
RESEARCH Open Access

Infinite mixture-of-experts model for sparse
survival regression with application to breast
cancer
Sudhir Raman1*, Thomas J Fuchs2,3, Peter J Wild4, Edgar Dahl5, Joachim M Buhmann2,3, Volker Roth1

From Machine Learning in Computational Biology (MLCB) 2009
Whistler, Canada. 10-11 December 2009

Abstract

Background: We present an infinite mixture-of-experts model to find an unknown number of sub-groups within a
given patient cohort based on survival analysis. The effect of patient features on survival is modeled using the
Cox’s proportionality hazards model which yields a non-standard regression component. The model is able to find
key explanatory factors (chosen from main effects and higher-order interactions) for each sub-group by enforcing
sparsity on the regression coefficients via the Bayesian Group-Lasso.

Results: Simulated examples justify the need of such an elaborate framework for identifying sub-groups along
with their key characteristics versus other simpler models. When applied to a breast-cancer dataset consisting of
survival times and protein expression levels of patients, it results in identifying two distinct sub-groups with
different survival patterns (low-risk and high-risk) along with the respective sets of compound markers.

Conclusions: The unified framework presented here, combining elements of cluster and feature detection for
survival analysis, is clearly a powerful tool for analyzing survival patterns within a patient group. The model also
demonstrates the feasibility of analyzing complex interactions which can contribute to definition of novel
prognostic compound markers.

Background
Survival Analysis is a branch of statistics dealing with
the analysis of time-to-failure data and is applicable to a
variety of domains like biology, engineering, economics
etc. More generally, it is the analysis of time-to-event
data where an event could signify death, failure etc. Par-
ticularly in the context of disease studies, it is a power-
ful tool for understanding the effect of patient features
on survival patterns within a group. A parametric
approach to such an analysis involves the estimation of
parameters of a probability density function which mod-
els time. The model is further extended by considering
the effect of covariates (X) on time via a regression
component. Cox’s proportionality hazards model, as

explained in [1], is a popular model for modeling such
an effect:

h t x h t xT( ) ( ) exp( ),= 0  (1)

where h0(t) is the baseline hazard function (chance of
instant death given survival till time t), x is the vector of
covariates and b is a vector of regression coefficients. In
this paper, we focus on covariates which are categorical
in nature, since it is a frequently encountered case in
biological applications.
In the past, such models have been extended to a mix-

ture model (mixture of survival experts) in order to find
sub-groups in data with respect to survival time along
with measuring the effect of covariates within each sub-
group. In this context, (Rosen and Tanner) [2] define a
finite mixture-of-experts (MOE) model by maximizing
the partial likelihood for the regression coefficients and
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by using some heuristics to resolve the number of
experts in the model. A more recent attempt at this
analysis, which was carried out by [3], uses a maximum
likelihood approach to infer the parameters of the
model and the Akaike information criterion (AIC) to
determine the number of mixture components. A Baye-
sian version of the mixture model has been investigated
by [4], which analyzes the model with respect to time
but does not capture the effect of covariates. On the
other hand, the work by [5] performs variable selection
based on the covariates but ignores the clustering aspect
of the modeling. Similarly, [6] defines an infinite mix-
ture model but does not include a mixture of experts,
hence assuming all the covariates to be generated from
the same distribution and also assumes a common
shape parameter for the Weibull distribution.
In this paper, we unify the various important elements

of this analysis into a Bayesian infinite mixture-of-
experts (MOE) framework to model survival time, while
capturing the effect of covariates and also dealing with
an unknown number of mixing components. The num-
ber of experts are inferred using a Dirichlet process
prior on the mixing proportions, which overcomes the
issue of deciding the number of mixture components
beforehand [7]. The regression component, introduced
via the proportionality hazards model, is non-standard
since the Weibull distribution is not part of the expo-
nential family of distributions due to the lack of fixed-
length sufficient statistics. Another novel feature of this
framework is the addition of sparsity constraints to the
regression coefficients b in order to determine the key
explanatory factors (covariates) for each mixture compo-
nent. Since the covariates are discrete in nature, each
variable is transformed to a group of dummy variables
and sparsity is achieved by applying a Bayesian version
of the Group-Lasso (as described in [8] and [9]) which
is based on a sparse constraint for grouped coefficients
[10]. We demonstrate the ability of the model to recover
the right sparsity pattern with simulated examples. In a
related work, [11] show sparsistency (sparse pattern
consistency) of the lasso in the limit of large observa-
tions. The following sections describe all the

components of this unified framework with some results
on a breast-cancer dataset.

Methods
In this section, we explain the overall model in an incre-
mental way starting first with a regression model for
survival analysis and then attaching a clustering model
to it. This also highlights the incremental nature of the
algorithm presented for inference.

Bayesian survival regression
To begin with, we focus on defining a single cluster
model. For survival analysis, we model the distribution
of a random variable T (representing time) over the
interval [0, ∞). Further, a standard survival function is
defined based on the cumulative distribution over T as
follows:

S t p T t p t dt
t

( ) ( ) ( ) ,= − ≤ = −∫1 10
0

0

(2)

which models the probability of an individual surviv-
ing up to time t0. The hazard function h(t), the instanta-
neous rate of failure at time t, is defined as follows:

h t
P t T t t T t

t
p T t
S tt

( ) lim
( ) ( )

( )
.=

< ≤ + >
= =

→Δ

Δ
Δ0

(3)

For modeling purposes, our choice of distribution for
modeling time is the Weibull distribution which is flex-
ible in terms of being able to model a variety of survival
functions and hazard rates. Apart from flexibility, it is
also the only distribution which captures both the accel-
erated time model and the proportionality hazards
model, see [12] for details. The Weibull distribution is
defined as follows:

p t t tw w w
w w

w w( , ) exp ,   λ
λ λ

= −
⎛

⎝
⎜

⎞

⎠
⎟

−1 11 (4)

where aw and lw are the shape and scale parameters,
respectively. Based on the above definition and assuming

Algorithm 1 Algorithm 1 Blocked Gibbs Sampling for a Truncated Dirichlet process

1: Input: N observations D = (xi, ti).

2: Initialize: ci = random cluster assignments and parameters ci .

3: Draw from the posterior of the joint distribution p(π, F*, c) by drawing from the conditionals.

4: while NotCoverged do

5: Sample F* | π, c, D - This is carried out individually for each parameter in the model conditioned on the rest.

6: Sample c | F*, π, D - For i = 1,…, N, draw values P c D P c P x ti i i i ci
( , *, ) ~ ( ) ( , )  Φ , ci = 1,…, M.

7: Sample π | F*, c, D - The mixture proportions are drawn based on the posterior P(π|a)P(c|π).
8: end while
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right-censored data (see [1] for details), the likelihood
can be written as:

p t t ti i
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where N is the number of observations, δi = 0 when
the ith observation is censored and 1 otherwise. Further,
to model the effect of covariates x on the distribution
over time, we apply Cox’s proportional hazards model.
Under this model, the covariates are assumed to have a
multiplicative effect on the hazard function:

h(t|x) = h0(t) exp(f(x, b)), (6)

where h0(t) is the baseline hazard function, x is the vec-
tor of covariates and b is a vector of regression coeffi-
cients. In our model, we assume the function f to be a
linear predictor i.e. f(x, b) = h = xTb. We also consider
higher-order interactions (first-order - pairs of features,
and second-order - triplets of features etc.) instead of
modeling just the main effects (individual features).
Further flexibility is added to the linear predictor by
adding a random effect in the following manner:

h = xtb + Î, where Î ~ N(0,s2). (7)

The likelihood is modified as follows to include the
covariate effect:
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We note that although most parts of the model
described so far resemble an enhancement of a
generalized linear model (GLM) (see [13]) called a ran-
dom-intercept model, it is not strictly a GLM since the
Weibull distribution lacks fixed-length sufficient statis-
tics and is not considered, in a strict sense, to be part of
the exponential family of distributions unless the shape
parameter is known. Although the Weibull distribution
lacks fixed-length sufficient statistics, for the two para-
meters (aw, lw), it is still possible to define a joint con-
jugate prior ([14]), as is explained in the subsection on
priors eq. (10). In order to provide a full Bayesian treat-
ment of the model, we define suitable conjugate priors
for the other parameters of the model, namely s and b.
Contrast coding
In biological applications, it is very common to encoun-
ter categorical data. When the xi’s are categorical vari-
ables, a suitable coding procedure is applied to the
variables (see standard textbooks like [15]) in order to
obtain the design matrix for inference. Apart from single
variables (interactions of order zero), the design matrix

also consists of higher-order 1st order (pairwise interac-
tions) and 2nd order (triplet interactions). An example
of a two variable (with three categories) observation
matrix with a first-order interaction transformed using
dummy coding is shown in Fig. 1 (top). A default
dummy coding procedure leads to over-parametrization
(redundancy in the number of columns) and this effect
becomes profound with greater number of levels and
higher-order interactions. Also in many biological appli-
cations, the categorical variables have a natural ordering
in the values that they take, for example - intensity
values. Based on these requirements, we use polynomial
contrast codes since they are suited for ordered catego-
rical variables and avoid over-parametrization by repre-
senting a K-level variable with K−1 columns (see Fig. 1
(bottom)). This results in representing each categorical
variable as a group of contrast-coded variables. Hence,
to create the full design matrix, first the levels are con-
trast-coded (using a standard R function) which gives us
the codes for respective levels (see Fig. 1 (bottom-right))
and then each observation is recoded (for main effects
and higher-order interactions) using these codes as
reference.
Priors
One of the major requirements of the model is to find
the key explanatory factors from data. To achieve this
goal, we need to apply sparsity constraints on the
regression coefficients b to identify the key interactions.
As described, the coding procedure gives rise to groups
of contrast-coded variables. This transformation of data
leads to the task of inferring sparsity on a group level,
i.e. on grouped dummy variables, where each group
represents a single variable in the original formulation.
Hence, for parameter b, we apply the general prior

defined in [9] to a special case for Bayesian Group-
Lasso (as defined in [8] for a Poisson model), which is
suitable for sparse inference in grouped variables for the
model that we have defined. The sparse prior is moti-
vated by the classical Group-lasso which can be recov-
ered in the log-space based on defining the prior as a
product of Multivariate Laplacians. Although a direct
representation of the prior exists, in order to make the
posterior analysis feasible (to obtain standard condi-
tional posteriors), we redefine the prior as a two-level
hierarchical model, by introducing latent variables lg.
For the Bayesian Group Lasso, the hierarchical prior
over the regression coefficients is defined as follows:

∏ = ∏= =
+∫g

G
g g

G
g g g

p p
gp N I g g

1 1
2 2 2 1

2 2
20( ) ( , ) , ,   

λ λ λGamma( ) d (9)

where G is the number of groups, pg is the size of group
g, r and s2 play the role of the Lagrange parameter in
classical Group-Lasso and each bg is a scaled mixture of
Multivariate-Gaussians. Based on (9), we can derive the

Raman et al. BMC Bioinformatics 2010, 11(Suppl 8):S8
http://www.biomedcentral.com/1471-2105/11/S8/S8

Page 3 of 10



marginal pdf of bg analytically as a product of Multivari-
ate Laplacians (for details, see [8]).
A full Bayesian treatment of the model is achieved by

introducing a prior on s2, based on a standard conjugate
joint prior (see [16]), described as a product of a Normal
distribution of b given s and an inverse-chi square distri-
bution of            2 2 2 2 2 2 2

0 0
2: ( , ) ( ) ( ) ( , ) ( , ))p p p N s= = ∑ ⋅ Inv- ,

and a conjugate Gamma prior on r. Although the Weibull
distribution lacks fixed-length sufficient statistics, for the
remaining two parameters (aw, lw), it is possible to define
a joint conjugate prior, as explained in [14]:

p a b c d b
d

w w w
a

w w
c

w

w

( , , , , ) exp( ) exp ,  


λ λ
λ

∝ − −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

− −1 (10)

where a,b,c > 0 and d allows us to deal with the lack of
fixed-length sufficient statistics.
The full model with all the variables is described in

Figure 2.
Posteriors
In practice, sampling from the posterior distribution will
not be possible directly, hence we propose to use a
Gibbs sampling strategy for stochastic integration. The
sampling process further enables this procedure to be
incorporated very naturally as another step in the clus-
tering algorithm discussed in the next section. Addition-
ally, for the lasso model, the Blocked-Gibbs sampler has
been shown to be geometrically ergodic in [17]. Hence
the convergence of the Gibbs sampler is expected to be
very rapid. Multiplying the priors with the likelihood and
rearranging the relevant terms yields the full conditional

posteriors, which are needed in the Gibbs sampler for
carrying out the stochastic integrations. The posterior
for s, b, r and λg

2 are exactly as defined in [8]. The con-
ditional posterior of hi is difficult to sample from since it
is not of standard form. However, since the conditional
posterior is log-concave, we propose the use of Laplace
approximation, similar to that in [18], which approxi-
mates the conditional posterior to a Normal distribution
and simplifies sampling considerably. Although alterna-
tives exist in the form of adaptive-rejection sampling, the
Laplace approximation gives results that are indistin-
guishable while speeding up computations considerably.
For the Weibull parameters aw and lw, sampling

based on their individual posteriors conditioned on each
other is avoided, since this results in a slow mixing of
the Markov chain due to a high correlation between
samples from the two conditionals. To overcome this
issue, the conditional posterior of (aw, lw) is split up
into the conditional of lw given aw which results in an
Inverse-Gamma distribution,

p c y d tw w i i
w w( , ) ( , exp( )),λ   • ∝ + − + ∑Inverse Gamma- 1 (11)

where y is the number of deaths (number of data
points for which δi = 1) and the marginal of aw which is
derived based on the work in [14]:

p
b P

d t
w
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a y

w y

i i
c yw w


 

 •( ) ∝
− −

+ ∑
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1
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exp( ( log( )))

( exp( ))
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where Py is the product of ti’s for which δi = 1 and (●)
represents all the unknown parameters. This marginal
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Figure 1 Dummy coding illustration. On the top-left, categorical observations for 2 patients are shown for whom 2 biomarkers (X1 and X2)
are measured for expression values. Each biomarker (categorical variable) can have three possible values (high, med and low). The top-right side
shows the transformed covariate matrix after the dummy coding procedure has been applied. The resulting design matrix represents each
variable as a group of dummy-variables. Hence identifying key features from the original matrix is translated to the problem of identifying key
groups of dummy variables. The bottom-right shows the transformed matrix after using a polynomial contrast coding procedure. The resulting
contrast-coded matrix uses (K − 1)order+1 columns for an interaction as opposed to (K)order+1 columns in a a dummy-coded matrix where K is the
number of categories for a variable and order denotes the order number of the interaction (zeroth, first, second etc).
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results in a non-standard distribution, and sampling is
done via a discretized version of the same.

Infinite mixture of survival experts
Finite mixture of experts. The previous section
described the inference procedure when the data is
assumed to be generated from one global group. We
further enhance this idea by removing this assumption
and model data which is potentially generated from
multiple (and known number of) sub-groups/clusters in
data. In order to model the clustering in terms of the
combined effects of features x and survival time t, we
use an MOE model as defined in [19] (see Figure 3: Left
panel). It consists of a fixed number of experts, each
expert explaining the distribution of time for a particu-
lar region in the covariate space. Hence the t based clus-
ters or mixing components, represented by experts, are
probability distributions conditioned on the covariates x.
The distribution of t can be written based on a standard
mixture model conditioned on x as:

p t x p c x p t x cj j

j

k

( , ) ( , ) ( , , ),• = • •
=

∑
1

(13)

where (●) represents all the unknown parameters and
cj’s are the mixture components. The first term in
eq. (13) is the gate function which decides which jth

expert is best suited for making a prediction for feature
vector x. Using Bayes’ rule, we can rewrite the model in
the following way in order to resemble a standard mix-
ture model, as shown in [20]):

p t x p c p x c p t x cj j j

j

k

( , ) ( ) ( , ) ( , , ).• ∝ • •
=

∑
1

(14)

This representation allows us to visualize each mixture
component as a joint distribution over (x, t). The distri-
bution over x is modeled as a Normal distribution
N x Ic( , )  2 as show in Figure 2. The standard joint conju-
gate prior of Normal-Inv-c2 is applied to the parameters
( , )  c

2 . The posterior conditionals are also of standard
form and hence can be easily incorporated into the
Gibbs sampling scheme introduced in the previous sec-
tion. To complete the Bayesian picture, we need to
apply a suitable prior to the mixing proportions c. In a
finite MOE model, a Dirichlet distribution is a standard
conjugate prior to the mixing proportions. All other
parameters and priors, based on the modeling of (x, t),
follow from the previous section.
Infinite mixture of experts. The above model was

described for the case when the underlying number of
clusters is fixed/known. We now add the final enhance-
ment to our model by removing this limiting assump-
tion as well. The model is extended to an infinite
mixture-of-experts by replacing finite clusters by infinite
clusters and hence replacing the Dirichlet distribution
by a Dirichlet process (DP) as prior for the mixing pro-
portions, similar to [20]. The Dirichlet process is a dis-
tribution on distributions i.e. a particular sample from a
DP is also a probability distribution from which samples
can be drawn. The draws from a DP are discrete hence
making it a useful prior for clustering purposes. In this

Figure 2 Model description with all the parameters involved for a single cluster . The complete hierarchical model with the
parametrization for a single cluster model. Depicted in blue are the hyperparameters for the respective distributions, like (r, s) for the Gamma
prior on r. The observed variables x denoting the covariates and t denoting time are shown in green. The part of the figure centered around t
forms the core which defines the generalized linear model with a Normal random link between h and the covariates and coefficients and priors
for the Weibull distribution. The block on the right defines the hierarchy related to the sparse regression on the covariates via the hierarchical
representation of the Normal-Gamma prior on the regression coefficients b. Furthermore, the left block defines the variables for describing the
distribution of the covariate space.
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manner, the effective number of clusters can be inferred
from data by carrying out MCMC sampling from the
posterior distribution. This model extension is described
in a hierarchical manner as follows (see Figure 3):

( , ) , ~ ( )

~

~

~ ( , ),

x t c F

c G

G

G DP G

i i i c

i

c

i
 






0

0

(15)

where DP denotes a dirichlet process prior with base
distribution G0 and a concentration parameter a, ci is
the latent class to which an observation (xi, ti) belongs
and jc denotes the parameters which determine the dis-
tribution of class c. Further hierarchy is added to jc

(parameters) by adding suitable priors as defined in
Section 2.
Markov Chain Monte Carlo (MCMC) sampling for

Inference and Parameter Estimation. The inference of
the infinite-mixture-of-experts model is carried out by
MCMC sampling of the posterior distribution. Although
there exist non-conjugate versions of the Dirichlet pro-
cess algorithms (as given in [21]) which can be applied
for inference, for practical reasons, we use a truncated
version of the Dirichlet process called the Dirichlet-Mul-
tinomial allocation model [22], by specifying an upper
bound on maximum number of clusters based on the
prior knowledge of the particular application. It serves
as a good approximation to the DP measure and results
in a finite-sum random probability measure which is
computationally easy to deal with and easy to imple-
ment. More specifically, we carry out a Blocked-Gibbs
sampling on a truncated Dirichlet process (see Algo-
rithm 1 for details). After initializing all the parameters,

the sampling algorithm is executed till the point of con-
vergence. The point of convergence can be determined
based on the length-control diagnosis explained in [23]
or fixed to a maximum number of iterations based on
studying the traceplots of the sampling process in
simulations.

Results and discussion
Simulations. In order to demonstrate the effectiveness
of the model, experiments were carried out on simu-
lated data. The first experiment shows the capability of
the model to correctly identify two sub-groups in data
along with identifying the key explanatory factors in
both groups. The dataset of size 150 was generated
from two equally proportioned clusters with (5, 5) and
(1,1) being the shape and scale parameters for the Wei-
bull distribution for each cluster. The features consisted
of 7 variables with expansion up to 2nd order interac-
tions (63 terms). For the first cluster, the significant fac-
tors included main effects X1, X3 and X4, all first order
interactions with these three variables i.e. (X1 : X3), (X1
: X4), (X3 : X4) and a second order interaction (X1 : X3
: X4). Similarly, for the second cluster, the significant
factors included main effects X2, X6 and X7, all first
order interactions with these three variables (i.e. (X2 :
X6), (X2 : X7), (X6 : X7)) and a second order interaction
(X2 : X6 : X7).
Significance was achieved by assigning b values of (3,

3, 3, 3, 3, 3, 3) and (3, 3, 3, 3, 3, 3, 3) to the specific fac-
tors in the respective clusters and the rest of the b coef-
ficients to zero. The covariates themselves were sampled
from a Normal distribution with means (0.3, 0.3, 0.3,
0.3, 0.3, 0.3, 0.3) and (0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7) for
each cluster respectively. The Gibbs sampling process
was executed for 50,000 iterations and the burn-in was

Figure 3 Infinite Mixture-of-experts model. Left panel: Mixture-of-experts model for two experts with a gating node representing the
function that decides which of the two experts is chosen to make a prediction for x which is represented by p(cj|x, ●) in eq. (13). Right panel:
Infinite mixture of experts using a Dirichlet process prior G with parameters (a, G0). N denotes the number of observations and ci the respective
assignment variables. The observed variables x and t are represented in green with the priors collapsed to ci . In the full model, the ci part will
be replaced by Figure 1.
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observed to be very early (in the first ≈ 100 iterations).
Both the clusters were detected and all the true signifi-
cant factors for both clusters were identified success-
fully. See Figure 4 for details.
In the second experiment, we compare our mixture-

of-experts model to a global single cluster model in
order to justify the need for a mixture model. The train-
ing data generated in the first experiment was used
again for learning the parameters of a single-cluster
model. In order to compare the two models, a separate
test set (of size 500) was generated additionally to evalu-
ate the performance of both models by comparing the
log-likelihood of all the test points based on the para-
meters learned by both models. The per-point compari-
son is shown in Figure 5 which indicates the
improvement achieved by using a MOE model. We also
performed a standard Kruskal-Wallis rank test which
also ranks the MOE model higher than the single cluster
model (see Figure 5 left panel). Apart from the quantita-
tive evaluation, we also see in terms of identifying the
significant factors (see Figure 5 right panel), that the
single cluster model does poorly, both in recognizing
the true factors and in terms of false positives. This can
be explained based on the fact that in a single cluster
model, the model has to assume a common baseline
model (for both clusters). Then, in order to adjust for
the real survival patterns, it can only achieve the same
effect by making suitable adjustments to the regression
component. In doing so, the model compromises in
terms of the identification of significant factors from
data. As a result, we see that the MOE model performs
much better than a one-cluster model, hence justifying
the need for a cluster-based model.
Application to Breast-Cancer dataset. The dataset

consists of measured intensity levels obtained from

tissue microarrays of the following markers: karyo-
pherin-alpha-2 (KPNA2), nuclear staining for p53, the
anti-cytokeratin CK5/6, the fibrous structural protein
Collagen-VI, the inter-a-trypsin inhibitor ITIH5, the
estrogen receptor (ER) and the human epidermal growth
factor receptor HER2. From these categorical variables
we constructed covariates arranged in a design matrix
which includes all dummy-coded interactions up to the
second order.
Cross-validation experiments were conducted for both

the MOE and single cluster model which gave rise to
similar trends but with unclear significance. Despite of
the fact that this dataset is one of the biggest of its kind,
the rather low number of samples (270 patients)
remains the main challenge in these scenarios. A further
difficulty is the large number of censored patients (60%),
which is a common problem in long term retrospective
studies.
Over a wide range of prior-values, the Dirichlet pro-

cess mixture model for selecting “survival experts” finds
two large and highly stable clusters. In order to exter-
nally validate these clusters, we analyze the survival of
the underlying patient populations by way of classical
Kaplan-Meier plots, see Figure 6. It is obvious that the
survival experiences of patients belonging to the two
clusters differ significantly, with cluster 1 basically con-
taining all patients who die early. In Figure 7, the inter-
action patterns within the two clusters are shown as
lines connecting pairs or triplets of markers, where the
line-width encodes the significance in terms of posterior
quantiles which do not contain zero.
The high-risk patient cluster is characterized by a glo-

bal underexpression of ER and overexpression of basi-
cally all other markers, in particular KPNA2, CK5/6 and
HER2. Overexpression of the latter two markers clearly

Figure 4 Results for simulated data: 2 clusters with 7 categorical variables having interaction terms up to second order. In all interaction
graphs, the light-blue circles represent the main effects, the blue lines represent 1st-order pairs and the reddish triangular lines indicate 2nd-
order triplet interactions. In each case, the size of the circle or the width of the lines indicates the estimated significance of the main effect or
the higher-order interaction: i.e. For example on the right cluster, more than 90% of the posterior samples for variable 2 have a positive sign.
Based on the results of the inference process, we observe that all the key features have been correctly identified.
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Figure 6 Kaplan Meier plots for the identified sub-groups. Kaplan-Meier plots for the high-risk group (left) and the low-risk group (right).
The high-risk group contains a large number of patients, who die early.

Figure 5 Comparison to a global model. Left: The actual number of points in the test set which scored better in a particular model (442 for
MOE Vs 58 for Single Cluster) based on the likelihood scores. Results of the Kruskal-Wallis rank test also validated this observation with a p-value
≪ 0.001. Right: Results of the key interactions found for a single cluster model. Some of the key factors are not identified along with existence
of many false-positives.

Figure 7 Breast Cancer results - key interaction patterns for the identified sub-groups. Identified interaction patterns for the high-risk
group (left) and the low-risk group (right). The size of the circles indicates the estimated significance of the main effects. For instance, the
largest circle for ER means that the 0.9 posterior quantile does not contain zero. Correspondingly, the line-width of the interactions (blue lines:
1st-order, reddish triangles: 2nd-order) indicates their significance.
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identifies this cluster as a collection of basal- and
HER2-type breast-cancer patients. The occurrence of
KPNA2 in the high-risk group is also in accordance
with previous studies: KPNA2 is a member of the karyo-
pherin (importin) family, which is part of the nuclear
transport protein complex. KPNA2 overexpression has
been shown in several gene expression signatures in
breast cancer and other cancer types. KPNA2 overex-
pression has been previously identified as a possible
prognostic marker in breast cancer [24].
The group-Lasso detects several strong higher-order

interactions. Interpreting these interaction terms can be
a complex problem, but a close analysis of the contrast
codes and the sign of the regression coefficients shows
that the weak prognosis of members in this cluster is
dominated by some of the combinations, details in Table
1 where ↘ means underexpression and ↗ overexpression.
The observation that high-order interaction terms

seem to be even more indicative than the individual main
effects is a highly interesting result of this study which
may lead to the definition of novel prognostic markers
for better differentiation between high-risk patients.
Together with our medical partners we are currently test-
ing these new hypothetical compound-markers.
The low-risk cluster has a clear luminal-type signature

(strong ER response). Hardly any significant patterns
can be identified which, however, is quite understand-
able by noticing that the survival curve is almost flat for
these patients: in the proportional hazards model the
individual covariates influence the “passage of time”, and
a flat curve basically means that there is almost no
intra-class variation that could be explained by indivi-
dual covariate effects.

Conclusions
We have introduced a fully Bayesian survival infinite
mixture-of-experts model which extends classical
approaches by including feature selection for contrast-
coded categorical variables. Random links and a mix-
ture-of-experts architecture allow for both stochastic
and model-driven deviations from the underlying para-
metric survival model. The inherent clustering property

of the final model makes it possible to identify patient
groups which are homogeneous with respect to the pre-
dictive power of their covariates for the observed survi-
val times. The built-in Bayesian feature selection
mechanism reveals cluster-specific explanatory factors
and interactions. Due to the Bayesian treatment within a
suitably expanded model, posterior samples can be gen-
erated efficiently which makes it possible to assess the
statistical significance based on a very large number of
draws.
Applied to survival data from a breast cancer study,

the model identified two stable patient clusters that
show a clear distinction in terms of survival probability.
Several strong high-order interactions between marker
proteins were detected which carry more information
about the survival targets as the markers themselves.
Not only does this result confirm earlier studies, it also
shows that the analysis of complex interactions is feasi-
ble and may lead to the definition of novel prognostic
markers. We are currently conducting new experiments
to test these new hypothetical compound-markers.
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