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Swiftly Computing Center Strings
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Abstract

Background: The center string (or closest string) problem is a classic computer science problem with important
applications in computational biology. Given k input strings and a distance threshold d, we search for a string
within Hamming distance at most d to each input string. This problem is NP complete.

Results: In this paper, we focus on exact methods for the problem that are also swift in application. We first
introduce data reduction techniques that allow us to infer that certain instances have no solution, or that a center
string must satisfy certain conditions. We describe how to use this information to speed up two previously
published search tree algorithms. Then, we describe a novel iterative search strategy that is effecient in practice,
where some of our reduction techniques can also be applied. Finally, we present results of an evaluation study for
two different data sets from a biological application.

Conclusions: We find that the running time for computing the optimal center string is dominated by the
subroutine calls for d = dopt -1 and d = dopt. Our data reduction is very effective for both, either rejecting
unsolvable instances or solving trivial positions. We find that this speeds up computations considerably.

Background
The CENTER STRING problem (also known as CLO-
SEST STRING problem) is defined as follows: given k
strings of length L over an alphabet Σ and a distance
threshold d, find a string of length L that has Hamming
distance at most d to each of the given strings.
The CENTER STRING problem has been studied

extensively in theoretical computer science and, particu-
larly, in computational biology [1,2], and has various
applications such as degenerate PCR primer design [3]
or motif finding [1,4]. We are particularly interested in
its application as part of finding approximate gene clus-
ters. The increasing speed of genome sequencing and
the resulting increase in the number of available data
sets offers the possibility of comparing the gene order of
whole genomes. During the course of evolution, specia-
tion results in the divergence of genomes that initially
have the same gene order and content. Conserved gene
order is evidence of a particular biological signal [5].
Approximate gene cluster models account for reordering
inside the gene cluster, as well as additional and missing
genes in the genomes compared [6,7]. The center gene

cluster model limits the distance between the gene clus-
ter and each of the approximate occurrences. For given
approximate occurrences, finding the center gene cluster
is equivalent to finding a center string for binary input
strings.

Previous work
The CENTER STRING problem is NP complete [1,8],
hence no polynomial time algorithm can exist unless P
= NP. Different approaches have been studied for the
problem. Ma and Sun [9] presented a polynomial time
approximation scheme with time complexity O(LkO(ε−2))
for an approximation ratio of 1 + ε for any ε > 0. In
addition, heuristics and parallel implementations with
good practical running times have been developed
[10,11]. The drawback of these approaches is that they
cannot guarantee that an exact solution will be found.
In parameterized algorithmics, we use a parameter to

describe the complexity of a problem instance. We
restrict the super-polynomial running time of an algo-
rithm using this parameter while at the same time still
guaranteeing that optimal solutions are found. Formally,
a problem with input size n and parameter k is fixed-
parameter tractable if it can be solved in O(f(k) · p(n))
time, where f is an arbitrary function and p is a polyno-
mial. Parameters that have been studied in the literature
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for the CENTER STRING problem are the distance
threshold d and the number of input strings k. For the
latter parameter, Gramm et al. [12] showed that the
problem is fixed-parameter tractable using an Integer
Linear Program. Evaluations indicate that this approach
is of theoretical interest only and impractical for k ≥ 5.
Regarding the distance threshold d, in the same paper
an algorithm was given with running time O(kL + kdd
+1). Later, Ma and Sun [9] presented an algorithm with
running time O(kL + kd · 16d(|Σ| - 1)d). Recently, Wang
and Zhu [2] further improved running times to O(kL +
kd · 9.53d(|Σ| - 1)d), and Chen et al. [13] to O(kL +
kd26.74d) for binary strings. These algorithms are based
on the search tree paradigm. Note that for binary
strings, the term (|Σ| - 1)d vanishes.
Besides these fixed-parameter approaches, Meneses et

al. [14] proposed a heuristic to compute upper and
lower bounds using a branch-and-bound algorithm and,
very recently, Kelsey and Kotthoff [15] investigated a
constraint programming approach.
All of the above results, as well as our results pre-

sented below, deal with the CENTER STRING problem
under the Hamming distance. Nicolas and Rivals [16]
showed that the CENTER STRING problem under the
Levenshtein distance is NP-hard and W[1]-hard regard-
ing the number of input strings, even for binary strings.
On this account, no FPT algorithm with parameter k
can exist unless FPT = W[1]. Furthermore, the authors
generalized these results to any weighted edit distance
satisfying a certain natural condition, namely, a slightly
tightened triangle inequality (see Property 1 in [16] for
details). Note, that CENTER STRING is polynomial if
the number of input strings and the weighted edit dis-
tance are fixed [16].

Our contribution
In this paper, we focus on exact methods that are also
swift in application. We have developed an advanced
preprocessing to filter out unsolvable instances quickly.
Additionally, we compute rules that can be used within
search tree algorithms to bound the search space,
excluding unsolvable instances. We show how to inte-
grate this information into the algorithms from [9,12].
We then present a new iterative search strategy called
MismatchCount, which, despite its bad worst-case run-
ning time, works well in practice. We implemented all
three algorithms to evaluate their performance in com-
bination with our preprocessing. We present results of
our experimental evaluation, showing that preprocessing
and the novel algorithm improve running times by sev-
eral orders of magnitude. We find that, in particular, the
cases d = dopt - 1 and d = dopt are notoriously difficult
for all approaches, where dopt is the smallest distance
value for which a solution exists.

A preliminary version of this paper has been published
in Proc. of Workshop on Algorithms in Bioinformatics,
WABI 2010, Volume 6293 of Lect. Notes Comput. Sc.,
Springer 2010:325-336.

Methods
Preliminaries
For a string s over a finite alphabet Σ, let s[i] be the ith
character of s and s[i, j] the substring of s starting at
position i and ending at position j. The length of s is
denoted by |s|.
The Hamming distance dH(s, t) of two strings s and t

of the same length L is the number of positions p with s
[p] ≠ t[p]. Let R = {p1,..., pm} ⊆ {1,..., L} be a set of posi-
tions such that pi <pi+1 for all 1 ≤ i <m. Then s|R := s
[p1] ... s[pm] denotes the subsequence of s restricted to
the positions in R. We define the Hamming distance of
two strings s and t restricted to R as
dRH(s, t) := dH(s|R, t|R). For two strings s and t, let Ds, t :=
{p : s[p] ≠ t[p]} ⊆ {1,..., L} be the set of positions where
s and t differ, and let Es, t := {p : s[p] = t[p]} = {1,..., L}
\Ds, t be the set of positions where s and t are identical.
Note that dDs,t

H (s, t) = |Ds,t| = dH(s, t). For k input strings
s1,..., sk, we write Di, j := Dsi, sj and Ei, j := Esi, sj. As noted
in the introduction, we will often limit ourselves to a
binary alphabet Σ = {0, 1}, here, we define
s[p] = 1 − s[p].
The CENTER STRING problem is defined as follows:

for strings s1,..., sk of length L over an alphabet Σ, and a
distance threshold d, find a string ŝ of length L, called
center string, which has Hamming distances at most d
to each of the given strings.
We note that permuting positions of all strings by the

same permutation, results in an equivalent instance. Let
π be a permutation over positions 1,..., L. For a string s
= s(1) ... s(L) of length L, let π(s) := s(π(1)) s(π(2)) ... s
(π(L)) be the permuted string. Let s1,..., sk be an instance
of CENTER STRING problem, in which all strings have
length L. Then, a given string s has Hamming distance
at most d to all strings s1,..., sk, if and only if π(s) has
Hamming distance at most d to all strings π(s1),..., π(sk).
For k strings s1,..., sk and distance threshold d, we can
construct a naïve kernel as follows [12]: a position p is
called clean if all sequences coincide at this position, i.e.
si[p] = sj[p] for all 1 ≤ i <j ≤ k. If a position is not clean,
we call it dirty. One can easily see that there can be at
most kd dirty positions if an instance with k strings
allows for a center string with distance d. If a position is
not dirty, then all strings share the same character at
this position, and the center string will also share this
character. We can thus remove all clean positions and
obtain an instance of length L ≤ kd. Now let us assume
that d is given to us as a parameter. Again, we remove
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all clean positions from the instance. If the resulting
strings have more than kd characters, the instance can
be rejected. Similarly, we can reject an instance that
contains a string pair with distance larger than 2d, since
the Hamming distance is a metric and satisfies the trian-
gle inequality. In our algorithms, we assume a distance
threshold d to be given. In applications, we might not
know the distance threshold d in advance but instead
search for a center string minimizing d. We can do so
by calling our algorithms repeatedly, increasing d = 0, 1,
2,... until a solution is found for d = dopt. Both in theory
and in our experimental evaluation, we find that the
running time of this iteration is governed by the last
subroutine calls with d = dopt - 1 and d = dopt. To this
end, we will put special focus on these two cases in our
evaluations.
Our proposed data reduction often allows us to infer

that no solution can exist for a particular distance
threshold d. However, where we cannot rule out the
existence of a center string by data reduction (what is
obviously the case when d = dopt), we still have to
decide whether a valid center string exists. All algo-
rithms for doing so, such as those presented in [2,9,12]
and the MismatchCount algorithm presented in this
paper, scan through all 2L possible binary strings and
test whether any such string is a center string of the
input. The algorithms differ in the order in which they
process the 2L strings and, in particular, how they con-
strain the search space to speed up computations.

Data reduction
Our data reduction is based on the pairwise comparison
of the input strings. Given an instance s1,..., sk and d of
the CENTER STRING problem, we can divide all pairs
of strings {si, sj} into three groups: pairs with distance
less than 2d - 1, greater than 2d, or equal to 2d or 2d -
1. If two strings si, sj with Hamming distance dH(si, sj) >
2d exist, then the instance has no solution. A center
string ŝ can have at most distance d to each of si and sj
and, hence, dH(si, sj) ≤ dH(si, ŝ) + dH(ŝ, sj) ≤ 2d. There-

fore, d ≥ 1
2
maxi, j dH(si, sj) must hold for the instance to

have a solution.
Solving trivial positions
Some positions of the solution string can be trivially
solved. This is based on the following observation:
Lemma 1. Given strings s1,..., sk and a center string ŝ

with distance d. For two strings si, sj such that dH(si, sj)
= 2d or dH(si, sj) = 2d - 1, we have

ŝ[p] = si[p] = sj[p] for all p ∈ Ei, j.

Proof. A center string with distance at most d to all
strings is located centrally between the two strings si

and sj with distance 2d and therefore has distance d to
both of them. Thus, all positions fixed between si and sj
must also be fixed in ŝ. We can extend our reasoning to
string pairs with distance 2d - 1. We need to change d
positions in at least one of the strings and Ei,j is the set
of equal positions between both strings, hence we are
still not allowed to change any position p Î Ei,j.
As a reduction rule, if we find two strings si, sj with

dH(si, sj) ≥ 2d - 1, then we can set ŝ[p] := si[p] for all p
Î Ei, j and mark these positions as “permanent”. Let P
denote this set of permanent positions. We can general-
ize this rule to solve additional positions. Assume a spe-
cific di := d for each input string si, which is increased
by one for every solved position that does not match si.
If we find two strings si, sj with dH(si, sj) = di + dj, we
can again set ŝ[p] := si[p] for all p Î Ei, j and mark these
positions as “permanent”. In the case di = dj the rule
remains the same as that given above. We repeat this
rule until no fitting string pair si, sj can be found.
Applying this reduction rule, we may run into conflicts

where we have to permanently set a certain position to
‘0’ and ‘1’ simultaneously. We infer that the instance has
no solution for the current choice of d. If we do not
have a conflict, then applying this data reduction results
in a partially solved solution string ŝ with ŝ[p] = c Î ∑
fixed for all p ∈ P, whereas all positions not in P still
have to be decided.
Computation of position subsets
We focus next on pairs of strings si, sj with dH(si, sj) <
2d - 1. For a given center string ŝ we define

Xi, j(ŝ) := {p ∈ Ei, j : si[p] = sj[p] �= ŝ[p]}
as the set of positions where si and sj agree, but dis-

agree with the center string ŝ. We extend the reasoning
behind Lemma 1 as follows:
Lemma 2. Given strings s1,..., sk and a center string ŝ

with distance d. For two strings si, sj such that dH(si, sj)
<2d - 1, we have

|Xi, j(ŝ)| ≤ d − 1
2
dH(si, sj).

Proof. Set D := Di, j. Regarding the distances between
ŝ|D and si|D as well as sj|D, we can state that ŝ|D has a

distance of at least
1
2
dH(si, sj) to at least one of the

strings si|D or sj|D:

max{dH(si|D, ŝ|D), dH(sj|D, ŝ|D)} ≥ 1
2
dH(si, sj).

This is true since dH is a metric and the triangle
inequality holds, dH(si|D) ≤ dH(si|D, ŝ|D) + dH(sj|D, ŝ|D).

Since we need a distance of at least
1
2
dH(si, sj) to solve
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the positions from D, a distance of at most

d − 1
2
dH(si, sj) remains to solve the positions from Ei,j.

Lemma 2 implies that the maximum number of posi-
tions p Î Ei, j that we are allowed to choose in the cen-

ter string with ŝ[p] ≠ si[p] is bounded by d − 1
2
dH(si, sj).

We can transform this observation into a reduction rule
as follows: when, during search tree traversal or by
other reduction rules, we have a partially solved solution
string ŝ such that

|Xi, j(ŝ)| > d − 1
2
dH(si, sj)

for any pair si, sj, then we can infer that ŝ cannot be
extended to a solution for the current choice of d. For

each pair si, sj, we therefore set xi, j := d − 1
2
dH(si, sj) and

store all tuples (Ei,j, xi,j) in an array T .
Removing redundant information from T may lead to

further trivially solved positions. This is done by remov-
ing, for all 1 ≤ i <j ≤ k, all positions p ∈ P ∩ Ei, jfrom Ei,j.
Moreover, if ŝ[p] ≠ si[p] then we decrease xi,j by one.
For xi,j = 0 we set all positions p from Ei,j to “perma-

nent” and include them in P. Since P has changed, we
continue our data reduction again until there is no tuple
(Ei,j, xi,j) with xi,j = 0 in T . For xi,j < 0 we can easily
infer that a conflict must exist and, as a result, the
instance has no valid solution for this distance threshold
d.
Cascading
To enlarge further the number of solved positions we
consider all pairs of strings si, sj with xi,j = 1 and use
cascading. A valid center string ŝ has to agree with si in
at least |Ei,j| - 1 positions from Ei,j, hence for binary
strings, at most one position p Î Ei,j can be set to
ŝ[p] = si[p].
To this end, we test for all positions p Î Ei,j what we

can infer from setting ŝ[p] = si[p] This implies xi, j = 0,
hence we add the remaining positions q Î Ei,j, q ≠ p, to
P and reduce the tuple set T . If we run into a conflict
during this reduction, we know that setting ŝ[p] = si[p]
cannot result in a valid solution. In this case, we infer ŝ
[p] = si[p] and permanently set position p.
Unfortunately, if there is no conflict, setting ŝ[p] = si

[p] is not mandatory. Nonetheless, we get a partially
solved solution string ŝp,v and a set of “potentially per-
manent” positions Pp,v depending on the position p and
the value v = si[p]. We store this information in a set of
rules R.
We can use the set of rules R when solving the remain-

ing instance, for example by means of a search tree

algorithm. If, during the search tree traversal, we decide
to set ŝ[p] = v for the solution string ŝ, then we can
immediately start the above data reduction. For all posi-
tions q ∈ Pp,v\P, we set the solution string ŝ[q] = ŝp,v[q].
For the remaining positions q ∈ Pp,v ∩ P the condition ŝ
[q] = ŝp,v[q] must be met, otherwise we run into a conflict
and, thus, this branch of the search tree does not lead to
a valid solution.

Integration into search tree algorithms
We can use the information derived during preproces-
sing, stored in the sets P, T , R, to speed up the algo-
rithms of Ma and Sun [9], and Gramm et al. [12].
Unfortunately, the use of P, T , R does not change the
worst-case running times of both algorithms. But our
preprocessing, as an algorithm engineering technique,
allows us to speed up the algorithms in practice.
The algorithm of Ma and Sun tackles the more gen-

eral NEIGHBOR STRING problem. Given s1, s2,..., sk of
length L and non-negative integers d1, d2,..., dk, find a
string ŝ of length L such that d(ŝ, si) ≤ di for every 1 ≤ i
≤ k. The algorithm starts by testing whether s1 is already
a valid solution. If not, there has to be at least one si0
with dH(s1, si0 ) ≥ di0. For these two strings s1 and si0. we
create the sets of equal positions E := E1,i0 and different
positions D := D1,i0, as well as the substrings s1|D and
si0 |D. Note that dDH(s1, si0 ) = dH(s1, si0 ). From these
strings, one can infer that dDH(ŝ, s1) ≤ d1 and

dDH(ŝ, si0 ) ≤ di0 . To fit s1 to the solution string ŝ, it is

necessary to change the positions in D without exceed-
ing the limits d1 and di0. Thus, for any string t of length
|D| we test whether t = ŝ|D is a possible solution.
Hence, the width of the search tree is based on the
number of strings t that fulfill the condition

|t| = |D| and dH(t, s1|D) ≤ d1 and dH(t, si0 |D) ≤ di0 .

For these eligible strings t, we obtain a new branch of
the search tree by creating a new NEIGHBOR STRING
instance. The new distance thresholds ei depend on the
distance of t to the substrings si|D, so ei := di - dH(t, si|
D). For e1 we have the additional constraint

e1 := min
{
d1 − dH(t, s1|D),

⌈
d1
2

− 1
⌉}

. For further

information about this approach, see [9].
The algorithm of Gramm et al. is a depth-bounded

search tree that is initialized with any s Î {s1,..., sk},
which is adapted step by step to the solution. The first
step is to find a string si that differs from the candidate
string s in more than d positions. If no such string
exists, then s is a valid solution. Otherwise, we change s
until a center string ŝ is found or more than d positions
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in s are changed. This results in a maximum tree height
of d. From the set Ds,si we choose d + 1 positions to
branch, leading to a total tree size of (d + 1)d = O(dd).
Since d < |Ds,si | ≤ 2d and |Dŝ,si | ≤ d, at most d elements
from Ds,si do not converge to a solution. Therefore,
choosing d + 1 elements from Ds,si produces at least one
exact move. For a detailed description of the algorithm,
see [12].
Integrating the set of solved positions P into the

algorithm of Ma and Sun is straightforward, since we
can delete all solved positions and decrease di by one
for every mismatch.
For the algorithm of Gramm et al. we cannot have

different di, hence we have to test whether or not the
position is permanent within the search tree. Assume s
is the candidate string. For any position p from P we
set s[p] := ŝ[p]. During the algorithm, we ensure that
none of these positions is changed. LetQ := {1, ..., L}\P
be the set of positions that are not permanent. For each
string si we can estimate the distance threshold di
between si|Q and ŝ|Q as described for NEIGHBOR
STRING instances. Instead of choosing d + 1 positions
to branch, we now have to choose only di + 1 positions
from Ds,si\P. Given that, for all positions in P, the can-
didate string was set to the value of the solution string,
there are no positions p ∈ P ∩ Ds,si with si[p] = ŝ[p], and
hence |P ∩ Ds,si | = d − di. Since |Ds,si\P | ≤ d + di and
|Dŝ,si ≤ d| at most d - d + di positions do not a converge
to a solution. Therefore, among the di + 1 possible
modifications from Ds,si\P, there is at least one that
brings us towards a solution.
To integrate T and R, we exclude branches which

cannot produce a valid solution. Branches are pruned by
simply testing whether the (partial) string candidate of
the search tree conflicts with the information. For a
position p from a particular NEIGHBOR STRING
instance we use m(p) to denote the corresponding posi-
tion in the original instance.
In the algorithm of Ma and Sun, when creating all

strings t of length |D|, we test for their consistency with
the rules from R. Assume t = p1 ... pl with pi Î D, ≤ 1 i
≤ l. For all pi Î D, 1 ≤ i ≤ l we check whether there is a
rule (ŝm(pi),t[i],Pm(pi),t[i]) ∈ R and test if the remaining
positions in t are consistent with the partially solved
solution string. If that is not the case, the current t will
not lead to a valid solution. There is even more infor-
mation in R that we can use. If we find a t that is con-
sistent with R, we use the solved positions from all sets
Pm(pi),t[i], with 1 ≤ i ≤ |t|, to reduce the NEIGHBOR
STRING instance for the recursion step. For that reason
we build an overlay of all ŝm(pi),t[i]|E with pi Î D to get a
new set of solved positions. Furthermore, we can check
the consistency of t with T . For all (Ei,j, xi,j) ∈ T we test

whether t has more inconsistent positions than are
allowed. Assume t = p1 ... pl. We count all positions pn
with m(pn) Î Ei, j and si[m(pn)] ≠ t[n]. If there are more
than xi,j of these positions, the current t is not consis-
tent with T and hence cannot produce a valid solution.
In the algorithm of Gramm et al., we can restrict the

positions we can choose to branch. Assume sk is the
string with dH(s, sk) >d. We can only branch over a
position p if we checked the following condition for all
(Ei,j, xi,j) ∈ T containing p: if s[p] = si[p] ≠ sk[p] we
would have to change s[p] to sk[p], thus we would set
ŝ[p] = si[p]. For that reason we have to check at how
many positions from Ei,j the candidate string s differs
from si. If this number is at least xi,j, we are not allowed
to set a further position p to si[p] and hence we inter-
dict branching over p. Now, let p be the current posi-
tion to branch at, and set v := si[p]. If R contains ŝp,v,
we have to adapt the candidate string s to ŝp,v before
calling the recursion. If s conflicts with ŝp,v, this branch
of the search tree does not lead to a valid solution.

Algorithm MismatchCount
Even after applying our data reduction rules, we have to
solve the remaining instance using an algorithm such as
those from [9,12]. In this section we present another
such procedure, MismatchCount, which is effecient in
practice, as we will show below. Given binary strings
s1,..., sk of length L and a distance threshold d, the Mis-
matchCount algorithm solves the CLOSEST STRING
problem as follows: we iterate through all strings s with
distance at most d to a chosen string si – without loss
of generality, we may choose that string to be s1 = 0 ...

0. This leaves us with a search space of size
∑d

d′=0
(
L
d′
)
.

We present an enumeration scheme for those s that
allows effecient testing for the center condition on each
candidate and that makes it possible to skip large areas
of the search space based on information gained while
checking those candidates.
We enumerate the mismatch positions for d mis-

matches in s1 (and therefore the center string candidates
s), which is equivalent to generating all binary numbers
of length m with d bits set to 1, in reverse order (Figure
1). For every s we check its Hamming distance to the
remaining strings s2, s3,..., sk. Rather than computing
these distances anew for each candidate, we update the
Hamming distances derived from the previous candidate
s’. We do this by increasing or decreasing the distances
to reflect the changed positions.
The running time for verifying a center candidate s is

therefore bounded by O(g · k), where g is the number of
positions changed from s’ to s.
We can determine the overall number of changes per-

formed during the enumeration of all center candidates
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as follows: using the enumeration scheme presented,
each position p in s is changed once to ‘1’ and once to
‘0’ for every configuration of s[1, p - 1] with at most d

mismatches to s1[1, p - 1]. There are

(
p − 1
d′

)
such con-

figurations for each d’ = 1, 2,..., d. Summing over all
possible combinations of p and d’, the number of bit
changes performed can be bounded by O(2L). Since we
need to update k Hamming distances for each character
change in s, the overall worst-case running time of the
algorithm is bounded by O(k · 2L).
However, this worst-case analysis refers to the

exploration of all legal mismatch configurations of s. As
already mentioned above, the enumeration scheme
enables us to skip large areas of the search space. Using
the maximum Hamming distance dmax = maxi = 2,...,k(dH
(s, si)) computed in each iteration, we can derive a lower
bound for the number of positions we have to change in
s in order to fulfill the center condition. Therefore, for
each candidate s taken into consideration, we compute

cmin =
⌈
dmax − d

2

⌉
, where 2 cmin is the minimum num-

ber of positions in s we have to change when its succes-
sor is generated. We can use this condition in two ways.
First, we cannot change 2 · cmin positions in s by chan-
ging the positions of fewer than cmin mismatches.
Therefore, if all current candidates s with dH(s1, s) = d’
are enumerated and we encounter a candidate that
reveals a cmin >d’, we can then generate candidates with
dH(s1, s) = cmin, without the enumeration of all s with
dH(s1, s) Î {d’, d’ + 1,..., cmin -1}.
Furthermore, even if cmin does not exceed d’ for a cur-

rently observed candidate, we can use that bound to
skip the enumeration of certain candidates, i.e. continue
with the enumeration scheme where the cmin-th mis-
match from the right is moved next (Figure 2). The enu-
meration steps in between can be omitted because they
involve moving fewer than cmin mismatch positions and

we know that we have to change at least 2 · cmin posi-
tions in s.
Applying the data reduction to this algorithm is

straightforward. Recall thatQ is the set of positions that
are not permanent. Then, the reduced instance is
s1|Q, ..., sk|Q. When estimating for every candidate s its
Hamming distance to each remaining string si, we have
to add the additional amount dH(ŝ|P , si|P ) to the dis-
tances of the reduced strings. This is done only once at
the beginning, since we update the Hamming distances
during the algorithm.
Within the other algorithms we use the information

from R and T to cut off branches of the search tree
that cannot contain a valid solution. However, Mis-
matchCount uses an iterative search strategy and posi-
tions are not going to be fixed, but can be inverted
again. Therefore the use of R and T to fix positions
interferes with the use of cmin to skip the enumeration
of certain candidates.

Results and Discussion
Generating center instances
To evaluate our algorithms, we use instances generated
in the context of finding approximate gene clusters. The
order of genes in genomes can be used to determine the

dH(s, s1) = 0

0 0 0 0 0

dH(s, s1) = 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

dH(s, s1) = 2

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1

dH(s, s1) = 3

1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
1 0 0 1 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1

Figure 1 Enumeration scheme for all strings s. Enumeration scheme for all strings s with Hamming distance at most 3 to a bit string s1 = 0 ...
0 of length 5.

Figure 2 Skip steps. Example case where a cmin value of 3 allows
for 4 steps to be skipped.
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function of unknown genes, as well as the phylogenetic
history of the organisms. On this global scale, each gene
is represented by one character (or number), and ortho-
logous genes are mapped to the same character. Gene
clusters are sets of genes that occur as single contiguous
blocks in several genomes. Unfortunately, the require-
ment of exact occurrences of gene clusters turns out to
be too strict for the biological application. This leads to
the development of the center gene cluster model [7],
which we recapitulate shortly in the following.
Let S1,..., Sk be the genome strings, where each charac-

ter represents a gene from the alphabet Σ. Let Sj[lj ... rj]
denote the substring of Sj from position lj to position rj.
Let CS(S) ⊆ � be the set of genes in a string S Î Σ*.
Finally, let D be the symmetric set distance, D(C, C’ ) =
|C \C’ | + |C’ \C|. For some distance threshold δ, the
center gene cluster model asks for all gene clusters C ⊆
Σ of some minimal size such that, for each j Î {1,..., k},
there exist lj, rj with

D (C, CS(Sj[lj . . . rj])) ≤ δ.

Now, the important point is that the algorithm for
center gene cluster detection [7], computes candidates
instead of directly finding center gene clusters. These
candidates are intervals [l1, r1],..., [lk,..., rk] such that the
sets Cj := CS(Sj[lj...rj]) might allow for some center C ⊆
Σ with D(C, Cj) ≤ δ for all j = 1,..., k. Our task is to
check if the resulting center does indeed meet the dis-
tance threshold.
We can transform the approximate occurrences Cj, for

j = 1,..., k, to binary state strings by iterating over all
genes that appear in at least one approximate occur-
rence, using ‘1’ if the approximate occurrence contains
the gene, and ‘0’ if it does not. The order of genes is not
important in this transformation, but has to be identical
for all strings, see also the Preliminaries. Searching for a
center gene cluster under the symmetric set distance, is
equivalent to searching for a binary string in the trans-
formed instance under the Hamming distance.
The resulting instances are often rather “short”, as

most approximate gene clusters contain only few genes.
To construct longer and, hence, harder instances for
our evaluation, we simply concatenate several of these
short instances (that are blocks of k binary strings) into
one long instance, being a single block of k binary
strings. This allows us to evaluate the performance of
the different methods at the borderline between “tract-
able” and “intractable” instances. At the same time, we
argue that the resulting instances are still “biologically
valid.”
For our evaluation, we use genomes from the NCBI

Genome database http://www.ncbi.nlm.nih.gov/sites/
entrez?db=genome. Grouping of genes into gene families

is done based on the cluster of orthologous groups cate-
gorization http://www.ncbi.nlm.nih.gov/COG/. We used
two protocols to construct the two data sets, where we
believe the second data set to be closer to the biological
application that we have in mind.
For the first data set we used five g-proteobacteria

(Table 1). Each approximate gene cluster instance con-
sists of five approximate occurrences, one on each gen-
ome. An approximate gene cluster instance is converted
to five binary strings, as described above. We concate-
nated instances (each consisting of five strings) until the
desired length L was reached. Additional strings were
constructed in the same fashion, incorporating further
cluster occurrences. We created up to 50 instances for
each combination of k and L with k = 20, 30, 40, 50 and
L = 250, 300,..., 500.
We generated the second data set using 43 genomes

(Table 2). To obtain larger instances, we concatenated
smaller instances until a pre-defined length L was
reached. We created 100 instances for each combination
of k and L with k = 4, 6, 8, 10 and L = 20, 25,..., 40.
Note that we do not “concatenate instances vertically”,
so the resulting instances are probably closer to the
“biological truth” than those of the previous protocol.
To compute dopt we have to increase d stepwise, start-

ing from the lower bound for dopt, given by

dlower =
1
2
maxi, jdH(si, sj). We removed all instances that

could not be decided for any d with dlower ≤ d ≤ dopt
within a time limit of 10 minutes by any of the algo-
rithms, since we cannot determine the right dopt. This
left us with 664 instances for the first data set and 1957
instances for the second one.

Removing trivial columns
To avoid taking trivial columns into account, we kept
only the dirty columns, representing the “hard part” of
the instances. We use L’ to denote the length of these
reduced instances. We stress that in the following, all

Table 1 Genomes from the NCBI Genome database for
first data set.

Species name Refseq Genes PC

Buchnera aphidicola str. APS NC_002528 607 564

Escherichia coli str. K-12 substr. MG1655 NC_000913 4493 4149

Haemophilus in uenzae Rd KW20 NC_000907 1789 1657

Pasteurella multocida subsp. multocida str.
Pm70

NC_002663 2092 2015

Xylella fastidiosa 9a5c NC_002488 2838 2766

Five g -proteobacteria from the NCBI Genome database, used for detection of
approximate gene clusters to generate biological instances of the center
string problem. ‘Refseq’ is the reference sequence from NCBI Genome
database, ‘PC’ the number of protein-coding genes.
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computations and evaluations are performed on these
reduced instances. The amount of reduction shows the
difference between the two data sets. While in the first
data set we only kept between 35.7% and 56.5% dirty
columns, the instances from the second data set are
much harder, containing on average between 89.0% and
97.0% dirty columns, depending on the number of
strings. The number of dirty columns increases with the
number of strings (Table 3).
We concentrate on the computation of center strings

for d = dopt and d = dopt - 1, since these are the compu-
tationally hard instances (Figure 4). For the parameter-
ized algorithms, worst-case running times grow
exponentially in d, and running times of algorithms are
also dominated by these cases in practice.

Excluding unsolvable instances by preprocessing
Our preprocessing allows us to exclude unsolvable
instances more efficiently than the computation of the
naïve kernel, when d is too small for a center string to
exist. This is of particular interest as, here, our algo-
rithms have to scan the complete solution space to
ensure that no solution exists. Recall that, during the
computation of the naïve kernel, instances with more

than kd dirty columns or d <
1
2
maxi, jdH(si, sj) are

rejected, since the instance cannot have a solution for
this choice of d. The percentage of instances excluded
by preprocessing for d = dopt - 1 ranges between 50 and
100 (Table 4). Our improved preprocessing always filters
out more instances than does the naïve kernel. For dif-
ferent k, we can exclude between 96.2% and 100% of
instances, that have not been filtered by the naïve kernel
for the first data set and, for the second data set, we can
exclude between 87.7% and 94.3% of instances. Recall
that the instances we removed (261 for the first data set
and 43 for the second one) have not been filtered by
preprocessing for their lower bound d. Since we cannot
determine whether this lower bound is the real dopt or
dopt - 1, these instances are not taken into account,
leading to the high percentages in the first data set.

Solving trivial positions by preprocessing
The second advantage of our method is the computa-
tion of positions that can be trivially solved during pre-
processing. The percentage of fixed positions is high for

Table 2 Genomes from the NCBI Genome database for
second data set

Species name Refseq Genes PC

Aquifex aeolicus NC_000918 1580 1529

Clostridium acetobutylicum ATCC 824 NC_003030 3843 3671

Corynebacterium glutamicum ATCC 13032 NC_003450 3073 2993

Deinococcus radiodurans R1 chromosome 1, NC_001263 2687 2629

Deinococcus radiodurans R1 chromosome 2 NC_001264 369 268

Fusobacterium nucleatum NC_003454 2125 2063

Listeria innocua Clip11262 NC_003212 3065 2968

Mesorhizobium loti NC_002678 6804 674

Mycoplasma genitalium NC_000908 524 475

Mycoplasma pneumoniae NC_000912 733 689

Mycoplasma pulmonis NC_002771 815 782

Mycobacterium tuberculosis CDC1551 NC_002755 4293 4189

Ralstonia solanacearum, megaplasmid NC_003296 1684 1676

Ralstonia solanacearum NC_003295 3503 3437

Rickettsia conorii str. Malish 7 NC_003103 1414 1374

Salmonella typhimurium LT2 NC_003197 4620 4423

Staphylococcus aureus subsp. aureus N315 NC_002745 2664 2583

Synechocystis sp. PCC 6803 NC_000911 3229 3179

Thermotoga maritima NC_000853 1928 1858

Ureaplasma urealyticum NC_011374 695 646

Bacillus halodurans C-125 NC_002570 4170 4065

Bacillus subtilis NC_014479 4170 4062

Borrelia burgdorferi NC_001318 890 851

Buchnera sp. APS NC_002528 607 564

Campylobacter jejuni NC_008787 1707 1653

Caulobacter crescentus NC_002696 3819 3737

Chlamydia pneumoniae NC_000922 1122 1052

Chlamydia trachomatis NC_000117 940 895

Escherichia coli O157:H7 NC_002695 5371 5229

Escherichia coli str. K-12 substr. MG1655 NC_000913 4493 4149

Haemophilus influenzae Rd NC_000907 1789 1657

Helicobacter pylori 26695 NC_000915 1627 1573

Helicobacter pylori str. J99 NC_000921 1534 1488

Lactococcus lactis NC_002662 2425 2321

Xylella fastidiosa NC_002488 2838 2766

Neisseria meningitidis serogroup B str. MC58 NC_003112 2225 2063

Pasteurella multocida PM70 NC_002663 2092 2015

Pseudomonas aeruginosa PA01 NC_002516 5669 5566

Rickettsia prowazekii str. Madrid E NC_000963 888 835

Streptococcus pneumoniae NC_012467 2254 2073

Streptococcus pyogenes str. SF370 serotype
M1

NC_002737 1810 1696

Treponema pallidum NC_000919 1095 1036

Vibrio cholerae chromosome 1 NC_012668 2897 2768

Vibrio cholerae chromosome 2 NC_012667 1013 1004

Neisseria meningitidis serogroup A str. Z2491 NC_003116 2065 1909

Mycobacterium leprae str. TN NC_002677 2770 1605

Genomes from the NCBI Genome database used for detection of approximate
gene clusters to generate biological instances of the center string problem.
‘Refseq’ is the reference sequence from NCBI Genome database, ‘PC’ the
number of protein-coding genes.

Table 3 Average percentage of dirty columns depending
on k

data set first (5 species) second (43 species)

number of sequences k 20 30 40 50 4 6 8 10

dirty columns 35.7 43.9 50.4 56.5 89.0 93.8 95.3 97.0
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the important case d = dopt. In fact, for the first data set
an average of 56.2% of the positions were fixed for these
instances during preprocessing, and 31.7% for the sec-
ond data set. Recall that MismatchCount and the algo-
rithm of Ma and Sun work on these reduced instances.
The number of solved positions depends on the dopt /L’
ratio of the instance, since at least L’ - 2dopt are fixed if
a string pair with distance 2dopt exists, and decreases
with increasing dopt /L’ (Figure 3). If we use dopt /L’ as a
measure for the hardness of the instance, the difference
between the two data sets is obvious.
For the first data set we further observe that there is

no “twilight zone” of fixed positions. In 80.9% of the

instances, more than 40% of positions were fixed; in
15.4%, the data reduction did not fix any positions, and
in fewer than 3.8% of the instances, we observed a fixing
of up to 40% of positions.

Running times
We have implemented the algorithms of Gramm et al.
[12], Ma and Sun [9], and the MismatchCount algo-
rithm, referred to as “Gramm“, “MaSun“ and “Mis-
matchCount“, respectively. These algorithms do not
include any preprocessing beyond the naïve kernel.
Name suffix “Pre“ indicates that preprocessing and algo-
rithm engineering are enabled. For the MismatchCount
algorithm, only the information from P is used.
We implemented all algorithms in Java and compiled

them with the Sun Java Standard Edition compiler version
1.6. We did all computations on a quad-core 2.2 GHz
AMD Opteron processor with 5 GB of main memory
under the Solaris 10 operating system. The running times
presented are the core running times of the algorithms
and do not include I/O or removal of clean columns. We
restricted running time to 10 minutes per instance.
We first show that running times of all algorithms are

really dominated by the cases d = dopt - 1 and d = dopt
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Figure 4 Average running times of all instances. Average running times of all instances for first (top) and second (bottom) data set. Running times
are depicted in dependency on varying d around dopt. Algorithm Gramm is shown separately for the second data set due to the long running times.

Table 4 Percentage of instances excluded by
preprocessing, for d = dopt - 1.

data set first (5 species) second (43 species)

number of sequences k 20 30 40 50 4 6 8 10

naïve kernel (%) 81.3 82.2 85.0 86.1 92.9 68.4 56.6 50.0

our preprocessing, from
remaining (%)

100 100 96.2 100 94.3 89.6 87.7 90.6

total excluded instances
(%)

100 100 99.4 100 99.6 96.7 94.7 95.3
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(Figure 4). It is clear that it is sufficient to concentrate
on the two cases d = dopt - 1 and d = dopt. The short
running times for dopt - 1 for the first data set are again
due to the removal of instances for which the lower
bound could not be decided. Note that if there is no
string pair with distance 2dopt or 2dopt - 1, we cannot
avoid calling the algorithm with d = dopt - 1 to ensure
that dopt is truly optimal.
To show how running times depend on dopt, we

pooled instances with respect to the optimum center
distance dopt. For d = dopt - 1 we excluded all instances
where d <L’/k after removing clean columns, or

d <
1
2
maxi, jdH(si, sj) as these obviously have no solu-

tion, leaving us with 644 instances for the second data
set, while the 108 remaining instances for the first data
set are not enough to analyze. Even if instances are not
rejected by preprocessing, the algorithms tend to reject
instances more quickly if the preprocessing information
is used. Different percentages were rejected by the algo-
rithms within different sets of time limits for the second
data set (Table 5).
Using data reduction and information gained during

preprocessing reduces the running times of the algo-
rithms for both d = dopt - 1 and d = dopt in all cases
(Figure 5). On the first data set, MismatchCount using
the preprocessing information outperforms the other
algorithms, while MaSunPre is best on the second data
set, especially where d = dopt. The improvement of

MismatchCount is least significant since the information
from R and T cannot be used.

Conclusions
We have presented improved preprocessing for the
CENTER STRING problem. This is based on the
observation that, for strings with an optimal center at
distance d, there are usually many pairs of strings with
distance close or equal to 2d. Our data reduction
allows us to reject more instances that do not have a
valid center string, and to draw conclusions about cer-
tain positions of a center string. We show how this
information can be used in the search tree algorithms
of Gramm et al., and Ma and Sun. We have also pre-
sented the MismatchCount algorithm for binary
alphabets.
In our experimental evaluation, we showed that, with-

out preprocessing, the MismatchCount algorithm has
better running times than the other two algorithms.
Furthermore, our data reduction is very efficient and
algorithms using this information outperform the origi-
nal ones, with the overall best performance shown by
MismatchCount on the first data set and the algorithm
of Ma and Sun in combination with our preprocessing
on the second. Our data reduction is particularly helpful
for tackling the case d = dopt - 1, as we can exclude
more instances.
For the Levenshtein distance and weighted edit dis-

tances, the CENTER STRING problem problem is W
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Figure 3 Percentage of trivially solved positions for d = dopt. Percentage of trivially solved positions for d = dopt plotted against the dopt /L
’

ratio of the instances for the first data set (full dots) and the second data set (empty dots). Dots represent individual instances, the solid line is
average percentage for intervals of width 0.05.

Table 5 Percentage of instances excluded by the algorithms within different time limits, for d = dopt - 1.

MCPre MC MaSunPre MaSun GrammPre Gramm

time limit 10 min (%) 100 100 100 100 98.5 9.0

time limit 1 min (%) 98.5 98.5 100 98.5 83.6 4.5

time limit 1 sec (%) 34.3 23.9 89.6 17.9 34.3 1.5

Only the 67 instances of the second data set not rejected by the preprocessing were taken into account. ‘MC’ denotes the MismatchCount algorithm.
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[1]-hard regarding the number of input strings. To the
best of our knowledge, it is an open problem if these
problems are W[1]-hard regarding the distance para-
meter, too. In this case, our parameterized methods
would be not applicable for these distances.
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