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Abstract

Background: The identification of drug characteristics is a clinically important task, but it requires much expert
knowledge and consumes substantial resources. We have developed a statistical text-mining approach (Blnary
Characteristics Extractor and biomedical Properties Predictor: BICEPP) to help experts screen drugs that may have
important clinical characteristics of interest.

Results: BICEPP first retrieves MEDLINE abstracts containing drug names, then selects tokens that best predict the
list of drugs which represents the characteristic of interest. Machine learning is then used to classify drugs using a
document frequency-based measure. Evaluation experiments were performed to validate BICEPP’s performance on
484 characteristics of 857 drugs, identified from the Australian Medicines Handbook (AMH) and the
PharmacoKinetic Interaction Screening (PKIS) database. Stratified cross-validations revealed that BICEPP was able to
classify drugs into all 20 major therapeutic classes (100%) and 157 (of 197) minor drug classes (80%) with areas
under the receiver operating characteristic curve (AUC) > 0.80. Similarly, AUC > 0.80 could be obtained in the
classification of 173 (of 238) adverse events (73%), up to 12 (of 15) groups of clinically significant cytochrome P450
enzyme (CYP) inducers or inhibitors (80%), and up to 11 (of 14) groups of narrow therapeutic index drugs (79%).

most predictive ones for the classification task.

P450

Interestingly, it was observed that the keywords used to describe a drug characteristic were not necessarily the

Conclusions: BICEPP has sufficient classification power to automatically distinguish a wide range of clinical
properties of drugs. This may be used in pharmacovigilance applications to assist with rapid screening of large
drug databases to identify important characteristics for further evaluation.

Keywords: data mining artificial intelligence, drug toxicity, adverse drug reaction reporting systems, cytochromes

Background

A frequent inquiry in biology and medicine is to ask
whether a biomedical entity (e.g., a drug) and a charac-
teristic (e.g., an adverse effect) are associated with each
other. Such true-false relationships form the core of
scientific hypotheses. As they are crucial to our interpre-
tation of biomedical phenomena, considerable amount
of manpower and resources are often spent on their dis-
covery and assimilation. Field experts frequently conduct
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extensive literature reviews and database searches to
examine the evidence of these relationships. Further-
more, this binary knowledge often presents ambiguity
that further restricts the rate of discovery.
Computational text mining tools, the automated ana-
lysis of biomedical texts stored in electronic media, have
been developed to assist clinical and basic scientists in
matching characteristics with domain-specific biomedi-
cal entities. For example, several methods of in silico
candidate gene prioritisation have been developed that
use features derived from MEDLINE to help scientists
test whether a gene is likely to be associated with a clin-
ical disorder [1-12]. Text mining has also been applied
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to classify clinical properties of drugs for use in quanti-
tative structure-activity relationship (QSAR) models to
accelerate drug development [13]. Mining text in elec-
tronic databases has also been integrated in clinical
research including the automated classification of aetio-
logical factors of cancers [14] and to match candidate
anti-neoplastic drugs with cancers prior to clinical trials
[15]. In the systematic organisation of scientific knowl-
edge, text mining methods have been shown to be
equally effective compared to the manual curation of
pharmacogenetic databases [16].

In this paper, we have extended the application of
text-mining to the task of identifying binary drug char-
acteristics. We have developed a novel method, the Bln-
ary Characteristics Extractor and biomedical Properties
Predictor (BICEPP), to classify properties (characteris-
tics) of drugs (scientific entities) and subsequently vali-
dated this approach on data collected from traditional
analytical methods derived from the knowledge of field
experts (a therapeutic drug reference and a drug interac-
tion database). To demonstrate its applicability, we eval-
uated the performance of BICEPP on many drug
characteristics, including therapeutic classes, adverse
effects, and their potentials for pharmacokinetic drug-
drug interactions. The practical aim of BICEPP is to
perform systematic, rapid throughput screening to help
editors of drug references to redirect skilled staff to the
evaluation of the resulting leads. Furthermore, the text
mining approach for predicting drug characteristics may
help to identify obscure adverse drug events (ADR).
Specifically, the analysis of biomedical literature may
further augment the existing models for ADR identifica-
tion which are frequently based on physicochemical
properties of drugs with QSAR modelling [13,17].

A notable feature of our approach is that it predicts
drug characteristics by only using a list of drug names
as examples supplied by user. This approach is advanta-
geous because a well-constructed query is needed when
performing a manual search of literature database. Such
an example-based approach permits BICEPP to operate
under situations where the concept of characteristic is
unclear, or when the exact search terms and ranking
methods are difficult to ascertain. The key concept
employed by BICEPP is based on the frequency of tex-
tual features within biomedical text corpus. One of the
commonly-used measures in information retrieval (IR)
tasks is term frequency (tf), often defined as the normal-
ised number of occurrences of a term (e.g., a word) in a
given length of text. Tf-based measures have been
applied to MEDLINE databases to predict gene-disease
relationships [1,4,6]. In the search for genes related to
rheumatoid arthritis, the term frequency-inverse docu-
ment frequency (tf-idf) of biomedical concepts derived
from MEDLINE abstract data was integrated with meta-
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analysis of genome-wide association studies to success-
fully identify novel single nucleotide polymorphisms
(SNPs) associated with increased disease risk [12,18]. Tf-
idf-based similarity comparisons have also been applied
to assist with the manual classification of protein
domain databases with high accuracy [19]. Hence, based
on the generalisability demonstrated in other studies, it
was justifiable to use a frequency-based approach to
perform binary predictions and classification. In this
paper, we explored the use of frequency-based methods
to identify discriminative textual features for classifying
drug characteristics.

Methods

Drug lists and drug characteristics studied in this paper
Two data sources were used in the training and evalua-
tion of BICEPP models: 1) We manually extracted the
generic names of all 857 drugs and 455 drug character-
istics (238 adverse effects, 20 major therapeutic classes,
and 197 minor therapeutic classes including indications)
listed in the Australian Medicines Handbook 2009
(AMH) [20]. AMH is a clinical resource compiled by
experts and is used for prescribing decision support.
AMH was selected because its information content is
reasonably complete, thus the assignment of binary
classes to a drug (e.g., whether a drug may cause to an
adverse event) can be performed without ambiguity.
Only the generic names of drugs registered in Australia
as listed in the AMH 2009 were used for the analysis. 2)
The characteristics of pharmacokinetic drug-drug inter-
action were extracted from the PharmacoKinetic Inter-
action Screening (PKIS) database [21], including 15
“perpetrator” classes (capable of significantly altering the
concentration of another drug) and 14 classes of narrow
therapeutic index drugs. The number of characteristics
in each group is listed in Table 1. Each of the 857 drugs
was manually labelled positive (has the characteristic) or
negative (does not have the characteristic) according to
AMH and PKIS. The datasets are supplied as an addi-
tional file (see Additional File 1).

Estimating the conditional document frequency (CDF) of
a token by MEDLINE search

The PubMed database (2009 baseline, accessed April
2009) was searched using the names of each AMH-listed
drug as a query to retrieve all abstracts containing the
drug name. We used words and hyphenated expressions
as tokens: each abstract was transformed into a list of
tokens delimited by white space, comma, and semicolon
into an unordered set (bag of tokens), and common and
stop words (e.g., “the”, “and”, “an”, and “it”) were not
included in the set. Word stemming was not employed,
case was ignored, and numerical data and digits were
retained as part of the token. The conditional document
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Table 1 The drug characteristics and their data sources
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Data source Characteristic Examples Number of Median number of drugs
category characteristics associated with the
characteristic
Australian Medicines Major drug Gastrointestinal drugs, 20 37
Handbook (AMH) classes Anti-infectives, Cardiovascular drugs
Minor drug 5HT3 antagonists, Benzodiazepines, 197 3
classes Carbapenems,
Platinum compounds, Taxanes
Adverse events  Anorexia, EPSE, Hyperuricaemia, Increased liver 238 22
enzymes, Nephrotoxicity
Pharmacokinetic Perpetrators® CYP1A2 inducers, CYP3A inducers CYP3A 15 5
Interaction Screening tool inhibitors (moderate), CYP3A inhibitors (strong)
(PKIS)
Narrow Alkylating agents, Anticonvulsants, 14 55
therapeutic Immunosuppresants,
index drugs
Total 484

Abbreviations: CYP = cytochromes P450. EPSE = extra-pyramidal side-effects. Note: *) Perpetrators: perpetrators are drugs that are capable of altering the
concentration of another drug with > 2-fold change via the hepatic CYP enzyme system.

frequency (CDF) of a token was defined as the number
of abstracts normalised against the total number of
abstracts retrieved from MEDLINE using keywords
comprised of drug name d, such that:

N(w A d)

Cdfw,d = N(d)

where cdf,,; is the CDF of token w and drug d, and N
(q) is the number of abstracts retrieved from MEDLINE
containing the query comprised of tokens q.

Eliminating rare and common tokens

To improve the efficiency in finding predictive tokens,
we applied two heuristics to reduce the number of fea-
tures in the search space. We removed rare tokens that
occur in less than two abstracts in all drugs. Common
tokens were eliminated if their CDFs were correlated
linearly with N(d) (cut-off: 7* > 0.33, where r is the Pear-
son’s correlation coefficient).

Selecting the most predictive tokens for classification
Tokens that best predict a drug characteristic, i.e., those
with higher CDF in the positive examples (drug exam-
ples representing the characteristic of interest), were
preferentially selected for subsequent classification: for
each token w and the set of drugs representing the char-
acteristic C, we defined both the true and false positive
rates [TPR,, c(¢) and FPR,, c(?)] of a token w with
respect to a characteristic C as:

n(cdfwa > tand d € C)
n(d € C)
n(cdfwa > tand d ¢ C)
n(d ¢ C)

TPRy,c(t) =

FPRy,c(t) =

for all drugs d € D = {d,, d>,..., dgs57} listed in the
AMH, where ¢ is an arbitrary threshold score bound by
0 and 1, C is contained in D, and n(d € C) and n(d ¢
C) denote the numbers of abstract containing drug
name 4 and in/not in C respectively.

The corresponding area under ROC curve (AUC) over
all thresholds is defined as:

N
1
AUCyc ~ > (TPRyc(tis1) + TPRy (1))
i=0
x (FPRy,c(tir1) — FPRy,c (i)

where 1 =ty >t; >t > ... >ty = -0 representing all pos-
sible thresholds of CDFs across the list of drugs D. In
cross-validation experiments, this feature selection pro-
cess was conducted independently on the training folds
instead of all data to avoid contamination of information
from the test folds.

Using CDFs and machine learning algorithms to predict
drug characteristics

We selected four machine learning algorithms for this
classification task: naive Bayes (NB), k-nearest neighbour
(IBk) with inverse distance weighing with k determined
by cross-validations, and support vector machines
(SVM) with linear (SVM/Linear) and radial basis func-
tion kernels (SVM/RBF). The CDFs of the most discri-
minative tokens (as measured by highest AUCs) were
used to train machine learning models. To obtain con-
sistent experimental results across a wide range of char-
acteristics, we elected to use a fixed number of features
(top-20 most discriminative tokens) for comparative
evaluations (see Additional File 2 for further explana-
tion). Waikato Environment of Knowledge Analysis [22]
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was used for constructing classifiers and making
predictions.

Estimating BICEPP’s performance by stratified cross-
validation

The generalised classification performance was esti-
mated by stratified cross-validations: 1) The list of drugs
was first labelled either a positive or negative class
according to whether they are associated with the char-
acteristic of interest. 2) Randomisation was subsequently
performed to ensure homogeneity across different folds
of training data. 3) The list of drugs was subsequently
stratified to ensure that each fold contains roughly the
same number of positive and negative drug examples.
For a characteristic with 10 or more positive examples,
five cycles of stratified 10-fold cross-validation were per-
formed. For characteristics with < 10 positive examples,
the number of folds was reduced to match the number
of positive examples (k-fold cross-validation, 1 <k< 10)
to avoid constructing a test set without positive exam-
ples. 4) The AUCs obtained from each run of prediction
were averaged by an arithmetic mean. To examine
whether one algorithm outperformed another, the num-
ber of characteristics with AUCs better than 0.80, 0.90,
or 0.95 were counted for each classifier. The overall
experimental procedure and the workflow of BICEPP
are illustrated in Figure 1.

Comparative evaluation with other IR methods for
generating features for drug characteristics prediction
Four additional evaluations were performed to assess
whether other commonly employed IR techniques may
improve the performance of cdf-only predictions:

1) Conditional term frequency

As a variation of cdf, the conditional term frequency
(ctf) of a drug d, defined as the number of times a token
appears in abstracts containing drug name d across all
MEDLINE abstracts, was calculated for each drug such
that:

> _ini(w)

tfip g =
Wud > ni(any token)

where n;(w) is the number of tokens matching token
w in the i-th document containing drug name d in
MEDLINE. The common and rare tokens were elimi-
nated using the identical procedure described above.
2) Conditional term frequency-inverse conditional document
frequency (ctf-icdf)
This measure is analogous to tf-idf with the difference
that the document corpus was restricted only to the
abstracts containing drug name d:

ctf —icdfy g = —ctfya x In(cdfy,q)
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The global term and document frequencies of a token
(tf and df, respectively defined as the number of tokens
and documents present in MEDLINE independent of the
co-occurrence of the drug name d in the abstracts) were
not evaluated because both £f and df are constants
hence are identical across all drugs. Stemming was not
employed in both analyses (ctf and ctf-icdf) to standar-
dise the comparisons with the CDF experiment.

3) Application of stemming algorithm

Linguistically related tokens were grouped by using the
stemming algorithm developed by Porter [23]. The effect
of stemming on BICEPP performance was evaluated by
using the CDF of each stemmed token for making
predictions.

4) Using drug synonyms to search the MEDLINE database
The use of drug synonyms can improve the recall of
overall document retrieval, but its effect on the predic-
tion of drug characteristics is unknown. To evaluate
whether the incorporation of drug synonyms could have
improved the predictive accuracy, we included the cor-
responding trade names listed in the Schedule of the
Australian Pharmaceutical Benefit Scheme [24] to per-
form MEDLINE search. The trade names were pre-pro-
cessed to remove the strength and formulation suffixes.
For example, “Zydol SR 100” and “Zydol SR 200” were
both reduced to “Zydol"; “Zofran” and “Zofran syrup”
were both truncated to “Zofran”. The CDF of each
token was calculated and used for comparative evalua-
tion of predictive performance.

Results

Feature selection process

A total of 1,814,157 abstracts were returned by search-
ing all 857 AMH drug names against MEDLINE. Over-
all, a median of 890 abstracts was retrieved for a given
drug (inter-quartile range, IQR: 275-2,446; maximum
198,950, “calcium”), with a median of 11,717 tokens per
drug (IQR: 5,873-21,542). A median of 1,220 tokens
(IQR: 515-1,489) was retained following the removal of
rare and common tokens. On average, 86% of all tokens
were eliminated prior to the feature ranking process. An
example of eliminated tokens is shown in Table 2. The
remaining tokens were ranked by the predictive power
as measured by AUC. For 160 (33%) characteristics,
there was at least one token that perfectly predicted the
characteristic itself (AUC = 1). For example, the adverse
effect of “sinus tachycardia” can be perfectly discrimi-
nated by the CDF of the token “tricyclic”, whereas the
CDFs of tokens “sexual”, “naion”, “pde5al”, and “self-
confidence” can perfectly predict whether a drug is a
type 5 phosphodiesterase inhibitor. Only 22 (4.5%) char-
acteristics had the most discriminative token with AUC
< 0.70 across all 857 drugs.
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Figure 1 The workflow of BICEPP and the evaluation procedure. A. The procedures of feature derivation and feature selection. The features
for the inputs of machine learning classifiers are the CDF of 20-most predictive tokens. The CDF of a token, given a drug, is defined as the
proportion of abstracts containing the token within the list of abstracts retrieved by using the drug name as query to search MEDLINE. B. Cross-
validation was performed to estimate the generalisation performance of BICEPP. The feature selection described in (A) was performed on the
training set (which contains k-1 folds of data) and machine learning models were built to predict test set data. This figure illustrates the 5 X
stratified up-to-10-fold cross-validation procedure used throughout the evaluation experiments in this paper. Abbreviations: AMH: Australian
Medicines Handbook; AWT: abstract with title; AUC: area under ROC curve; CDF: conditional document frequency using the drug name as query

Repeat 5 times to improve coverage

Obtain average AUC by arithmetic mean of all 50 runs

Comparative evaluation of machine learning predictions
using CDFs as features

By inspecting the cross-validation results across all cate-
gories, 20 (100%), 135 (69%), 159 (67%), 7 (47%), and 9
(64%) of the drug characteristics could be predicted
with good cross-validation performances (AUC > 0.80),
with the best performing algorithms, for categories of
the AMH major therapeutic classes, minor therapeutic
classes, adverse drug reactions, PKIS perpetrators, and
PKIS narrow therapeutic index drug classes, respectively.
In particular, BICEPP was very good at predicting major
therapeutic classes (95% of drugs with AUC > 0.90) but
less good at predicting drugs that may alter CYP-
mediated metabolism (the perpetrators drugs, 33%). For
the minor therapeutic classes (containing drug indica-
tions), 123 (62%) of the characteristics achieved AUC >
0.9 and the performance was less for the remaining
datasets. The cross-validation results by characteristics

and algorithms are summarised in Table 3 and Figure 2.
The full results are also supplied as an additional file
(see Additional File 3).

The number of positive examples in a characteristic was
loosely and inversely associated with classifier performance
(Spearman’s o = -0.49 for characteristics with > 10 positive
examples, Figure 3A). For example, “nausea” was listed in
469 out of 857 drugs but cross-validations only yielded a
best AUC of 0.689. This is in contrast with datasets with
fewer positive examples (for example, “myelosuppression”
was only labelled in 37 out of 857 drugs but had an AUC
of 0.974). As expected, for characteristics with < 10 posi-
tive examples, there was a considerably higher variations
in classification performance. For characteristics with > 10
positive examples, 269 out of 272 (98.9%) had AUCs with
the lower boundary of 95% confidence interval above 0.5
(one-sided z-test; standard errors were estimated by using
Hanley-McNeil method [25]), indicating that the vast



Lin et al. BMC Bioinformatics 2011, 12:112 Page 6 of 13
http://www.biomedcentral.com/1471-2105/12/112

Table 2 Examples of tokens eliminated and retained during the feature selection process on drug “warfarin”

I Examples of tokens
=1 only, when, however, well, another, same, results, other, observed, possible, different, since, even, could, though, occurring,
(perfect therefore, high, although, also, both, so, result, appeared
correlation)
= 0.90 restricted, controls, implicated, followed, diverse, stable, display, rate, plays, indicative, inhibit, typically, describe, excluded,
terminal, excessive, largest, knowledge, employing, se
= 0.80 life, mature, loading, preincubation, problem, failure, binds, resolved, physiology, shock, signs, molecule, bind, elevations,
chinese, usual, surface, aid, unit, accurate
=070 intervention, stimulus, transition, closed, enable, bands, requiring, ester, nervous, sizes, electrophoresis, polymorphonuclear,
aging, associations, accounts, practical, selective, choice, routine, attached
= 0.60 subset, undergoes, success, antagonist, artery, mr, depolarization, fields, suppression, precipitation, temperatures, records, mg2,
adjustment, oxygen, picture, assembly, transcripts, encoded, organic
=~ 0.50 hydrogen, coated, glycol, antisense, coronary, adsorbed, histology, scan, formulation, foods, holding, resorption, gestational,
filling, locus, memory, atrophy, ringer, prospectively, recruitment
=~ 040 diuretics, atrial, lysis, spinal, camp, bmax, vein, proteases, chelator, arachidonic, alzheimer, ascorbic, histamine, rhythm, ouabain,
gas, preoperative, bladder, menopause, pertussis
=033 chromatographic, endothelin, relaxed, acceptable, stenosis, withdrawal, january, trypsin, oxidized, infiltration, forearm, et-1,
(moderate enrolled, electrochemical, peroxidation, mothers, phosphodiesterase, cystic, compression, countries

correlation)

r = Pearson'’s correlation coefficient.

Examples of tokens retained by feature selection (in decreasing order of document frequencies).

Warfarin (8060), anticoagulation (2508), anticoagulant (1953), heparin (1699), thrombosis (1651), bleeding (1633), international (1324), venous (1238), aspirin
(1231), fibrillation (1191), inr (1106), prothrombin (1035), thromboembolism (1017), anticoagulants (864), thromboembolic (860), coagulation (790), embolism
(706), deep (698), prophylaxis (636), antithrombotic (606).

Examples of rare tokens eliminated by feature selection.

vestige, bacteroides, ca-laurell, gd2, idaho, i475s, h2-blocker, depots, viic/viiam, left-hemispheric, p = .37, laboratory-developed, cardio, frames, thistle, thy1,
homolog, videotapes, u-105665, five-years, cold-labeled, workups, fviiic.

Examples of common tokens eliminated by feature selection.

Table 3 The predictive performance of BICEPP by characteristics categories

Category Best AUC Algorithm
NB IBk SVM/L SVM/RBF Best of 4
AMH major classes > 0.80 20 (100) 19 (95) 19 (95) 20 (100) 20 (100)
> 0.90 15 (75) 16 (80) 16 (80) 16 (80) 19 (95)
> 095 10 (50) 12 (60) 11 (55) 11 (55) 12 (60)
AMH minor classes > 0.80 98 (50) 133 (68) 130 (66) 134 (68) 135 (69)
> 090 86 (44) 121 (61) 120 (61) 117 (59) 123 (62)
> 0.95% 73 (37) 114 (58) 02 (52) 106 (54) 114 (58)
AMH adverse events > 0.80 134 (56) 145 (61) 114 (48) 119 (50) 159 (67)
> 0.90 65 (27) 76 (32) 56 (24) 63 (26) 86 (36)
> 095 30 (13) 38 (16) 30 (13) 35 (15) 41 (17)
PKIS perpetrator > 0.80 3 (20) 7 (47) 3 (20) 4 (27) 7 (47)
> 090 1(7) 4.(27) 2 (13) 3 (20) 5(33)
> 095 0 (0) 2 (13) 2 (13) 2 (13) 2 (13)
Narrow therapeutic index drugs > 0.80 8 (57) 9 (64) 8 (57) 8 (57) 9 (64)
> 090 7 (50) 8 (57) 5 (36) 7 (50) 8 (57)
> 095 321 5 (36) 321 2 (14) 5 (36)
Overall > 0.80 263 (54) 313 (65) 274 (57) 285 (59) 330 (68)
> 090 174 (36) 225 (46) 199 (41) 206 (43) 241 (50)
> 095 116 (24) 171 (35) 148 (31) 156 (32) 174 (36)

The numbers in this table indicate the number of characteristics (percentage) that achieved an AUC above the given threshold in stratified cross-validation
evaluations. The performance is indicated by AUC and can be interpreted as good (> 0.80), very good (> 0.9), and excellent (> 0.95), respectively. Overall, 68% of
drug characteristics can be predicted with good AUC (numbers in boldface) and 36% of characteristics can be predicted very accurately (AUC > 0.95) with at
least one classifier. The last column (best of 4) shows how many characteristics achieved AUC above the given threshold by any of the four algorithms. Pearson'’s
chi-square test was applied to examine the homogeneity between algorithms. *) indicate the statistically significant categories at a. = 0.05 (analysed as 4 x 1
tables with 3 d.f). However, no categories were statistically performance significant after adjusting for family-wise error rate using Bonferroni method (n = 18).
Abbreviations: AE: adverse events; AMH: Australian Medicines Handbook; IBk: k-nearest neighbour algorithm; NB: Naive Bayes; SVM: support vector machine; SVM/
L: linear SVM; SVM/RBF: support vector machine with radial basis function kernel. PKIS: PharmacoKinetic Interaction Screening database.
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AMH: Adverse Events (n=238)
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Figure 2 The predictive performance of BICEPP (AUC) by drug characteristics. The predictive power of BICEPP was evaluated by using
stratified cross-validation experiments performed on each of the 484 drug characteristics listed in Table 1. In this figure, each data point denotes
the best AUC (out of the 4 machine learning algorithms) evaluated on the dataset of drug characteristic that contains more than 10 positive
examples (O), between 2-9 positive examples (*), and less than 2 positive examples (X) respectively. The dotted lines indicate AUCs of 0.8 and

majority of performance estimates were significantly better
than chance.

Machine learning algorithms were found to perform dif-
ferently in the drug classification tasks. IBk achieved the
best cross-validation results in most (53%) characteristics.
Similarly, SVMs with both linear and RBF kernels achieved
best cross-validation results in 21% and 23% of all drug
characteristics, respectively. One of the frequently-used
algorithms in IR and document classification, naive Bayes,
achieved best classification power in 52 (11%) of all char-
acteristics. However, the number of characteristics identi-
fied with good (AUC > 0.80), very good (> 0.90), and
excellent (> 0.95) discriminatory powers was not signifi-
cantly different between algorithms (Table 3).

The keywords used to describe a drug characteristic are
not necessarily the most predictive tokens

It was observed that the keywords used to describe
drug characteristics [the index keywords, (IK), e.g.,

“myelosuppression” is the IK of the corresponding char-
acteristic dataset] were not necessarily placed highly on
the token rank as sorted by AUC. In 145 (30%) of 484
characteristics evaluated, the IKs were either very com-
mon or very rare and hence eliminated by the feature
selection process. For the remaining 70% of characteris-
tics, 212 (62.5%) have IKs placed within one percentile
from the top of token rank (Figure 3B). There were,
however, 34 (10%) characteristics that had their IKs out-
side the top 10-percentile. Several interesting observa-
tions were made on these characteristics where the IKs
were very lowly-ranked (lower than the 10™ percentile)
but still maintained a very good overall predictive power
(AUC > 0.9). For example, the adverse effect of “cystitis”
was associated with predictive tokens that are indicative
of non-steroidal anti-inflammatory drugs (NSAIDs); the
adverse effect “oesophagitis” was found to be associated
with tokens connected to metastatic cancer and che-

motherapy (e.g., “weekly”, “metastatic”, “survival”); drugs
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A. AUC versus number of positive examples

B. AUC versus position of index keywords
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Figure 3 The predictive performance versus number of positive examples and the position of index keywords. This figure illustrates
how the performance of BICEPP is related to the number of positive examples (A) and position of index keywords in the respective feature
ranks (B). Each data point represents the best AUC (out of the 4 machine learning algorithms studied in this paper) performed on one of the
484 drug characteristics listed in Table 1. As illustrated in the shaded area in Figure 3(A), the predictive performance of BICEPP had a higher
variability in datasets with less than 10 positive examples. The boxed area (*) in Figure 3(B) represents a list of “surprising characteristics’, whose
predictive powers were high but the index keywords were not discriminative. The contents are listed in more detail in Table 3. Refer to the main

Position of index keywords in the feature rank

that can potentially cause thrombocytopenic purpura
were found to be linked with high word frequencies in
keywords used in cardiology such as “echocardiography”,
“ST-segment”, and “ejection” (Table 4).

Comparative evaluation of cdf with ctf, ctf-icdf,
stemming, and drug synonyms

The classification performance of different IR methods
was compared against cdf (Figure 4 and Table 5). Both
stemming and the incorporation of trade names have
resulted in marginal improvements in BICEPP perfor-
mance (351 and 346 v.s. 330 characteristics predicted
with AUC > 0.8). On the other hand, ctf-icdf was con-
siderably better when compared with cdf (368 character-
istics with AUC > 0.8), particularly in the prediction of
AMH minor drug class category (73% of characteristics
could be predicted with AUC > 0.95). In contrast, using
ctf for prediction had a significantly poorer result, with
only 289 characteristics predicted with AUC > 0.8. The
full result set is listed in Additional File 3.

The predictive performance could be hindered by the
heterogeneity within a training set or the lack of
knowledge about a drug

We observed two trends in the comparative analyses
that were consistent across all IR methods. First, the

best AUCs were found to be negatively correlated with
the total number of abstracts retrieved from MEDLINE
database for drug characteristics with >10 positive
examples [Item (a), Table 6]; a similar relationship was
also observed where the number of positive examples
was negatively associated with performance [Items (b),
Table 6]. These observations could have resulted from a
higher degree of heterogeneity between drugs in a train-
ing set with large number of examples (e.g., many drug
of different classes can cause the adverse effect of “nau-
sea”). On the other hand, the predictions were generally
more accurate when fewer drugs with few abstracts in
the MEDLINE database were included in the training
set [Items (f) and (h), Table 6]. Because the article
count is an indirect indicator of the body of knowledge
about a drug, this observation has reinforced the pre-
mise that more accurate predictions can be expected if
better-studied drug are used in the training of inductive
models such as BICEPP.

Discussion

In this study, we have developed a statistical text mining
framework for predicting the binary characteristics of
biomedical entities using automatically generated
features from the MEDLINE database. We have also
demonstrated that BICEPP has the potential to predict a
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Table 4 Drug characteristics with poorly discriminative index keywords but achieved an overall good predictive
performance

Category

Characteristic

Position
of IK(s)

n
(pos)

Best
AUC*

Top-20 predictive tokens/words (AUCT)

AE

AE

AE

AE

AE

AE

MC

MC

Cystitis

Dyslipidaemia

Migraine

Oesophagitis

Paralytic ileus

Thrombocytopenic
purpura

5HT3 antagonists

Antibacterials (ear)

10.7 pct

14.0 pct

76.0 pct

10.0 pct

594 pct

10.6 pct

10.0 pct

14.7 pct

13

1.000

0.900

0.906

0919

0.961

0.98

nsaids, cyclooxygenase, nimesulide, meloxicam (0.999); nsaid, diclofenac, naproxen,
antiinflammatory, non-steroidal (0.998); ibuprofen, anti-inflammatory, nonsteroidal (0.997);
ketoprofen, antipyretic (0.996); indomethacin (0.993); osteoarthritis (0.991); pge2 (0.991),
prostanoid (0.988), thromboxane (0.986), prostaglandin (0.985)

Aldosterone (0.95); acetazolamide, mineralocorticoid (0.94); deoxycorticosterone (0.93),

pge2, indomethacin, hearing (0.88); spironolactone, mineralocorticoids, hyponatremia,

renin, adh, ace (0.87); furosemide (0.86); insipidus, asthmatic, prostaglandins, fev1, pra,
phenylbutazone (0.85)

angiotensin (0.89), plasminogen, dbp, insulin (0.85); infarction, low-density, losartan (0.84);
hormonal, brachial, run-in, fixed-dose (0.83); lipoprotein, valsartan, endothelium-
dependent, renin (0.82); pravastatin, hbalc (0.81); angiotensinogen, chd, smoking (0.80)

Metastases (0.92); marrow (0.90); weekly (0.88); metastatic, antitumor (0.87); cancer (0.86);
3-year, toxicity, regimen, nadir, breast, metastasis (0.85); myeloma, survival, cancers,
prostate (0.84); regimens, remission, cytotoxic, melphalan (0.83)

amitriptyline (0.96); tricyclic (0.95); antidepressants, anticholinergic, antidepressant (0.94);
neuroleptics, chlorpromazine, depressive, overdose (0.93); tca, serotonin, diazepam (0.92);
intoxication (0.91); thioridazine, clonidine (0.90); psychotropic, affective, psychological,
antinociceptive (0.89); constipation (0.87)

infarction, ejection (0.95); intra-arterial (0.94); echocardiography (0.93); st-segment (0.93);

echocardiographic (0.90); beta-blocking (0.89); beta-blocker (0.87); cardiology, diacetolol,

bopindolol, bucindolol, beta-adrenoceptor-blocking, adp, beta-ars, betal-selective, beta-
adrenoblockers, cardioselectivity, atenolol, non-fatal (0.86)

5-ht3ra, 5-ht3ra/dexamethasone, granisetron, ondansetron, 1966-september, 5-ht3,
tropisetron, 5-hydroxytryptamine3, anti-emetic (1); dolasetron, emetic, ramosetron, 5-ht3-
receptor, cinv, 5ht3, emetogenic, type-3, emesis, setrons, pov (0.999)

enrofloxacin, chloramphenicol, gentamycin (0.99); oxytetracycline, kanamycin, polymyxin,

colistin, gentamicin, bacitracin, neomycin, povidone-iodine, fusidic, streptomycin,
bacterial, septicemia, swabs (0.98); anaerobic, peru, tetracycline, aminoglycoside (0.97)

*) Refers to the best area under the ROC curve achieved by the four machine learning algorithms as evaluated by stratified CVs. 1) Refers to the AUCs used
during the feature selection process. Abbreviations: AE: Adverse events; IK: index keywords; MC: minor drug classes; pct percentile. n(pos): number of positive

examples in each drug characteristic dataset.

wide-range of drug characteristics, including therapeutic
classes, indications, adverse effects, and pharmacokinetic
drug-drug interactions. While drug properties may be
predicted by using other types of data, such as ontology
concepts (e.g., unified medical language system, UMLS)
[26] or physicochemical properties [27], our approach
has an advantage of generalisability because only a com-
mon text corpus (i.e., MEDLINE) with a fixed feature
selection method is needed to achieve reasonable pre-
dictive power. Therefore, BICEPP may be seamlessly
adapted to other disciplines to identify unrecognised
biomedical relationships without the need to collect
additional domain knowledge.

Three points are worthy of note in our approach to
drug classification. First, BICEPP makes its predictions
only based on a list of examples representing the char-
acteristic of interest. Such “feature-transparent” predic-
tion enables an user to make predictions without the
need to know which keywords should be included in lit-
erature searches, or which scoring functions should be
applied to weigh the importance of the documents
retrieved from literature database. Second, the statistical
text-mining approach provides a simple alternative to

the “deep text-mining” approaches (such as semantic
parsing, relationship extraction, and hypothesis genera-
tion-based approaches [28-31]), which would require a
complex methodology and preprocessing and thus are
generally more computationally intensive. With reason-
able results shown in our experiments, it is therefore
acceptable to use statistical text mining to screen bio-
medical characteristics on a large scale as demonstrated
in our analyses. Third, when using BICEPP to predict
the characteristics of a list of drugs, the candidate drugs
should be ranked according to the scores produced by
the best classifier. Our cross-validation approach can be
used to compare the generalisation performance of dif-
ferent classifiers and thus to recommend the best algo-
rithm for the actual predictive task.

We selected clinical pharmacology as the field of study
in part because many binary relationships have been sys-
tematically collected and extensively replicated in clini-
cal studies. Traditionally, the processes of knowledge
synthesis in this field are highly evolved to provide
information for clinicians. The clarity of knowledge also
provides experimental advantage over other fields such
as gene-disease relationships, where more uncertainty
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Figure 4 Comparative performance of cdf with other commonly employed IR methods. This figure illustrates the predictive performance,
assessed by the cross-validation results (in AUC), versus the cumulative number of characteristics (out of 484) for each of the commonly-
employed methods. Notes: (1) ctf: an average of 1,520 tokens per drug (IQR: 598-3,781 tokens) were retained after elimination. (2) Stemming: the
application of stemming algorithm has resulted in the reduction of 20% of tokens (median: 973 tokens per drug, IQR: 455-1,144 tokens). In depth
investigation has, however, revealed that stemming did not always group the concept consistently (See additional file 2 for further discussions).
(3) Drug synonyms: Compared with MEDLINE searches using only generic names, a mean of 3.4% more results were retrieved when trade
names were used (IQR: 0-0.54% more abstracts were retrieved). The dotted lines indicate AUCs of 0.8 and 0.9 respectively. Abbreviations of the

abstracts with both generic and trade names for a given drug.

method names: cdf. conditional document frequency; ctf: conditional term frequency; ctf-icdf. conditional term frequency-inverse conditional
document frequency; Stemming: cdf of tokens reduced by Porter's stemming algorithm; Synonyms: cdf of tokens generated by retrieving

exists and replication of data is more limited. In addi-
tion, BICEPP may have a role in pharmacovigilance.
Our approach could be employed to screen candidate
drugs related to adverse events for more in-depth analy-
sis. This would augment existing labour intensive sys-
tems such as spontaneous reporting and registries, for
instance, the Adverse Event Reporting System (AERS) of
the Food and Drug Administration of the United States.
In addition, the case for pharmacovigilance application
is further strengthened by the example-based approach.
Our work have demonstrated that BICEPP may be used
to identify obscure textual features (e.g., a keyword
denoting a rare genetic variant) that are predictive of a
specific aberrant drug behaviour (e.g., an unrecognised
adverse event related to a set of pharmacologically unre-
lated drugs). Such patterns may then be applied to
screen candidate drugs with identical patterns in MED-
LINE abstracts to institute early warnings and preventa-
tive strategies. In practice, BICEPP may be invoked as a
component of an in silico pharmacovigilance application,
such as combining BICEPP with structure-activity

relationship analyses [17], to effectively harness the
wealth of available biomedical data to achieve better sur-
veillance results. Overall, the applicability of BICEPP’s
predictions on pharmacovigilance should be further
assessed by conducting a prospective surveillance study
with rigorous, expert-driven reviews.

Of note, the keywords used to describe a drug charac-
teristic may not be the most discriminative tokens in
predicting its association with a drug. This finding is
particularly relevant to other text-mining studies in bio-
medicine, because the co-occurrence of keywords are
commonly used (albeit erroneously) to imply associa-
tions between biomedical entities. For example, a num-
ber of gene-prioritisation tools make empirical
assumptions that the co-occurrence of a disease name
with a gene symbol implies a potential causal relation-
ship [1,11]. Similarly, keyword co-occurrences have also
been applied to identify associations between microbial
pathogens and clinical syndromes [32]. Our results
demonstrated that this assumption may not always be
valid, because the search terms used to describe a
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Table 5 Comparative evaluation of cdf-based predictions with other commonly used IR methods

Category Best AUC Method
cdf ctf ctf-icdf Stemming Synonyms
AMH major classes > 0.80 20 (100) 20 (100) 20 (100) 19 (95) 20 (100)
> 0.90 19 (95) 17 (85) 18 (90) 17 (85) 18 (90)
> 0.95 12 (60) 12 (60) 15 (75) 12 (60) 11 (55)
AMH minor classes > 0.80 135 (69) 106 (54)* 157 (80) 152 (77) 156 (79)
> 0.90 123 (62) 100 (51) 150 (76)* 145 (74) 151 (77)*
> 095 114 (58) 92 (47) 144 (73)* 142 (72)* 143 (73)*
AMH adverse events > 0.80 159 (67) 148 (62) 173 (73) 153 (64) 155 (65)
> 0.90 86 (36) 88 (37) 100 (42) 84 (35) 84 (35)
> 0.95 41 (17) 42 (18) 55(23) 44 (18) 44 (18)
PKIS perpetrator > 0.80 7 (47) 6 (40) 7 (47) 12 (80) 10 (67)
> 090 5(33) 5(33) 4 (27) 3 (20) 4(27)
> 095 2 (13) 2 (13) 2(13) 3 (20) 3 (20)
Narrow therapeutic index drugs > 0.80 9 (64) 9 (64) 11 (79) 10 (71) 10 (71)
> 0.90 8 (57) 7 (50) 10 (71) 9 (64) 10 (71)
> 095 5 (36) 6 (43) 9 (64) 9 (64) 10 (71)
Overall > 0.80 330 (68) 289 (60)* 368 (76)* 346 (71) 351 (73)
> 090 241 (50) 217 (45) 282 (58)* 258 (53) 267 (55)
> 095 174 (36) 154 (32) 225 (46)* 210 (43) 211 (44)

The numbers in this table indicate the number of characteristics (percentage) achieved an AUC above the given thresholds in stratified cross-validation
evaluations. For each method, the results from the best of 4 algorithms were compared. The thresholds of AUC can be interpreted as good (> 0.8), very good (>
0.9), and excellent (> 0.95) respectively. The entries labelled (*) indicate a significantly better or worse performance than cdf for predicting drug characteristics.
Fisher's exact tests were applied as 2 x 2 tables with o = 0.05 adjusted for a family of four comparisons by using the Bonferroni method. The numbers in
boldface indicate the best performing method(s) for each characteristic category above the AUC = 0.8 threshold. Abbreviations of the method names: cdf:
conditional document frequency; ctf: conditional term frequency; ctf-icdf: conditional term frequency-inverse conditional document frequency; Stemming: cdf of
tokens reduced by Porter’s stemming algorithm; Synonyms: cdf of tokens calculated by retrieving abstracts with both generic and trade names for a given drug.

Table 6 The correlations between the training set
statistics and BICEPP performance

Training set statistics Method

cdf ctf ctf- Stemming Synonyms
icdf
(@) Number of positive -49 -50 -.55 -.51 -53
examples

(b) Sum of article counts -39 -39 -45 -40 -43

(©) Maximum article count  -20 -19 -23 -20 -26

(d) Mean article count 09 10 06 10 00

(e) Median article count a8 17 a7 16 20

(f) Minimum article count .32 .33 .34 34 .33

(g) Variance of articles -01 -00 -03 -01 -09
counts

(h) Skewness of article -.33 -35 -36 -35 -.40
counts

The numbers in the table are Spearman’s rank correlation coefficients o,
calculated by correlating the training set statistics with the best AUC obtained
from four machine learning algorithms (NB, IBk, SYM with polynomial and RBF
kernels) for each of the 272 of 484 drug characteristics with =10 positive
examples. For each drug, the corresponding article count indicates how many
abstracts were retrieved from the MEDLINE database searched by using the
drug name. The entries and the category names in boldface indicate p <
0.0001 as determined by the test of rank correlation coefficient using the
Fieller-Hartley-Pearson method [37]. Abbreviations of the method names: cdf:
conditional document frequency; ctf: conditional term frequency; ctf-icdf:
conditional term frequency-inverse conditional document frequency;
Stemming: cdf of tokens reduced by Porter’s stemming algorithm; Synonyms:
cdf of tokens calculated by retrieving abstracts with both generic and trade
names for a given drug.

biomedical characteristic may be ranked substantially
lower compared to other more predictive tokens.
A comprehensive review of text features must therefore
be conducted if the co-occurrence-based discovery is to
be applied in an automated discovery task.

While BICEPP showed promising generalisability in
these examples, there are potential limitations and areas
to be examined. For instance, BICEPP was evaluated on
well-known concepts. It is unknown how BICEPP will
perform in a less well known concept to drugs, or in
matching characteristics to a new drug. On the other
hand, publication bias may skew the distribution of
tokens and may represent a strong factor that affects the
accuracy of the classification process. For example, a
new medication is likely to have fewer publications
which may preclude the discovery of discriminative key-
words in MEDLINE. Specifically, we have demonstrated
that an insufficient corpus could have a detrimental
effect on BICEPP’s performance. More research is there-
fore required to investigate how these biases can be
effectively addressed to further improve accuracy.

We have evaluated several commonly employed IR
methods to study whether BICEPP’s predictive perfor-
mance could be further optimised. Our results have sup-
ported the use of ctf-icdf for predicting drug properties;
the better cross-validation results are consistent with
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other text-mining tasks employing ¢f-idf [12,18,19]. In
particular, ctf-icdf tends to outperform cdf and other
methods when predicting drug characteristics with
fewer drug examples such as the category of minor
drug classes. Nevertheless, the optimal combinations of
these methods require further investigations. For
instance, this paper only examined single word tokens
for classification, while a more sophisticated tokenisa-
tion method with structured analysis of biomedical texts
may further improve the discriminative power and
should be investigated in future works - such methods
may include a combination of n-gram analysis, analysis
of ontology, and the incorporation of syntax or gram-
matical structures as patterns [33,34]. Richer textual
patterns may also have better descriptive power in aid-
ing the classification tasks. For example, a comparative
study that examined different methods of gene prioriti-
sation showed that methods employing an ontology
vocabulary database (including eVOC and MeSH) have
superior performance in comparison with other meth-
odologies [35].

The dichotomisation of continuous variables may have
reduced the predictive power of BICEPP in some drug
characteristics. For instance, the dichotomisation proce-
dure may have resulted in why only 47% of characteris-
tics had AUCs > 0.8 in the category PKIS perpetrators.
Previously, we defined perpetrator drugs as drugs cap-
able of altering the plasma concentration of another
drug > 2-fold via a CYP450-mediated mechanism. The
2-fold threshold is used by the FDA to classify moderate
and strong inhibitors and inducers of drug metabolism
[36]. With the imposition of a threshold, drugs that are
“borderline significant” (e.g., between 1.5-2 fold change
in the target drug concentration) are considered nega-
tive examples in the training of BICEPP models. Because
the biological mechanisms of DDIs due to these drugs
are identical to the perpetrators (i.e., via CYP enzyme
inhibition or induction), there may not be tokens suffi-
ciently discriminative to distinguish between the two
groups.

Conclusion

BICEPP is a computational tool that can rapidly identify
multiple biomedical entity-characteristic pairs as
hypotheses to test in clinical practice or applied
research. In this study we have shown that BICEPP pre-
dicts known drug properties with reasonable accuracy,
and the robustness of BICEPP was demonstrated across
a wide range of drug characteristics. The method
described in this paper has potential applications in
pharmacovigilance and in assisting with the delineation
of characteristics in other biomedical disciplines.
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Additional material

Additional file 1: Dataset - drug names and drug characteristics
studied in this paper. This file contains the 484 drug characteristic
datasets and the list of 857 drug names used to evaluate BICEPP's
performance in this paper.

Additional file 2: Supplementary methods and results. This file
describes two analyses on (1) the number of discriminative tokens on
BICEPP's predictive performance and (2) discussions on stemming:
correlations of CDF between linguistically closely-related tokens.

Additional file 3: Results of cross-validation analysis by algorithms
and drug characteristics. This file contains the full tabular data of cross-
validation results summarised in Table 3, Table 5, Figure 2, and Figure 4.
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