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Abstract

Background: In peptides and proteins, only a small percentile of peptide bonds adopts the cis configuration.
Especially in the case of amide peptide bonds, the amount of cis conformations is quite limited thus hampering
systematic studies, until recently. However, lately the emerging population of databases with more 3D structures of
proteins has produced a considerable number of sequences containing non-proline cis formations (cis-nonPro).

Results: In our work, we extract regular expression-type patterns that are descriptive of regions surrounding the
cis-nonPro formations. For this purpose, three types of pattern discovery are performed: i) exact pattern discovery,
ii) pattern discovery using a chemical equivalency set, and iii) pattern discovery using a structural equivalency set.
Afterwards, using each pattern as predicate, we search the Eukaryotic Linear Motif (ELM) resource to identify
potential functional implications of regions with cis-nonPro peptide bonds. The patterns extracted from each type
of pattern discovery are further employed, in order to formulate a pattern-based classifier, which is used to
discriminate between cis-nonPro and trans-nonPro formations.

Conclusions: In terms of functional implications, we observe a significant association of cis-nonPro peptide bonds
towards ligand/binding functionalities. As for the pattern-based classification scheme, the highest results were
obtained using the structural equivalency set, which yielded 70% accuracy, 77% sensitivity and 63% specificity.

Background

Peptide bonds occur predominantly in the trans confor-
mation; only a small fraction adopts the energetically
less favored cis conformation [1]. Cis peptide bonds are
further distributed in two categories, according to the
residues they connect; namely, imide bonds which occur
between any amino acid and proline, and amide bonds
which bind any amino acid and any amino acid except
proline, out of which 5.2% and 0.03% are in cis confor-
mation, respectively. It should be noted that there is a
significant association between the resolution that a pro-
tein structure has been solved and the number of cis
peptide bonds detected [1]. Consequently, the explora-
tion of cis peptide bonds and especially the amide ones
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was hampered for several years due to the limited
amount of high quality 3D protein structures. However,
an increasing amount of protein molecules solved at
high resolution has recently facilitated more systematic
studies. Moreover, cis-nonPro peptide bonds are actually
found to occur more frequently than previously thought
and are often located at or near functionally important
regions of the proteins, such as active sites [2] and
dimerization interfaces [3]; these facts triggered further
studies in order to unravel the molecular mechanism of
these rare but highly significant configurations of the
peptide bonds (Figure 1).

The configuration of the peptide bond is inherently
affected by the surrounding residues, therefore cis/trans
isomerization is encoded to some extent in the primary
amino acid sequence; as well as from residues that are
located close in space but necessarily in sequence.
Nuclear Magnetic Resonance (NMR) experiments on
oligopeptides have proven that the peptide bond
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FASTA sequence: ..GCAAACAGFTYALADQYVKS...QLVLLEAFGGGFTWGSALV...

Figure 1 Conformational isomers of a Glycine-Phenylalanine
peptide bond detected in the beta-ketoacyl-acyl carrier protein
synthase IIl (PDB id: 1THNJ).

between two amino acids is influenced by the sequence
which spans the proximity of the bond [4]. This is in
accordance with several methods aiming to predict the
peptide bond conformation using only the amino acid
sequence, or sequence-extracted features [5-9]. These
methods exploit information extracted from the residues
adjacent to the peptide bond in order to predict mainly
the conformation of imide bonds, however, in [8] and
[9] they were able to predict the peptide bond confor-
mation between any two amino acids. More specifically,
Pahlke et al. [8,10] developed an algorithm based on an
extension of Chou-Fasman parameters and derived four
rules to predict conformation of the peptide bond by
taking into account only the secondary structure of
amino acid triplets. Exarchos et al. [9] utilized a large
number of sequence extracted features fed into an SVM
classifier coupled with a feature selection algorithm to
predict the peptide bond conformation between any two
amino acids. Although, the identification of the peptide
bond conformation solely from the primary amino acid
sequence is of great importance, the black-box architec-
ture of these methods does not provide adequate (if not
any) justification about the respective predictions; hence
limited biological insight can be deduced. Towards the
exploration of similar sequence-driven characteristics of
the protein structure (e.g. protein disorder [11] and sec-
ondary structure formations [12,13]) or even for proline
cis peptide bonds [14], pattern-based methodologies
have been proven quite beneficial.

In this work, we analyze regions containing cis-nonPro
peptide bonds in order to detect regular expression-type
patterns which are associated with these regions. Initi-
ally, we discover all patterns in the vicinity of cis-nonPro
peptide bonds; patterns are extracted using exact pattern
discovery as well as considering certain conservative
substitutions with biological insight among the amino
acids, specifically with respect to chemical and structural
equivalencies. Next, we assess the representation of the
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extracted patterns in order to omit redundant patterns
and come down to a list of patterns that have high cov-
erage of cis-nonPro regions and low false discovery rate
(i.e. matches with trans-nonPro regions). The retained
patterns are further used to formulate a pattern-based
classifier which discriminates between cis-nonPro and
trans-nonPro peptide bonds. Finally, we compare the
retained associations with the ELM [15] functional repo-
sitory in order to rediscover known functional implica-
tions of cis-nonPro peptide bonds but also identify
potentially novel ones.

Methods

The overview of the proposed three-stage methodology
is depicted in Figure 2. In the sections which follow we
describe the constitution of the employed datasets, next
the proposed methodology is presented in detail and
subsequently the procedure for functional assessment is
shown.

Dataset

The reference dataset employed in the current study has
been extracted from the Protein Data Bank [16]. More
specifically, 3050 high quality protein structures have
been selected that comply with the following criteria:
structure determination using X-ray crystallography
with a resolution better than 2.0 A, sequence identity
less than 25% and R-factor less than 0.25. The annota-
tion was performed using the VADAR (Volume Area
Dihedral Angle Reporter) software [17] where bonds
with dihedral angles within the range of + 30° were
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Figure 2 Overview of the employed methodological analysis.
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classified as cis and bonds with angles between 150° and
210° were classified as trans.

For each cis-nonPro peptide bond in the above protein
sequences, we assembled a window of neighboring resi-
dues (+ 5) which influences significantly the peptide
bond conformation [7,9]. In a similar manner we formu-
lated a region of residues surrounding trans-nonPro pep-
tide bonds, however, it should be noted that the
immediate + 5 trans-nonPro residues were excluded to
avoid interclass overlapping regions, i.e. the regions of
amino acids shared by a cis peptide bond and adjacent
trans bonds (Figure 3). Thus, we formulate two sets of
amino acid sequence segments, where the length of each
segment is 11 residues. If a segment contains a cis pep-
tide bond in the center, it is assigned in a dataset called
hereafter CNP (cis-nonPro), otherwise it is assigned in
the TNP (trans-nonPro) dataset. The CNP and TNP data-
sets contain 318 and 685716 sequence regions, respec-
tively. The first and last five residues from every protein
sequence were also excluded from our study since they
do not have enough neighboring amino acids to consti-
tute the required 11-length segment.

Pattern elicitation

The list of regions contained in the CNP dataset, is pro-
vided as input to the TEIRESIAS pattern discovery algo-
rithm [18] in order to detect frequent patterns in the
neighborhood of cis-nonPro bonds. During pattern dis-
covery all provided regions are searched for elementary
patterns exceeding a minimum support threshold, which
are being progressively combined into larger patterns.
All extracted patterns are guaranteed to be maximal, i.e.
they cannot be made more specific without simulta-
neously affecting their length and/or composition, con-
forming to a set of user specified criteria. Specifically,
the maximum length of the extracted patterns is set to
11 residues (W = 11), where at least three literal charac-
ters (i.e. non-wild-characters) are required (L = 3), and
every pattern must have minimum support K = 2. The
maximum length is justified by the length of all seg-
ments, which is 11, and the minimum number of literals

Cis-nonPro region
|

SGNYCTDKKPA

|

..EKALSKLHEYFPEMOQILAVSGNYCTDKKPAAINWIEGRGKSVVCEAVI ...

l

..EKALSKLHEYFPEM CcT

Y

EGRGKSVVCEAVI ...

excluded region

Figure 3 Construction of the CNP and TNP datasets.
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is dictated by the convergence requirements of the
TEIRESIAS algorithm. Moreover, patterns with fewer
literal characters would merely yield quite generic and
nonspecific patterns. In the current study three types of
pattern discovery are performed: i) exact pattern discov-
ery, ii) pattern discovery using a chemical equivalency
set ([AG], [DE], [FY], [KR], [ILMV], [QN], [ST]) and iii)
pattern discovery employing a structural equivalency set
([CS], [DLN], [EQ], [EHWY], [ITV], [KMR]). Residues
enclosed in square brackets ([ ]”) form a character class
and are considered identical during the pattern discov-
ery procedure.

The employment of substitution groups during pattern
discovery is likely to uncover underlying patterns pre-
sent in regions containing cis-nonPro peptide bonds.
For example a position occupied in the sequences under
consideration almost with the same frequency by a phe-
nylalanine, a histidine, a tryptophan or a tyrosine, will
be assigned to the [FHWY] group, thus indicating a ten-
dency towards aromatic amino acids. Hence, the incor-
poration of these biologically inspired equivalency sets
might provide adequate reasoning and insight into the
molecular basis of cis-nonPro formations.

Pattern evaluation

After the initial elicitation of patterns from cis-nonPro
regions, each extracted pattern is evaluated to quantify
how generic it is by comparing it against major biologi-
cal datasets and representative negative control sets.
This is due to the fact that the extracted patterns have
been derived from a single-class dataset (i.e. CNP), lead-
ing to questionable selectivity that needs to be further
validated. Specifically, for each extracted pattern the log-
likelihood is calculated using the “evaluate3plets* mod-
ule in TEIRESIAS, representing the likelihood of the
extracted pattern occurring by chance [19]. The back-
ground model used by TEIRESIAS to estimate the sig-
nificance of a pattern is based on a second-order
Markov model of protein sequences in the GenPept
database [19,20]. Moreover, it is very important to mea-
sure the representation of the extracted patterns in the
negative control set, the TNP dataset; therefore, using
each pattern as a predicate, we search in regions con-
taining trans-nonPro peptide bonds for potential
matches. Afterwards, a score is attached to every pat-
tern, which is based on the proportional representation
of the pattern under consideration in the CNP and the
TNP dataset. Assuming that P is a pattern and M(P) is
the set of regions matching P, the following scoring
function is defined:

|CNP N M(P)|

, (1
|CNP N M(P)| + norm x |TNP N M(P)| @

SC score =
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where the norm = |CNP|/|TNP| is employed as a nor-
malizing factor, since the representation of a pattern in
every dataset is expected to be approximately propor-
tional to the size of each dataset. Using the aforemen-
tioned methodology we are able to efficiently phase out
the class imbalance in our dataset, without screening
potentially valuable and informative negative examples.
If we employ sampling-based approaches we might
come across certain drawbacks; in the case of under-
sampling we randomly choose a subsample of regions
from the TNP dataset, thus imposing bias on the choice
of the samples but also leading to a considerable reduc-
tion in the available negative samples, consequently
resulting to great loss of information. As for oversam-
pling the instances of the minority class, this would lead
to a significant increase of repetition in the resulting
dataset, amplifying at the same time potentially noisy
samples that might be present in the CNP dataset.

So far the extracted patterns have been evaluated in
terms of how generic they are as well as how they differ-
entiate from trans-nonPro regions; another issue raised
is that some of the extracted patterns might be partially
overlapping, therefore retrieving intersecting sets of
regions. In order to remove overlapping patterns of this
kind, first, we sort the patterns according to the sc_score
obtained from the previous step and, next, we use each
pattern in turn to search for matches in the CNP and
TNP dataset. The outcome is a set of patterns with 1-N
relationship with the regions, meaning that each pattern
retrieves several regions and each region is retrieved by
no more than one pattern. The algorithm terminates
either when 100% coverage of cis regions is achieved or
if all patterns have been enumerated. Our aim is to
come down to a list of patterns that achieve high cover-
age of the CNP regions and at the same time retrieve as
few regions as possible from the TNP dataset (i.e. False
Discovery Rate - FDR). The above steps are followed for
all sets of patterns, extracted using each type of pattern
discovery.

All the above steps are motivated by the scarcity of
cis-nonPro conformations as well as their ambiguous
nature in terms of residues’ composition. An extra bur-
den is also posed by the overwhelming amount of trans-
nonPro formations in protein sequences. However, the
sequence of actions described above reduces the possibi-
lity of maintaining redundant patterns, as it will be
shown in the following.

Functional assessment

The retained patterns are then compared against the
ELM resource in order to identify propensities towards
certain biological functions. ELM is a curated reposi-
tory containing experimentally validated protein pat-
terns along with their respective functionality;
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moreover, for each deposited pattern one or more
Gene Ontology (GO) [21] terms are assigned. For the
pattern-pattern comparison the CompariMotif algo-
rithm [22] is employed which quantifies similarity
between two patterns based on shared information
content. Initially, exact matches between patterns are
sought; if no precise matches are found and the pat-
terns under consideration share enough common resi-
dues, a sliding window comparison is performed
scoring all possible overlaps between the patterns. All
reported non-random associations in the output of
CompariMotif are assigned a score, called hereafter
CM_score, which denotes the similarity between two
patterns and takes into account the patterns’ overlap,
length and degeneracy. Moreover, in order to ascertain
that the reported associations are non-random and
designate statistically significant functional propensi-
ties, we perform a chi-square test between the
observed frequencies assigned by Comparimotif and
the frequencies expected by chance. The expected fre-
quencies are calculated based on the representation of
each functional class within ELM.

Pattern-based classification

The next step of our methodological analysis involves
the exploitation of the extracted patterns for predicting
the cis/trans isomerization of amide peptide bonds. In
order to evaluate the predictive potential of the
extracted patterns we utilize the following procedure.
We randomly split the CNP dataset, thereby assembling
a training set of 225 cis-nonPro regions (i.e. 2/3 of the
CNP dataset), and using the remaining 93 regions (i.e.
1/3 of the CNP dataset) for testing. The regions of the
training set are subject to the aforementioned steps of
the proposed methodological analysis, i.e. pattern elicita-
tion using three types of pattern discovery and pattern
evaluation. Specifically for the latter step (pattern eva-
luation), the control group is assembled by randomly
sampling without resubstitution an equal number of
trans-nonPro regions from the TNP dataset. The
retained patterns from each type of pattern discovery
are fed as input to an algorithm which searches across
the testing set, and if a match is found the respective
region is marked as cis, otherwise, if no pattern matches
the region, it is marked as trans. The testing set is com-
prised of 93 cis-nonPro regions and an equal-sized ran-
domly assembled subset of the TNP dataset. Especially
for the trans-nonPro regions comprising the testing set,
we performed random sampling 5 times, resulting in 5
testing sets [23]. The predictive potential of the patterns
identified in the training set, is subsequently quantified
against 5 independent testing sets, and the results are
averaged, in order to gain a more reliable overall
assessment.
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It should be noted that the permutations of the CNP
and TNP datasets are performed only in this step, in
order to assess independently the performance of the
pattern-based classification scheme. The list of patterns
reported throughout the manuscript involved the entire
CNP dataset, in order to get the most out of the initial
set of available cis-nonPro peptide bonds.

Results & Discussion

The aforementioned methodological analysis has
resulted in a list of patterns that are indicative of
regions containing a cis-nonPro formation. The extrac-
tion of patterns describing these regions is very impor-
tant due to the scarcity of cis-nonPro peptide bonds;
therefore, the elicitation of consensus patterns extrapo-
lates the knowledge that can be gained from a limited
amount of data that is currently available.

Amino acid patterns

Initially, after providing all the cis-nonPro regions as
input to the TEIRESIAS algorithm, we extracted 4815
patterns using exact pattern discovery, whereas the
employment of equivalency sets yielded 38904 and
32812 patterns when chemical and structural equivalen-
cies were considered, respectively. Using eq. 1 the
sc_score is calculated and attached to all extracted pat-
terns; clearly sc_score ranges between 0 and 1 with
values above 0.5 indicating propensity of a pattern
towards cis configurations. However, as we are inter-
ested in patterns with a strong preponderance for cis
regions we set a threshold of 0.90, thus discarding pat-
terns that have high representation in the trans regions.
Subsequently, the retained patterns are significantly
reduced, specifically 1622 patterns are maintained when
no equivalency set is employed, 8251 for the case of
chemical equivalency set and 7347 with the structural
equivalency set. Afterwards, we aim to remove redun-
dant patterns, so that eventually each region is matched
by at most one pattern, i.e. patterns that match more or
less with the same regions are scrutinized; the resulting
set must ensure high coverage of the cis regions and at
the same time low False Discovery Rate (FDR). As men-
tioned in the previous section, for this purpose the pat-
terns are sorted according to the sc_score which is a
proportional indicator of cis and trans matches. An
overview of the patterns maintained using all types of
pattern discovery, after each filtering step as well as the
respective coverage and FDR metrics is shown in Table
1. No metrics are provided for the second column as it
is an unsorted superset of the last column.

We observe that even though high coverage values can
be achieved both by the patterns initially extracted from
TEIRESIAS, without employing any of the proposed
preprocessing steps, and by the non-redundant set of
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patterns, FDR is quite high in the former case, especially
given the large number of trans-nonPro peptide bonds
(6.79% equals to 46560 trans-nonPro bonds). For the
non-redundant set of patterns, FDR is kept in all types
of pattern discovery below 1% ensuring low association
of the retained patterns with trans-nonPro regions,
while keeping the list of descriptive patterns relatively
refined. Therefore, the proposed methodology could be
employed as a basic preprocessing step towards the dis-
crimination between cis-nonPro and trans-nonPro for-
mations, as it is able to reduce the initial input of
sequences by more than 99% and at the same time to
maintain all the cis-nonPro regions of interest intact.

As it is shown in Table 1 the non-redundant set for
all types of pattern discovery contains around 200 pat-
terns. The relatively high number of retained patterns is
partially attributed to the fact that we wanted to formu-
late a dataset able to achieve complete coverage of cis
formations keeping at the same time false positives at a
very low rate. Smaller sets of more generic patterns
could be extracted, however, this could lead to much
higher FDR values. The total number of retained asso-
ciations is slightly less important than keeping patterns
that precisely describe regions around cis-nonPro bonds
and discriminate them from regions with trans-nonPro
bonds.

Table 2 contains an indicative subset of the highest
scoring patterns extracted using each type of pattern
discovery. The complete list of patterns is accessible via
the web due to space limitations. The patterns have
been sorted according to the sc_score metric. In addi-
tion, the log-likelihood of each pattern is shown, deter-
mining how generic each pattern is; we observe that for
all reported patterns the log-likelihood is very low,

Table 1 Overview of patterns maintained after each
preprocessing step and for all types of pattern discovery

Exact pattern discovery

TEIRESIAS sc_score > 0.90 Non-redundant
Number of patterns 4815 1622 231
Coverage (%) 100% - 100
FDR (%) 3.58 - 0.25
Chemical equivalency set
TEIRESIAS sc_score > 0.90 Non-redundant
Number of patterns 38904 8251 235
Coverage 100 - 100
FDR 6.79 - 0.03
Structural equivalency set
TEIRESIAS sc_score > 0.90 Non-redundant
Number of patterns 32812 7347 225
Coverage 100 - 100
FDR 6.69 - 0.02
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Table 2 The 20 highest scoring patterns sorted in descending order by sc_score

Exact pattern discovery

Chemical equivalency set

Structural equivalency set

Pattern  sc_score Log- Pattern sc_score Log- Pattern sc_score Log-
likelihood likelihood likelihood
KPGKGRRK 1 -37.67 KPGKGRRK 1 -37.67 KPGKGRRK 1 -37.67
EDGTKEPLL 1 -42.25 G[AG][DE]K.SL 1 -2391 SSITVIH.N 1 -19.73
HAESGEYGL 1 -44.51 [ILMVI[ILMV][AGL.D.AT 1 -21.70 EVIDLN].[KMRIP 1 -18.28
LGTVINQL 1 -36.61 GIAG]IDE]JILMVIK.[ILMV]S 1 -3133 MLQ..[ITVL.[KMR] 1 -19.03
[ILMV]
ADEAT 1 -20.01 G.[FYIWIQN].DIST] 1 -25.89 [EQIGYTR 1 -20.32
ALNALKLVT 1 -41.86 LGTVINQL 1 -36.61 [KMRI.QGY.R 1 -20.23
YFT..l 1 -14.57 EDGTKEPLL 1 -42.25 EDGTKEPLL 1 -42.25
CLAWN 1 -20.96 GA.D[DEJA[ST] 1 -24.88 LGTVINOL 1 -36.61
R.DP..W 1 -20.01 ADEAT 1 -20.01 HAESGEYGL 1 -44.51
H.YSQ 1 -15.76 [STI.AIDEIG.A 1 -18.38 ADEAT 1 -20.01
VYL.L.Y 1 -20.29 [AGI[ILMV].LIKRIL.D 1 -20.11 ALNALKLVT 1 -41.86
NAW.D 1 -15.89 TRE.AILMV] 1 -1848 GG..[KMRIM..L 1 -1948
A.KHF.GG 1 -26.56 [STLLN.LKIILMV] 1 -23.04 [DLNILEL.E[EQ] 1 -20.75
L.SRGF 1 -19.77 [AG]HF[ILMVIGD 1 -24.32 [EQ].P.[FHWYIP.E 1 -19.33
REPDP 1 -21.25 MLQIQN]...[ILMV][KR] 1 -23.90 QL..N.LKMR][DLN] 1 -23.32
GMFW 1 -16.96 [AGIKHF.G.G 1 -25.89 AFHWYL[FHWYIE..EN 1 -24.56
LG.WWP.S 1 -24.86 HAESGEYGL 1 -44.51 MIFHWY1[EQI[FHWY].D 1 -23.90
[ITv]
MDHSNY 1 -28.88 [KRIILMVIP.[ILMVI[ST]..[FY] 1 -21.32 [ITVI.GITVI.TITVIV 1 -22.12
VLG.TNI 1 -25.03 [AG][ST].D.GP 1 -18.86 [KMR]Y..N.V[CS] 1 -1941
L.A.VSS 1 -18.77 G.MCl 1 -1647 [FHWYIL.KG.ITVIRIITV] 1 -23.29

denoting that the patterns under consideration are
highly unlikely to occur by chance.

The patterns in Table 2 follow certain common con-
ventions of regular expressions; specifically the dot (”.”)
stands for any of the 20 amino acids and residues in
square brackets belong to the same character class and
are considered equivalent. Underlined amino acids con-
stitute the residue where the cis peptide bond is
detected within the pattern; it should be noted that
some patterns do not capture the cis peptide bond itself
but rather a sequential patterns in its neighborhood,
therefore some patterns might have no underlined resi-
dues at all.

From Table 2 we observe that all patterns in the top
20 list have yielded quite high values for sc_score, but
the situation is also very similar for the entire list of
retained associations. Especially for the cases where
equivalency sets are employed all reported scores are
even above 0.99, indicating that certain chemical and
structural properties of the amino acids facilitate the
discrimination between the two conformations. Such
high score values denote high correlation of the main-
tained patterns with cis regions and low correlation with
trans regions; this is also expressed by the values of
FDR which are quite low for all types of patterns

discovery and much lower when equivalency sets are
employed. Another important observation is that certain
patterns appear to be common, either unaltered or with
slight variations, in all three types of pattern discovery;
some example patterns of this kind are “KPGKGRRK”,
“EDGTKEPLL”, “HAESGEYGL” and “ADEAT” which
are all among the top 20 highest scoring patterns thus
constituting good descriptors of cis formations. In order
to facilitate the discussion that follows, we provide an
overview of the amino acids’ distribution among the
most important physicochemical properties (Figure 4).

From the assessment of the retained patterns (partially
shown in Table 2) several important corollaries can be
deduced, some of which have been previously reported,
subsequently supporting the rest of the assertions. For
this purpose we provide in Table 3 the distribution of
the amino acids among the retained patterns for each
type of patterns discovery. In order to calculate the indi-
vidual frequencies we have divided the occurrences of
each residue by the total number of literals (i.e. all char-
acters and character classes excluding wild characters).
The frequencies of the character classes are also shown
in the lower part of Table 3.

Regarding the column with the exact pattern discovery
we observe that the obtained patterns are replete mainly
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Table 3 Frequencies of occurrence for each residues and
character class in the retained patterns

co:ltj:::lrng Amino acid frequencies (%)
Exact pattern Chemical Structural
discovery equivalency set equivalency set
A (alanine) 8 5 6
Bbranched [ Charged | R (arginine) 3 2 2
m A N (aspargine) 4 3 3
fb D (aspartic 6 4 4
: o |
C (cysteine) 1 1 1
E (glutamic 5 4 3
acid)
Figure 4 Groupings of amino acids based on common Q (glutamine) 2 ! 2
physicochemical properties. G (glycine) 13 9 10
H (histidine) 3 2 2
with glycine, but also show a considerable preference | Gisoleucine) ° ’ :
towards leucine and alanine as well as serine and valine. L (leucine) 0 6 6
The situation is quite similar for the other two types of K (lysine) 4 3 3
pattern discovery when the frequencies of individual M 2 1 1
amino acids are considered, with proline, aspartic acid (methionine)
and glutamic acid yielding more or less the same fre- Fo 4 3 2
quency of occurrence as valine. These residues have (phenylal.a\nlne)
been previously found to be prevalent in the neighbor- P (proline) ° 4 4
hood of cis-nonPro bonds, especially glycine and alanine S (serine) / > >
which are also proven to be quite prevalent here as well T (threonine) 6 3 3
[24]. Furthermore, it should be noted that same as with W (tryptophan) 2 2 1
frequent residues, the most infrequent ones in the Y (tyrosine) 4 3 2
retained patterns are also the same for all types of pat- V (valine) 7 4 4
tern discovery. Specifically, cysteine exhibits the smallest AG/ITV , 6 10
representation (i.e. 1% in all types of pattern discovery) DE/DLN N 3 7
and the residues that follow are methionine, glutamine EY/KMR : 3 5
and tryptophan, however, not necessarily in this order
for all types of pattern discovery. It is interesting that all QN/EQ _ 2 2
four most frequent residues are small in terms of ILMV/FHWY - 12 /
volume thus facilitating the formation of a cis bond by ST/CS . > 2
KR/- - 3

offering the minimum steric resistance. Moreover, we
observe that glycine, alanine and valine are also hydro-
phobic residues, therefore conjecturing considerable pre-
ference of cis regions towards small and hydrophobic
residues. However, cysteine is an exception to this corol-
lary being a small hydrophobic residue as well, but
hardly occurring in cis regions. A possible explanation
lies probably in the sulfur atom that discriminates
cysteine from the other three residues and is involved in
the formation of the sulthydryl group which is very reac-
tive. Besides cysteine, methionine also contains sulfur in
its side chain (and are both among the most infrequent
amino acids), thus indicating the potentially unfavorable
role of the sulfur atom towards the cis-nonPro peptide
bond formation. Furthermore, glutamine and tryptophan
that are rarely observed in the retained patterns are
both polar and non-small residues, thus showing a

negative association of cis regions and sizeable polar
residues.

In the case of chemical equivalency set, when the
character classes are also considered, [[ILMV] has the
highest frequency of occurrence and [AG] follows; on
the contrary [QN] exhibits one of the smallest frequen-
cies. Judging from the prevalent character class [[LMV]
and more specifically from residues isoleucine, leucine
and valine we observe a high propensity towards alipha-
tic residues. Character class [AG] appears with high fre-
quency, which is in accordance with the previous
observation for the individual residues alanine and gly-
cine, and is further reinforced by the abundant occur-
rence of their combination as a character class. As for
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the structural equivalency set, character class [ITV] is
the most frequent along with glycine; [DLN] and
[FHWY] also show considerable representation in the
retained patterns. The frequent occurrence of [ITV]
character class shows a significant propensity of cis
regions towards b-branched residues, which has also
been reported in [24], especially in positions preceding
the cis bond in order to stabilize the formation. Pal et
al. [24] have also reported high propensity of short
polar residues (serine, aspargine and aspartic acid) in
cis regions which is only partially verified by our set of
patterns. Specifically, if individual amino acids are con-
sidered, serine is the only abundant residue in the
retained list of patterns, whereas aspartic acid and
aspargine rank 8™ and 13", respectively, for the case
of exact pattern discovery, and in similar positions for
the other two types of pattern discovery. However, this
apparent discrepancy is justified by the high frequency
of the [DLN] character class which accounts for sev-
eral occurrences of aspargine and aspartic acid.
Another frequent character class is [FHWY] featuring
aromatic residues; it is worth noticing that even
though the character class itself is quite abundant, all
the individual residues are scarcely observed in any
type of pattern discovery. Hence, there is a clear asso-
ciation between aromatic residues as a whole and cis
regions which contribute towards the stabilization of
the cis peptide bond [25], same as in cis-Pro bonds
[24]. This preponderance for aromatic residues can be
attributed to their ability to interact with adjacent
side-chains via their 1 electron system [25]. Regarding
the other common amino acid groupings, such as
charged, we cannot deduce any significant association
either with frequent residues or with infrequent ones;
the charge does not seem to affect significantly the
configuration of the peptide bond, at least not as a
part of its immediate neighborhood, possibly, there
exists such an influence originating from amino acids
close in space but not necessarily close in sequence.

We have also assessed the distribution of cis-nonPro
bonds across the 20 amino acids, in order to identify
potential propensities towards specific residues; the
respective frequencies are shown in Table 4 along with
the frequencies for the residues preceding a cis--nonPro
formation.

First, we observe considerable propensity of the resi-
due with the cis peptide bond towards certain amino
acids, particularly for glycine [26], but also for serine,
aspartic acid and glutamic acid. The high occurrence
observed for aspartic acid and glutamic acid denotes a
prevalence of the position with the cis bond towards
negatively charged amino acids, similarly with the obser-
vations made in the retained patterns. Slightly reduced
propensity is observed for alanine and threonine.
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Moreover, there are certain residues that very rarely par-
ticipate in the formation of a cis-nonPro bond; such
residues are methionine and tryptophan, as well as
cysteine, histidine and isoleucine. All residues except
maybe the case of glutamic and aspartic acid exhibited
similar frequencies as well in the maintained patterns. It
should be mentioned that the frequency distribution of
certain amino acids in the position of the cis bond and
the preceding one are very uneven; those residues
appear in bold in Table 4 and are arginine, glutamine,
serine, threonine, and most importantly tryptophan,
which very rarely bears a cis bond but exhibits a consid-
erable propensity in the preceding position. Clearly pro-
line is excluded from this remark as the dataset contains
only cis-nonPro peptide bonds and therefore the high
difference in frequencies is biased.

Functional implications

The obtained patterns are compared with the patterns
of the ELM resource [15], in order to rediscover known
functional implications of patterns associated with cis-
nonPro regions but also identify new ones. All patterns
extracted using each type of pattern discovery (i.e. exact
pattern discovery, pattern discovery using chemical and
structural equivalency set) have been compared with the
patterns deposited in ELM using CompariMotif algo-
rithm [22], and the respective results are shown in
Figure 5; each bar contains the frequency towards each
functional class of the ELM. The vertical axes of the
plots contain the four major functional classes of the
ELM repository, namely localization/targeting (TRG),
post-translational modifications (MOD), binding/ligand
(LIG) and cleavage (CLV). The complete list of the spe-
cific functional classes assigned to each pattern is avail-
able through the website.

We observe that the distribution of the retained pat-
terns in the ELM functional classes is quite similar for
all types of pattern discovery; specifically the LIG class
is reported in approximately 80% of the patterns, TRG
and MOD are almost equally reported for accounting
for almost 15% of the patterns each, and CLV follows
with less than 5%. Those values reported by Compari-
motif are compared via chi-square test with the respec-
tive values expected by chance, in order to verify that
the reported propensity is statistically significant. The
expected values refer to the representation of each func-
tional class within the ELM and are specifically, for
TRG: 13%, MOD: 25%, LIG: 54% and CLV: 7%. Using a
relatively strict significance level of 0.01 [27], we conjec-
ture statistically significant propensity towards the LIG
functional class; using all types of pattern discovery. A
significant association is also reported for the MOD
class, however only when exact pattern discovery is
employed, subsequently diminishing the credibility of
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Table 4 Frequencies of each residue occupying the position that cis-nonPro peptide bond occurs and the preceding

one.
Residues with cis bond Preceding residue Frequency of residues with cis bond (%) Frequency of preceding residue (%)

A 23 22 7 7
R 15 7 5 2
N 15 14 5 4
D 26 23 8 7
C 5 4 2 1

E 27 20 8 6
Q 9 14 3 4
G 52 62 16 19
H 7 7 2 2
| 7 6 2 2
L 9 11 3 3
K 17 16 5 5
M 4 5 1 2
F 15 12 5 4
P 0 24 0 8
S 28 13 9 4
T 22 12 7 4
w 2 16 1 5
Y 16 14 5 4
v 19 16 6 5

the yielded association. The significant propensity
towards LIG is further reinforced by [28] where cis-non-
Pro peptide bonds were reported to be intimately
involved in ligand binding as well as the positioning of
catalytic residues. This prevalence has been attributed to
the greater precision offered by the strained cis-nonPro
formation which in turn is necessary for ligand binding
and catalysis. Moreover, it has been elsewhere reported
that cis-nonPro formations are located at or near active
sites or functional regions of the protein molecule
which are closely related to ligand/binding activities
[3,24,25]; thus explaining the high propensity towards
the LIG class.

The smaller propensity that is observed towards MOD
is partially justified by the relevant literature, where
sporadic associations have been proposed, with respect
to carbohydrate binding or carbohydrate processing pro-
teins [25]. Nevertheless, modification sites usually have
ligand activity [29] which in turn has been proven to be
inherently related to cis-nonPro regions.

In the next step we follow a somewhat reverse analysis
in order to verify if the functional class attached to a set
of patterns actually falls within the function of the pro-
tein sequences from which the patterns have been
extracted. We perform this procedure for a subset of
representative functional classes, specifically for a few
among the top scoring ones from each type of pattern

discovery. In order to identify those functional classes
we first group the patterns according to the ELM func-
tional class that they recovered and for each class we
calculate the average CM_score (based on the output of
CompariMotif). For the patterns associated with the top
scoring classes we retrieve the sequences from which
they have been extracted and check if the function of
those sequences matches the respective ELM function.
For the comparison we employ the GO terms retrieved
from the ELM website and UniProt [30] for the func-
tional classes and the protein sequences, respectively.
The results obtained are shown in Table 5.

First of all, we observe that all top scoring functional
classes are of the LIG type and therefore involve bind-
ing, as shown from the GO category as well. In addition,
some of them are also related to catalytic activities, such
as LIG_PP1, LIG_PP2B_1 and LIG_SCF-TrCP1_1. This
high propensity towards binding related functionalities
is in accordance with the literature where there has
been identified a close relation between cis-nonPro for-
mations and binding/ligand functions, and especially
carbohydrate binding [25]. Indeed, among the protein
sequences of the top scoring functional classes there are
some sequences specifically associated with carbohydrate
binding (PDB ids: INSZ, 7A3H, 1ITX, 2JE8). Moreover,
we observe complete overlap between the GO category
of the ELM functional classes and the GO category
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Figure 5 Functional associations of cis-nonPro peptide bonds using: a) exact pattern discovery, b) pattern discovery with chemical
equivalency set, c) pattern discovery with structural equivalency set and d) overall results from all types of pattern discovery.
A\

Table 5 Functional verification between ELM functional classes and the respective associated sequences

ELM

Sequences

Functional class

GO category

PDB id

GO category

LIG_14-3-3_2 Binding 2034A, 2FPHX, TNARO, 2DDXA Binding, catalytic activity
LIG_PP1 Binding, 2HHPA, 2HFKA, 1D3YA, 10I7A, 1ZY7A, 2B18A, 2F2HA, 2GZQA Binding, catalytic activity,
enzyme transporter activity, transcription
regulator regulator activity
activity
LIG_PP2B_1 Binding, 1ES5A, 1T8TA, TEZWA, 1V5VA Catalytic activity
catalytic activity
LIG_MAPK_1 Binding 1B43A, TNSZA, 2GAKA, 2034A, 1VPDA, 2NQTA Binding, catalytic activity,
LIG_SCF-TrCP1_1 Binding, 1B43A, 1Y8TA, TM4LA, 2IDLA Binding, catalytic activity
catalytic activity
LIG_14-3-3_3 Binding 2IDLA, 2HHPA, 2034A, TUG6A, 2COHA, 1B12A, 1054A, 2FPHX, 1GNLA, Binding, catalytic activity
2FMPA, 1D3GA, 2ES4D, 2DXQA, 2A67A, 2GOWA, TPO5A, 1Q74A, TCNVO,
1JNDA, TKMVA, 2JGOA, 7A3HA
LIG_EH1_1 Binding 1B12A, 2COHA, TWDPA, 2CK3H, 1054A, 2HHPA, TR5YA, 2D0OA, 1USGA, Binding, catalytic activity
2DG1A, TO2DA, TYACA, 1RYIA, 1VZIA, TNARO, 2DSKA, TNTHA, 2AFWA,
2C61A, 1D3GA, TNNWA, 2NX9A, 1X13A, 2A67A, 1C8XA, 2AEEA, TYDYA,
2GAKA
LIG_BRCT_BRCA1_1 Binding 1FSGA, T0Q1A, 2FPQA, 1ZMTA, 2AZ4A, TNOFA, TUEKA, 2HSIA Binding, catalytic activity
LIG_NRBOX Binding TMA4LA, 2NTOA, 2NX9A, 1VLRA, 2DJFA, 1DQPA, 1G2QA, 1J2RA, TNF9A, Binding, catalytic activity
TITXA, 2JEBA, 1B25A, TCNVO, TNARO, 2DSKA, 2CK3H, 2IACA, TFSGA,
1VJPA, TNTHA, 2HSIA
LIG_CORNRBOX Binding 1054A, 2C61A, TC8XA, TLBVA Binding, catalytic activity,

transporter activity
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Table 6 Comparison of available methodologies for the classification of amide peptide bonds

Author Method Sensitivity (%) Specificity (%) Accuracy (%)
Pahlke et al. [8] Chou-Fasman parameters 35 97 66
Exarchos et al. [9] SVM classifier 77 65 71
Current work exact pattern discovery 45 54 49
chemical equivalency set 76 58 67
structural equivalency set 77 63 70

assigned to the sequences retrieved, where in all cases
the binding functionality has been assigned, and in some
cases catalytic activity, as well as a few other functional-
ities such as transporter activity and transcription regu-
lator activity. Nevertheless, in all cases both binding and
catalytic activity overlap between the ELM categories
and the GO category of the respective sequences.

Peptide bond classification

In the last step of the proposed methodological analysis we
employ the extracted patterns in order to perform pattern-
based classification of amide peptide bonds. As mentioned
previously, for evaluation purposes we extract patterns
from the 2/3 of the CNP dataset, and assess their predictive
potential against 5 randomly assembled independent test
sets. The classification function is rather simple and uses
all extracted patterns in order to search for matches against
the regions of the test set. The regions yielding at least one
match are marked as cis, whereas regions with zero
matches are assigned as trans. The performance is quanti-
fied by measuring sensitivity, specificity and accuracy over
the 5 test sets and averaging the results (Table 6). Sensitiv-
ity and specificity denote the fraction of correctly assigned
cis-nonPro and trans-nonPro regions, respectively, and
accuracy is a measure of the overall correctness.

Even though in the literature several methods have
been proposed for predicting the peptide bond confor-
mation of proline residues, only [8] and [9] aim at dis-
criminating between cis-nonPro and trans-nonPro
bonds. Table 6 presents a comparison between the pro-
posed methodological analysis and the ones reported in
the literature. We observe that the proposed methodolo-
gical analysis yields quite encouraging results, especially
when the chemical and structural equivalency sets are
considered. Besides its simplicity, the proposed pattern-
based classification scheme features transparency during
its flow of operation, by reporting the sequential pattern
designating and dictating the conformation of the speci-
fic peptide bond assigned as cis-nonPro.

Conclusions

We presented a methodological analysis for extracting
and annotating protein patterns. Specifically, the study
focused on regions surrounding the scarce, yet highly

important cis-nonPro formations. The elicitation of
regular expression-type patterns from these regions
has been motivated by the limited amount of available
cis amide peptide bonds and to this end aims to facili-
tate the extrapolation and generalization of gained
knowledge about these formations, in a more systema-
tic manner. The resulting list of patterns contains
approximately 200 patterns achieving 100% coverage of
cis-nonPro bonds and FDR around 0.03% for trans-
nonPro bonds. The retained patterns are subsequently
evaluated in terms of their predictive potential towards
discriminating between cis-nonPro and trans-nonPro
peptide bonds, yielding quite encouraging results.
Especially favorable for predictive purposes are the pat-
tern sets obtained using the chemical and structural
equivalencies among amino acids. Our findings con-
firmed that regions containing cis-nonPro peptide
bonds appear replete with glycine as well as leucine
and alanine, which facilitate the formation of the cis
bond given their refined volume; a considerable pro-
pensity was also observed towards aromatic residues
which possibly act as a wrench for the stabilization of
the adjacent bond. Among the retained patterns we
observed lack of cysteine and methionine which can be
attributed to the sulfur atom and subsequently the
highly reactive sulthydryl group. Moreover, regarding
the functional associations of cis-nonPro bonds we
observed a high prevalence for ligand/binding sites.

Availability

For reproducibility reasons, all datasets and algorithms
employed in this work, as well as extensive results and
links to relevant resources, have been deposited and are
available in the following URL: http://sites.google.com/
site/cnppatterns/.
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