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Background: OmniLog™ phenotype microarrays (PMs) have the capability to measure and compare the growth
responses of biological samples upon exposure to hundreds of growth conditions such as different metabolites
and antibiotics over a time course of hours to days. In order to manage the large amount of data produced from
the OmniLog™ instrument, PheMaDB (Phenotype Microarray DataBase), a web-based relational database, was
designed. PheMaDB enables efficient storage, retrieval and rapid analysis of the OmniLog™ PM data.

Description: PheMaDB allows the user to quickly identify records of interest for data analysis by filtering with a
hierarchical ordering of Project, Strain, Phenotype, Replicate, and Temperature. PheMaDB then provides various
statistical analysis options to identify specific growth pattern characteristics of the experimental strains, such as:
outlier analysis, negative controls analysis (signal/background calibration), bar plots, pearson’s correlation matrix,
growth curve profile search, k-means clustering, and a heat map plot. This web-based database management
system allows for both easy data sharing among multiple users and robust tools to phenotype organisms of

Conclusions: PheMaDB is an open source system standardized for OmniLog™ PM data. PheMaDB could facilitate
the banking and sharing of phenotype data. The source code is available for download at http://phemadb.

Background

High-throughput phenotype analysis, running multiple
viral, bacterial, or eukaryotic strains through miniatur-
ized assays, has long been used in the biotechnology
industry and is becoming increasingly important in aca-
demic research as laboratory automation costs continue
to decrease. With the advent of next generation genome
sequencing instruments [1], allowing even small labora-
tories to sequence potentially hundreds of bacterial
strains and viruses per year, very rapid functional profil-
ing of a great number of samples becomes increasingly
important.

One popular approach for high-throughput phenotype
analysis is the OmniLog™ platform (Biolog Inc, Hey-
ward, CA), an instrument designed primarily for meta-
bolic and antibiotic resistance assays of bacterial and
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eukaryotic strains in 96-well microtiter plates. The
instrument makes use of specially designed ‘phenotype
microarray’ (PM) plate assays. For a standard bacterial
metabolite assay, 20 plates 20 plates (1,920 wells) are
used. In each well there is a different substrate (metabo-
lite, antibiotic, etc) as well as a dye. Bacteria are depos-
ited in each of the 1,920 wells and incubated in the
temperature-controlled instrument. Fifty plates can be
analyzed by the instrument at a time, and every 15 min-
utes for a user-defined number of days, a robotic camera
takes a snapshot of each well and the instrument moni-
tors the change in optical density of each well as the
bacteria either grows, does not grow, or exhibits inhibi-
tion by the various compounds present in each well. In
this way, the OmniLog™ can produce 4,800 data points
every 15 minutes over the course of several days. A
recent example of the use of the OmniLog™ system is
the comparative metabolic analysis of two completely
sequenced Bacillus cereus strains - ATCC 10987 and
ATCC 14579. This analysis revealed differences in
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utilization of carbohydrates, peptides, amino acids and
ammonia between strains that revealed potential adapta-
tions to food borne pathogenesis [2].

To better facilitate the numerous challenges in mana-
ging the data produced in these experiments, which
include processing data from raw form to interpretable
summaries, raw strain and metadata storage, logical
querying capabilities, statistical calculations, and repre-
senting results in publication quality figures, we have
designed a software system called Phenotype Microarray
DataBase (PheMaDB). This open source database and
analysis system is designed to be used as a web server,
facilitating the sharing of data and enhancing the user
tools supplied with the OmniLog™ instrument.

Construction and Content

Implementation

The infrastructure for PheMaDB was created using the
open source tools PHP http://www.php.net for the gra-
phical user interface (GUI), R http://www.r-project.org
for the analytical modules [3], MySQL http://www.
mysql.com for the database, and Perl http://www.perl.
org for parsing and uploading the OmniLog™ PM data
into the database.

Workflow

User accounts with associated access levels can be cre-
ated within the system to allow the appropriate investi-
gators permission for uploading, downloading,
querying, or analyzing data. Once the user has been
granted access to PheMaDB, the user follows a stan-
dardized process flow to input data and associate it
with the following tables: Project, Species, Strain, Phe-
notype, and Genotype. URLs for specific projects are
generated by a CGI script, allowing a means of direct
linking of the PheMaDB to other databases. Upon link-
ing to an entry in PheMaDB directly via an URL, the
user is prompted for login information before being
allowed to proceed.

The Kinetic table stores the time point data for each
of the phenotypes in the OmniLog™ screen. Data from
the OmniLog™ instrument is exported as comma sepa-
rated values (.csv format) for upload into the system.
Upon loading, the user links the kinetic dataset to a spe-
cific strain entry and a set of phenotypes.

For search and analytical functionality, the initial web
pages present a choice of optional views. The user can
select the search criteria of interest, then drill-down fol-
lowing a selection hierarchy of Project, Strain, Pheno-
type, Replicate, and Temperature for choosing records
to analyze. The user can also choose to average all phe-
notype replicates for the same strain. The averaged
result file can serve as an input into all the analysis
modules except for the heat map plot, since this module
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has its own functionality to handle the replicate
information.

Once the records have been generated, the analysis
modules are presented to the user for selection (Figure
1). The following outline describes each of the seven
modules:

1. Outlier analysis

Allows users to identify aberrant phenotypes or strains
within the batch of those selected. For each strain, phe-
notype and plate, the well and replicate combination
values are interpolated to create vectors of equal and
the median correlation for each group is calculated.
Those records with a median correlation less than the
user selected value are written out in an excel file.

2. Negative controls analysis

Requires a set of negative control wells to identify the
inherent noise threshold in the assay; non-negative con-
trols are optional. Quantile curves are calculated for all
negative controls selected (and non-negative controls, if
provided) across the time points and the quantile curves
are plotted, along with various threshold values that can
be used to guide the signal/noise boundary
determination.

3. Bar plots

Graphs bar plots for all of the strain and phenotype
records selected by the user, with shading specific to
phenotype, strain, or both and outputs the images in a
single file.

4. Correlation matrix

Identifies similarities and/or differences between pheno-
type or strain profiles. This module calculates the pair-
wise Pearson correlation between all strain, phenotype,
plate, well, and replicate combinations selected. The
values are interpolated to have equal lengths before cor-
relation calculations. The correlation values are then
output in an excel file, while an intensity plot is also
output.

5. Profile search

Allows users to specify a phenotype profile pattern over
time and those records selected are compared against
the user-defined profile for similarity. The values are
interpolated to have equal lengths and both correlation
coefficients and p-values are provided in each plot. The
output includes a single image file with plots for each
phenotype containing the user-defined profile pattern
and the actual pattern for a phenotype. Profile shading
is specific to phenotype, strain, or both.

6. K-means clustering

Provides clustering of the records selected using a k-
means algorithm. The values are interpolated to have
equal lengths and the phenotypes are clustered into k
user-defined clusters. The individual phenotypes are
then z-score scaled and plotted for each cluster, as well
as the centroid for the cluster with shading specific to
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Figure 1 PheMaDB analytical module selection page. The analysis module menu page allows user to select specific analyses after identifying

strains and phenotypes of interest.
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phenotype, strain, or both. Both an image file and an
excel file with cluster memberships and correlation
values (to the cluster centroid for each cluster) are
output.
7. Heat map plot
Averages replicates for each strain and for each pheno-
type, computes the ratio of one or many test strain(s) to
a user-selected parent strain. A Welch’s modified t-test
between each parent-test strain combination for all phe-
notypes is also calculated. Both an image file with an
intensity heat map and an excel file is output with the
ratios and p-values for each phenotype for all pair-wise
parent-test strain contrasts.

All visuals are created in postscript (ps) format to pro-
vide high-resolution images based on vector graphics for
zoom capabilities and publication-worthy figures.

Results and discussion

System Evaluation

In order to test the system and evaluate the ability of
the analytical modules to identify meaningful patterns,
we compared the phenotype profiles of a Bacillus
anthracis mutant to its wild type parent. B. anthracis
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Sterne strain 7702 is sensitive to infection by a phage
called AP50c and spontaneous AP50c resistant mutants
were found to deposit an extracellular material on the
bacterial surface [4]. We mapped the relevant mutations
to the csaB gene and constructed a targeted csaB dele-
tion mutant that was resistant to infection and also pro-
duced the extracellular material (Bishop-Lilly et al,
manuscript in preparation). We hypothesized that the
extracellular material may alter the permeability and
entry of compounds and nutrients and thus might alter
the phenotype profiles as measured by OmniLog™ phe-
notype microarrays.

For each experiment, forty 96-well plates were incu-
bated (20 plates with wildtype and 20 plates with the
csaB deletion mutant). Two replicates were performed
for the wildtype AP50c strain and the csaB deletion
mutant. There are 1,920 phenotypes in each set of 20
plates (20 plates x 96 wells). However, there are only a
total of 1,200 distinct phenotypes since some pheno-
types can be located in multiple wells on a plate per
OmniLog’s design.

We tested the hypothesis, and as shown in the heat
map (Figure 2), a number of growth characteristics have
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Figure 2 Heat map of cell growth changes for AP50c mutant. The heat map provides an overall picture of the cell growth impact on the
1,920 phenotypes for AP50c mutant strain as compared to the wild type strain. The green shaded areas (PMO1-PMO08) indicate better cell growth
of mutant strain whereas the black and darkly shaded areas (PM09-PM20) indicate relatively similar cell growth of the mutant strain as compared
to the wild type strain. The PM1 through PM20 data are presented as blocks of 20 columns. The rows represent the 96 wells in each of the PM

plates (AO1 through H12). The bar at the bottom provides visualization of the fold change between the mutant and the wild type parent strains.
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been altered (albeit moderately) in the mutant as com-
pared to the parent. Overall, there are a total of 48 com-
pounds or nutrient treatments that were found to result
in either positive or negative cellular growth in the
mutant strain as compared to the wild type strain (p <
0.05; FC >= 2 or FC <= -2). The plates 1 through 10
contain growth metabolites such as nitrogen, carbon,
and phosphorous sources. These columns are primarily
shaded green, indicating growth promotion of the
mutant strain.

In 40 of the 48 growth conditions, a significant
increase in growth of the mutant strain as compared to
the parent strain was observed. Of these 40 growth con-
ditions, 31 were varied nitrogen sources. Among the 8
compounds and nutrients found to inhibit the growth of
the mutant strain, one of the most effective compounds
is 8-hydroxyquinoline (p = 9.97 x 10°% FC = -5.39).
This compound is a lipophilic iron-chelating agent that
targets the anthrax toxin and inhibits B. anthracis
growth in animals [5,6]. The mechanism of the
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enhanced growth inhibition of the csaB mutant in the
presence of 8-hydroxyquinoline is not clear at this time.
The complete list of cell growth results is provided in
Additional file 1 (Table S1). The heat map module
gives a snapshot of phenotype changes for this mutant
strain as compared to the wild type parent strain for
identification of growth differences in both magnitude
and significance.

To better illustrate the raw growth curves of the
mutant and wild type strain over time, we used the bar
plot module. The results from this analysis demon-
strate the large magnitude of difference in the growth
curves of the mutant and the wild type strain in med-
ium containing 8-hydroxyquinoline (Figure 3). This
plot also shows the variability between replicates (i.e.
multiple wells that contain the same metabolite on the
same plate) of the same strain and the peak times.
These bar plots provide a quick and facile approach
for visualization of phenotype differences between
mutant and wild type B. amnthracis, thereby
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Figure 3 Bar plots for 8-Hydroxyquinoline. The bar plots indicate a decrease in cell growth for the AP50c mutant as compared to the wild
type AP50c strain over a course of 72 hours. The top light blue bar plots represent 8-Hydroxyquinoline growth profiles located in PM20/G11
(left) and PM20/G12 (right) for the mutant strain. The bottom dark blue bar plots represent 8-Hydroxyquinoline growth profiles located in PM20/

G11 (left) and PM20/G12 (right) for the parent strain.
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demonstrating the utility and robustness of PheMaDB
for this type of analysis.

Future Work

Currently, basic quality control methods such as outlier
analysis and negative control analysis are incorporated
in the analysis modules. Outliers based on reproducibil-
ity between replicates can be tested. Background inten-
sity ranges for allowing signal/noise thresholding can be
determined. In the future, we plan to include additional
quality control assessments such as detection of spatial
biases.

PheMaDB was fully tested on Mac Operating Systems.
Although most Linux/Unix Operating Systems should
run PheMaDB, we plan to fully test PheMaDB in Linux/
Unix platform to verify its compatibility.

While data storage for the OmniLog™ system has
been the focus for initial development of PheMaDB, the
database schema will support other types of phenotype
data not necessarily produced by OmniLog™ (e.g. auto-
mated antibiotic sensitivity profiles) with appropriate
loading scripts. Extension of the data types and imple-
mentation of new analysis modules will be the theme
for future development of this open source project.

Conclusions

PheMaDB is an open source web-based database man-
agement system that provides investigators with the
ability to manage OmniLog™ data and strain metadata
from the initial to terminal points of an experiment. It
also allows users to share data easily via the web-based
GUI and may serve to promote the public sharing of
phenotype data. The system enables users to load and
store the data, query across datasets, perform statistical
analyses, and produce publication quality figures. Phe-
MaDB provides storage and rapid determination of
growth condition differences across a range of condi-
tions and organisms.

Availability and Requirements

The most recent release of PheMaDB source code is
available at http://phemadb.sourceforge.net. The
demonstration version of PheMaDB is available at
http://binf.gmu.edu/wchang3/phemadb/pheno/index.
php. The system is currently only supported on Mac
operating systems. The README file included pro-
vides details on the installation as well as example files
for test case analysis. PheMaDB uses GNU General
Public License version 3 (GNU GPL3). The system
requires the installations of PHP version 5.2 or higher,
R version 2.0 or higher, apache version 2.2 or higher,
Perl version 5.0 or higher, and MySQL version 5.0 or
higher.
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Additional material

Additional file 1: Table S1: Cell growth result. For the worksheet
designated, "All data”, the columns A through D represent the location
of each unique phenotype with the detailed descriptions of modes of
actions. The columns E and F correspond to the fold changes and p-
values, respectively. For the worksheet designated, “Filtered data”, the
phenotypes that have p-value < 0.05 and FC >= 2 or FC <= -2 are
reported. Any phenotypes that have at least a 2-fold increase in cell
growth for the ratio between the mutant strain and the parent strain are
highlighted in yellow. All phenotypes that have at least a 2-fold decrease
in cell growth for the ratio between the mutant strain and the parent
strain are highlighted in pink. All the phenotypes that were in-between a
2-fold increase and decrease in cell growth were eliminated.
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