram of weights. Shows the distribution of weights f;
that are learned for the elements of the power set by MKL. As
expected, most are (close to) 0.

performance for g = 1, which complies with our expecta-
tion that weights for this approach (assuming the hierar-
chy is correct) should not be sparse. For the g-norms that
we considered, g = 2 performs best. Lastly, we can show
that we are able to outperform the Vanilla MTL method
(all B; = 1) by refining the task relations given by the struc-
ture G with MKL. Intuitively, using Hierarchical MT-MKL
corresponds to estimating the edge lengths of G, whereas
the other method is restricted to directly using the simila-
rities encoded into the taxonomy.

Conclusions
We have presented a principle way of formulating Mul-
titask Learning as a Multiple Kernel Learning approach.

Table 2 List of task sets and their respective weights f3;
that were assigned by 1-norm MKL

Task Set weight
A_0201, A_0202,  A_0203, A_6901 0.186
A_0201, A_0202,  A_0203,  A_2301 0.178
A_0202, A_0203, A_2301, A_2402, A_2403 0.110
A_0201, A_0203, A_2301, A_2402, A_2403 0.091
A_0201, A_0202, A_2301, A_2402, A_6901 0.074
A_0201, A_0202, A_2301, A_2402, A_2403 0.066
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(a) Similarity between the alleles’ binding pockets (b) Task similarity y;; as computed in (3)

Figure 4 Comparison between learned similarities and similarities based on the comparison of allele sequences. The learned similarity
of A-2301 with A-0203, A-0201 and A-0202 in (b) can be attributed to structural features that cannot be easily inferred from the allele sequence.
J

-

N
root
A.nidulans plantae animalia
P.trichocarpa angiosperms chordata protostomia
A thaliana O.sativa C.savignyi vertebrata C.elegans diptera
actinopterygii mammals A.gambiae D.melanogaster
D.rerio O latipes G.aculeatus T.nigroviridis B.taurus H.sapiens M musculus
Figure 5 Hierarchical structure that defines the relationship between the organisms.
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Hierarchical MT-MKL 1-Norm
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Vanilla MTL

Hierarchical MT-MKL 3-Norm
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Figure 6 Performance on test set for individual tasks. The performance averaged over all organisms is shown in the rightmost column mean.
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Table 3 Results for the splice site experiment in auPRC for
the model selection step and the final prediction on the test
set. Reported is the average performance over all tasks. This
table shows only the performance for the best-performing
variant of Hierarchical MT-MKL with norm g = 2

auPRC Plain Union Vanilla MTL Hierarchical MT-MKL
cross-validation  0.043 0.092  0.087 0.010
test set 0.059 0.153  0.169 0.190

Following the basic idea of task-set-wise decomposition
of the kernel matrix, we present a hierarchical decompo-
sition and a power set based approach.

These two methods allow us to elegantly identify or
refine structure relating the tasks at hand in one global
optimization problem. We expect our methods to work
particularly well in cases, where edge weights differ within
the hierarchical structure or where the task structure is
unknown.

Our experiments illustrate that the MT-MKL approach
on the power set of all tasks works well for the MHC
binding problem: First it increases the accuracy of the pre-
dictors compared to the baseline methods and second, the
inferred task similarity reflects the prior knowledge that is
available for this problem. Also for the splice site predic-
tion problem where the task hierarchy is given by the
organisms’ phylogeny, our approach manages to achieve
an improvement over standard approaches. Using MKL
on top of regular Multitask Learning methods may
uncover latent task structure and thereby provide insight
into the problem domain, which might be relevant to
downstream analyses. In conclusion, this work constitutes
a valuable proof-of-concept outlining a principle way of
using MKL to improve Multitask Learning.

List of abbreviations used

MKL: Multiple Kernel Learning; MTL: Multi Task Learning; MHC: Major
Histocompatibility Complex; SVM: Support Vector Machine; auPRC: area
under the Precision Recall Curve.
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