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Abstract

Background: Copy number aberrations (CNAs) are an important molecular signature in cancer initiation,
development, and progression. However, these aberrations span a wide range of chromosomes, making it hard to
distinguish cancer related genes from other genes that are not closely related to cancer but are located in broadly
aberrant regions. With the current availability of high-resolution data sets such as single nucleotide polymorphism
(SNP) microarrays, it has become an important issue to develop a computational method to detect driving genes
related to cancer development located in the focal regions of CNAs.

Results: In this study, we introduce a novel method referred to as the wavelet-based identification of focal
genomic aberrations (WIFA). The use of the wavelet analysis, because it is a multi-resolution approach, makes it
possible to effectively identify focal genomic aberrations in broadly aberrant regions. The proposed method
integrates multiple cancer samples so that it enables the detection of the consistent aberrations across multiple
samples. We then apply this method to glioblastoma multiforme and lung cancer data sets from the SNP
microarray platform. Through this process, we confirm the ability to detect previously known cancer related genes
from both cancer types with high accuracy. Also, the application of this approach to a lung cancer data set
identifies focal amplification regions that contain known oncogenes, though these regions are not reported using
a recent CNAs detecting algorithm GISTIC: SMAD7 (chr18q21.1) and FGF10 (chr5p12).

Conclusions: Our results suggest that WIFA can be used to reveal cancer related genes in various cancer data sets.

Background
With the recent advances of cancer studies at a molecular
level, DNA copy number aberrations (CNAs) have been
studied as important causes and consequences in the
initiation, development, and progression of cancer. To
date, many researchers have focused on the detection of
chromosomal regions having amplifications and deletions
using arrays of comparative genomic hybridization (CGH)
data sets. These studies have generated valuable observa-
tions about cancer metastasis [1-7]. For example, it is now
known that many oncogenes and tumor suppressor genes
are located in regions of amplifications and deletions, and
that chromosome regions with aberrations can be used to
distinguish between cancer types. Also, new cancer related

genes have been discovered. These advances have been
accelerated by the development of computational methods
and software [8-14]; segmentation and denoising methods
such as circular binary segmentation (CBS) [8], wavelets
[9], and the Gaussian-based likelihood approach (GLAD)
[10] have been developed in order to identify true aberra-
tions from background noise in a single sample. And with
the accumulation of copy number aberration data sets, it
has become increasingly important to find concordant
aberrations in multiple samples. Thus, algorithms such as
the minimum common region (MCRs) [15] and signifi-
cance testing for aberrant copy number (STAC) [16] have
been developed to address this issue.
However, even though each method can identify aber-

rant regions, these regions are not concordant between
the different methods. As one possible explanation for this
lack of concordance, Beroukhim et al. (2007) [17] assumed
that many aberrations randomly occur, though most
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methods do not explicitly consider the background rate of
random aberrations. For instance, most locations of chr7
and chr10 are amplified and deleted, respectively, in short-
term survival patients of glioblastoma multiforme (GBM)
[18], though only a few of their genes are known onco-
genes and tumor suppressors in GBM. As such, if random
aberrations are not considered, most chr7 and chr10 genes
will be regarded as relevant. Hence, an important issue is
to distinguish cancer driving genes, i.e., genes involved in
cancer development, from broad chromosomal aberra-
tions. Fortunately, the amount of aberrations of driving
genes has been observed to be larger than in their neigh-
boring genes, and these aberrations are likely to occur
consistently across multiple cancer patients. A few algo-
rithms, such as the genomic identification of significant
targets in cancer (GISTIC) [17], have been developed in
attempts to incorporate these issues and are used to detect
focal aberrations. Note that the term “focal aberrations” is
used here to refer to relatively short, but consistently aber-
rant, regions in multiple samples. The use of GISTIC
revealed that these focal aberrations contain many cancer
related genes. In a comparison of GISTIC to MCR [15],
via three independent data sets, GISTIC consistently iden-
tified more cancer related genes than MCR. In GISTIC, it
first selects copy number aberration regions by applying a
segmentation method to each sample, and then sums the
amount of aberrations from the multiple samples. Then,
differences between the aberrations and their neighbors
are computed using a peel-off method. However, GISTIC
has an inherent weakness: differences between neighbors
in individual samples may cancel out since it summates
log2 ratios in all aberrant samples first. The important dif-
ference between GISTIC and our proposed approach is
that we first consider the differences between neighbors in
an individual sample, before identifying focal regions in
multiple samples. In this study, we propose a novel algo-
rithm, referred to as the wavelet-based identification of
focal genomic aberrations (WIFA), to address the follow-
ing issues: (i) distinguish signals from noise among probes
having high aberrations, (ii) detect focal aberrations by
considering the differences between aberrations and their
neighbors, as well as the amount of aberrations, and (iii)
consider the consistency of aberrations in multiple
samples.
Wavelet analysis is a mathematical technique for repre-

senting data. Wavelets can be used to remove noise from
observed data (contaminated by noise) while preserving
important features of true data; this process is called
wavelet denoising. In this study, we use a variant of the
translation-invariant level dependent wavelet denoising
method in [19] to obtain translation-invariant approxi-
mations of the smooth (low-frequency) part of true data
yLOW, and of the local (high-frequency) behavior of true
data yHIGH, from the observed data y. In brief, yLOW is

based on the averages of the neighboring values of y, and
yHIGH is based on the differences of neighboring values of
y, followed by thresholding. Thresholding is only per-
formed in yHIGH since it is likely that noise would be
more pronounced in the high-frequency content. After
obtaining yHIGH via the wavelet analysis, we obtain y∗HIGH
for each sample by adjusting some obvious artifacts in
yHIGH, and then cluster continuous focal aberrations
across multiple samples. By applying this approach to
GBM and lung cancer data sets, we are able to find pre-
viously known cancer related genes in the focal aberra-
tions. In addition, a similar procedure based on yLOW

enables us to detect broad regions of chromosomal
aberrations.
The difficulty of assessing the performance in detecting

focal aberrations is that the true answer is often not
known, since regions containing cancer related genes still
need to be revealed. Hence, we compare genes identified
by our approach to known cancer genes obtained from
GISTIC [17]. Based on this comparison, in addition to
confirming regions identified by GISTIC, we are able to
find new regions not previously identified by GISTIC; lit-
erature shows that these new regions contain known
oncogenes. In addition, WIFA is compared to STAC and
MCR, outperforming these two methods both in the
simulation and GBM data. The source code for WIFA is
available at http://www.gcancer.org/wifa/WIFA.html.

Materials and methods
Materials
We collected and reanalyzed three single nucleotide
polymorphism (SNP) data sets: 154 GBM tumor samples
[17], 178 GBM tumor samples [20], and 371 lung tumor
samples [21]. We downloaded the signal intensities of
the data sets from either the websites of the original
publications or the GEO database. We used all chromo-
somes except X and Y. Both GBM data sets were gener-
ated from an Affymetrix 100K SNP microarray, and the
lung cancer data set was from 250K Sty SNP arrays.
Since the 100K SNP array consisted of independent 50K
Xba and 50K Hind arrays, we then merged these two
arrays along the chromosome positions. Next, to calcu-
late copy number changes from signal intensities, we
applied the following procedure (similar to original pub-
lications): (i) signal intensities were transformed using
the log2 transform to make the noise constant; (ii) for
each sample, the median value across all probes was
subtracted from the probes; (iii) to obtain the log2 ratio
for tumor samples compared to the normal samples,
log2 transformed normal samples were subtracted from
the log2 transformed tumor samples; and (iv) to remove
copy number variants (CNVs) that occur in normal
population, positions with CNVs obtained from [22]
were omitted from the data sets.
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WIFA methodology
Figure 1 illustrates the WIFA method for detecting
broad and focal aberrations in SNP array data sets using
the wavelet transform. The procedure for detecting focal
aberrations is as follows. First, the difference between
the aberrations and their neighbors is measured for the
SNP array data using the wavelet transform and a post-
processing step; this process is called a HIGH transform
and generates y∗HIGH. Probes that have a larger difference
with their neighbors than a given threshold value are
likely to have nonzero values in y∗HIGH. Thus, y

∗
HIGH can

be used to distinguish driving aberrations from passen-
ger aberrations because the amount of aberrations for
driving genes is usually larger than for their neighbors.
Second, the significance of probes for indicating the
driving gene in multiple samples is calculated as the
sum of the values in y∗HIGH from multiple samples, and
is referred to as Y∗

HIGH. This value is generated based on
the assumption that both the number of samples with
aberrations and the amount of aberrations are important
indicators for discovering driving aberrations. Third,
probes having nonzero Y∗

HIGH values are clustered with
neighbors having nonzero Y∗

HIGH values within a certain
distance. Since chromosome positions are also

important for identifying candidate cancer-related genes,
we consider sets of neighboring probes in this third step
instead of using the information from individual probes.
To prioritize these clusters, the score of each cluster is
determined by summing the probes’ values in Y∗

HIGH in
the cluster. Similar to the procedure for detecting focal
aberrations, broad aberrations are identified using y∗LOW;
y∗LOW values are calculated for each sample and then
summed for all samples, denoted as y∗LOW. The statistical
significance of the aberrations is subsequently calculated
as shown in Figure 1(d)-(e).

Wavelet transform and its use in WIFA
Wavelet transform
Let J and L be integers such that 1 ≤ L ≤ J - 1. The (dis-
crete) wavelet transform (WT) maps a given data set y
of length 2J into the scaling coefficients s := {sL,t: t = 0,
1, ..., 2L - 1} and the wavelet coefficients w := {wj,t: j = L,
L + 1, ..., J - 1; t = 0, 1, ..., 2j - 1}. Note that WT is linear
and can be represented by a 2J × 2J orthogonal matrix
W. WT depends on the specific wavelet selected. In this
paper, we use a WT based on the Haar wavelet. The
Haar wavelet transform is used to simply pair up input
values, storing the difference and passing the average,

Figure 1 Schematic of our approach. (a) From a SNP array sample, y∗HIGH, representing differences of aberrations with neighbors, and y∗LOW
values, showing the overall aberrations, are generated using the wavelet transform. (b) The y∗HIGH from multiple samples are summed in order
to combine aberrations from multiple samples. (c) Focal aberrations are identified by clustering probes with their neighbors. (d) The y∗LOW
values from multiple samples are summed to identify aberrations from multiple samples. (e) Broad aberration regions are identified if the
summation of y∗LOW values across multiple samples are larger than a threshold of statistical significance the size of a chromosome arm.
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and it repeats this process recursively, pairing up the
averages to provide the next level–finally resulting in 2L

averages (stored in the scaling coefficients s) and 2J - 2L

differences (that are stored in the wavelet coefficients
w). For more details about wavelets, refer to [23], [24],
and [25].
Wavelet procedure for WIFA
A drawback of the traditional WT is that it is not trans-
lation-invariant. In attempts to remedy this problem, a
number of translation-invariant wavelet transforms have
been employed [9,19,26]. Among the available transla-
tion-invariant wavelet transforms, we use the stationary
wavelet transform by [27] for our WIFA methodology.
Suppose that a single tumor sample is fixed, and that

a chromosome of the sample has n = 2J locations for
some positive integer J. We then denote yi as the
observed copy number change at the i-th genomic loca-
tion xi for i = 1, ..., n. We assume that the genomic
locations xi are fixed, known and equally spaced; for a
wavelet analysis with unequally spaced data, see example
[28]. We further assume that for i = 1, ..., n, the
observed copy number change can be expressed as

yi = f (xi) + εi, xi := (i − 1)/n (1)

where f is an underlying function representing the true
copy number change, and εi is a stationary Gaussian
noise with a zero mean value [19].
The basic principle of wavelet denoising then becomes

to identify and zero out the wavelet coefficients y := {yi :
i = 1, ..., n} that are likely to contain noise, and to esti-
mate {f (xi): i = 1, ..., n} in (1). Instead of the usual
wavelet denoising procedure [29], we use the following
modified steps as the main wavelet denoising procedure
for our methodology:
(Step 1) Given the data y of length n = 2J, and an inte-

ger L such that 1 ≤ L ≤ J - 1, compute W y = {s, w}. For
an integer M ≥ L, let wMID be the wavelet coefficients w
of y with levels j = L, L + 1, ..., M - 1, and wHIGH be the
wavelet coefficients w of y with levels j = M, M + 1, ..., J
- 1.
(Step 2) Define TLOW:{s, wMID, wHIGH} ↦ {s, 0, 0} and

THIGH : {s,wMID,wHIGH} �→ {0, 0, w̃HIGH}, where w̃HIGH is
obtained from wHIGH by thresholding using a hard
threshold function [30] with the threshold value
λ = Cσj

√
2lognj for each level j = M, M + 1, ..., J - 1.

Here, σ 2
j is the estimate of the noise variance for the

wavelet coefficients at level j, nj is the length of the sub-
signal at level j, and C is a constant to be determined
later.
(Step 3) Let S represent a shift operator of the one

time unit [27]. Then, compute the translation-invariant
low-frequency and high-frequency approximations yLOW
and yHIGH defined as

yLOW := Avek=1,··· ,n(S−k ◦ W−1 ◦ TLOW ◦ W ◦ Sk) (y),

yHIGH := Avek=1,··· ,n(S−k ◦ W−1 ◦ THIGH ◦ W ◦ Sk) (y).

The threshold value λ = Cσj
√
2lognj used in (Step 2) is

a variant of the threshold value used in [19]. After (Step
1)-(Step 3), we obtain yLOW and yHIGH. Note that yLOW

gives a translation-invariant approximation of the
smooth (low-frequency) part of the true data, which
provides rough estimate for detecting a broad region of
chromosomal aberrations. This value is based on the
Haar scaling coefficients, which can be considered as
averages of neighboring values of y. On the other hand,
yHIGH gives a translation-invariant approximation of the
local (high-frequency) behavior of the true data, which
provides a rough idea for detecting the focal aberration
of chromosomes; yHIGH is based on Haar wavelet coeffi-
cients – which are differences between the neighboring
values of y–and the threshold.
Dividing the wavelet coefficients depending on the

level has been used in many studies (see [19] and [31]),
although the exact form may vary. The main difference
between our method and other level-dependent wavelet
denoising methods is that we concentrate only on the
low-frequency scaling and high-frequency wavelet coeffi-
cients, and do not consider the mid-frequency wavelet
coefficients. To do this, we add the parameter M to the
usual wavelet thresholding process; from the discussion
in the Results section, this parameter allows us to iden-
tify focal genomic aberrations more effectively.
The values of yLOW for all chromosomes of a given

sample y are obtained simply by processing each chro-
mosome separately, and then concatenating the values
of yLOW for each chromosome; similarly, the values of
yHIGH for all chromosomes can be found.
Next, let us explain how we treat the problem of the

boundary of each chromosome. In brief, the problem of
the boundary is caused by our previous assumption that
the chromosome has n = 2J locations for a positive inte-
ger J, which may not hold true in general; for a more
detailed discussion about boundary conditions, refer to
[32]. We handle this boundary problem by extending
each chromosome first symmetrically and then periodi-
cally. Our experiments show the effectiveness of this
method. Other parameters used in our methodology
include:

• Constant C in the threshold value λ = Cσj
√
2lognj:

in (Step 2), we use the threshold value
λ = Cσj

√
2lognj to threshold the high-frequency

wavelet coefficients at level j. A smaller C would
allow more nonzero values in yHIGH.
• Level L: parameter L can be as small as 1 and as
large as J - 1. A smaller L would increase the
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coarseness of the yLOW approximation, whereas a
larger L would make it finer.
• Level M : parameter M can be as small as L and as
large as needed. A smaller M would produce a yHIGH
with more nonzero values, whereas a larger M
would produce a yHIGH with fewer nonzero values.
Since this is not a standard parameter in wavelet lit-
erature, we pay special attention to it and discuss its
effect on our methodology by varying M. See the
Results section.

In the Results section, we further discuss which values
of the above parameters C, L, and M are used for each
of the data sets in our experiments. To implement the
wavelet transforms, we used WaveLab http://www-stat.
stanford.edu/%7Ewavelab/Wavelab_850/index_wave-
lab850.html.

Identification of broad and focal aberrations in WIFA
Identification of focal aberrations
The values of yHIGH generated from the wavelet trans-
form indicate the difference between the neighboring
values of the denoised sample. To use this information
for focal aberration detection in the WIFA method, we
process the yHIGH values. In Figure 2(a), we draw the
log2 ratio of 152 probes for a single sample, a part of
the GBM SNP array data [17], in which there are strong
amplifications between the 98th and 143th probes. The
yHIGH values obtained by the wavelet transform are then
presented in Figure 2(b). Note that negative yHIGH values
are generated around the positive yHIGH values of the
98th and 143th probes. This negativity is due to the fact
that the positions next to amplifications also have large
differences with their neighbors. To keep only yHIGH

positions with amplifications, we select the position with
the highest absolute log2 ratio value among the conse-
cutive positions with nonzero yHIGH values, and then
assign zero to the positions with a different sign in the
yHIGH values. This process generates y∗HIGH, as shown in
Figure 2(c). A similar process is then performed on the
deletions.
After obtaining y∗HIGH, WIFA considers the two follow-

ing issues. Let y∗HIGH(p) be the value of y
∗
HIGH at a position

p. First, if for a given probe p, y∗HIGH(p) �= 0, and for its
consecutive probes k on both sides, y∗HIGH(k) = 0, the p
might represent CNVs that are abundant in a normal
population, instead of CNAs. Thus, we set y∗HIGH(p) = 0.
Second, we attempt to determine focal aberrations that
are consistent across multiple samples. Figure 3(a) shows
the log2 ratio of the SNP array data of 154 samples in the
same region as in Figure 2(a); this region consists of 152
probes. The sample used in Figure 2 is one of these sam-
ples, and red (or blue) indicates the amplifications (or

deletions, respectively). The HIGH transformed values of
Figure 3(a) are then drawn in Figure 3(b). As shown in
both Figures 2(c) and 3(b), a HIGH transform value
assigns relatively big nonzero values to the boundaries of
aberrations and relatively small (or zero) values to the
middle of aberrations. Note, therefore, that zero y∗HIGH(p)
values do not always indicate that there are no aberra-
tions. Hence, consecutively or nearly consecutively
occurring nonzero y∗HIGH(p) values across multiple sam-
ples might reflect the presence of true focal aberrations.
As such, we sum the y∗HIGH(p) of the multiple samples
shown in Figure 3(c), subsequently represented as
Y∗
HIGH(p) =

∑
y∈{samples}y

∗
HIGH(p).

In order to identify the focal aberration regions, we
consider the neighboring positions together instead of as
a single position. For this task, we consider groups of
positions having positive (or negative) Y∗

HIGH(p) values
located within 1 MB along the chromosome. Then, in
order to find regions of focal aberrations in a group, we
construct clusters such that the two closest positions in
a cluster having positive (or negative) Y∗

HIGH(p) values
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Figure 2 Processing yHIGH values. (a) log2 ratios of 152 probes of
SNP array data are shown from one sample. (b) With the wavelet
transform, yHIGH values representing neighboring values of the
denoised sample are generated. Note that negative values are
generated because positions next to amplifications also show large
differences with their neighbors. (c) In this example, negative yHIGH
values are set to zero to generate y∗HIGH because they do not
represent true aberrations. To keep only yHIGH positions with
amplifications, we pick a position with the highest absolute log2
ratio value among the consecutive positions with nonzero yHIGH
values, and then assign zero to the positions having a different sign
in the yHIGH values.
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are located within a distance d. From the clusters in a
group, we select a cluster c having the maximum score
S(c) =

∑
p∈cluster(c)|Y∗

HIGH(p)|. In the clustering process,
clusters containing nonzero Y∗

HIGH(p) values from only a
single patient are removed. Then, statistically significant

clusters are ranked based on their S(c) scores. In Figure
3(c), the cluster on the right is a focal aberration that
contains a known cancer related gene (EGFR).
A statistical significance of each cluster is calculated

based on the null hypothesis that consecutive aberrations

Figure 3 Comparing log2 ratio of SNP array data with y*HIGH for the GBM data set. (a) log2 ratios of the SNP array data for 154 GBM
patients [17] are drawn for the region from 52,767 to 55,790 KB in chr7. Stronger red presents a larger log2 ratio, representing amplifications.
Amplifications are abundant in this region. (b) y∗HIGH in the corresponding regions of (a) are presented. Probes with nonzero values in y∗HIGH
are drawn in red (blue) for amplifications (deletions). EGFR, a GBM gene, is located in this region. (c) Y∗

HIGH from multiple samples are drawn for
the same region. A part of the region from 54,145 to 55,790 KB is detected as a focal aberration.
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in each sample are independent from those in other sam-
ples. Here, the number of permutations N and the signifi-
cant value a are used to estimate the significance of
clusters.

1. In each sample, segments of aberrations (a set of
consecutive probes with y∗HIGH �= 0) are randomly
positioned on a chromosome. This random position-
ing is then applied to all samples, generating ran-
domly permuted data from the multiple samples.
This permutation approach is described in detail in
[11].
2. The process for detecting focal aberrations in
multiple samples is subsequently applied to the ran-
domly permuted data, generating a set of clusters.
3. Steps 1 and 2 are repeated N times. Let the max
score of clusters from the ith permutation be the
max_score(i).
4. The p-value of each cluster c of the observed data
Pcluster(c) can be calculated by comparing scores
from the permuted and observed data:

Pcluster(c) =

∑N
i I(max score(i) ≥ S(c))

N
, (2)

where S(c) is the score of a given cluster c, and I
denotes the indicator function.
5. Clusters with Pcluster(c) less than a are considered
statistically significant.

In this paper, we use N = 1,000 and a = 0.1, and the
permutation and calculation of Pcluster is performed for
each chromosome.
Identification of broad aberrations
After yLOW values are generated from the wavelet trans-
form for each sample, we use yLOW as y∗LOW; yLOW values
do not require a processing step, contrary to yHIGH. To
integrate multiple samples, we sum y∗LOW values from
multiple samples, referred to as Y∗

LOW. Note that if all
probes in a chromosome arm are statistically significant
in Y∗

LOW, we consider it a broad aberration. We then cal-
culate the statistical significance of Y∗

LOW in the follow-
ing way. The null hypothesis for Y∗

LOW is that y∗LOW is
independent among samples, so the summation of y∗LOW,
Y∗
LOW, is the same across all probes in the chromosomes.

To generate the null distribution, we first construct a
histogram hi of y

∗
LOW in a single sample i by splitting

y∗LOW values into bins at intervals of 0.01. Next, the dis-
tribution of Y∗

LOW is calculated by the convolution of hi
of all samples, and the p-value of the observed Y∗

LOW is
calculated by summing the probabilities from the tail of
the null distribution to the observed Y∗

LOW value. The p-
value is separately calculated for amplifications and

deletions. For the correction of multiple tests, p-values
are converted into q-values [33]; the p-values of Y∗

HIGH
are similarly calculated. This approach is similar to the
calculation of statistical significance of aberrations used
in [17]. Note that the p-values of Y∗

HIGH are calculated
for each probe, and the Pcluster discussed above is calcu-
lated for each cluster.

Results
Broad and focal aberrations in glioblastoma
We applied our approach to 154 GBM tumor samples
[17]. After testing different values of C, L, and M (cf.
Methods section), we selected C = 1.94, L = 9, and M =
12. Our experimental results for different values of M
are shown below (experiments for different values of C
and L are not shown). Since Jtotal := ⌈log 2(ntotal)⌉ = 17,
where ntotal is the number of total probes in the data
set, L = 9 for this data set roughly indicates that we
average the log2 ratios of 2Jtotal

−L
= 217−9 = 256 probes

in the 100K SNP array to obtain yLOW. In order to iden-
tify broad aberrations, we apply the LOW transform and
calculate the q-values of Y∗

LOW. Here, amplifications and
deletions in the size of a chromosome arm are consid-
ered broad aberrations, with a threshold q-value of 0.01.
As shown in Additional File 1(a) and 1(b), chr7, 8q, 17q,
19p, and 20 are amplified, and chr6q, 9p, 10, 13, 14, and
22 are deleted in the size of a chromosome arm. Next,
using the HIGH transform, our model is able to detect
clusters with focal aberrations; we used d = 100 KB to
construct clusters. Since EGFR, MDM2, PDGFRA,
MDM4, CDK4, MET, CDKN2A, PTEN, RB1, CDK6,
and MYC have been reported as important GBM related
genes [34], we investigate whether the clusters contain
these genes. In addition, we investigate the effect of dif-
ferent M values for detecting focal aberrations. We use
M values ≥ 9 since M can have values from L, as
described in the Methods section. The number of
probes with nonzero values in Y∗

HIGH is the largest when
M = 9; Figure 4(a) shows that 71 statistically significant
clusters are generated for this value. In these clusters,
seven GBM related genes are ranked as the top seven
clusters. As M increases, the number of clusters and the
number of nonzero probes in Y∗

HIGH decreases. Indeed,
in Figure 4(g) only two clusters are generated when M =
15. In the range M = 10-12, eight or nine GBM genes
are located in the highly ranked clusters; this observa-
tion shows that our method highly ranks clusters con-
taining important GBM genes regardless of the M value.
However, if we consider the size of the chromosomal
region containing the identified focal aberrations, there
is a preferred choice for M value. When M = 9, among
all 71 clusters spanning 436 MB, the top seven clusters
contained seven GBM genes. On the other hand, when
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M = 12, 19 clusters spanning 26 MB included nine
GBM genes in the top nine clusters. Hence, we use M =
12 for further analysis. As shown in Figure 4(b), these
nine clusters contain nine previously identified GBM
related genes [34], including EGFR, MDM2, PDFGFA,
MDM4, CDK4, MET (amplifications), CDKN2A, PTEN,
and RB1 (deletions); however, MDM4 and RB1 lie

slightly out of the detected region. These nine genes
were also detected by GISTIC. In addition to these nine
genes, aberrations of CDK6 and MYC have also been
reported in multiple GBM studies [34]. However, using
this GBM data set, aberrations of these two genes were
detected neither by our method nor by the GISTIC
method. The above results indicate that our method

Figure 4 Focal aberrations in GBM data with several M values. Focal aberrations of GBM data [17] are shown. Y∗
HIGH and its corresponding

p-values are generated using M values from 9 to 15. (a)-(b) On the left, p-values of Y∗
HIGH are drawn across chromosomes with GBM related

genes for M values of 9 and 12. Deletions (amplifications) are represented in blue (red). On the right, statistically significant clusters with GBM
related gene symbols are shown. For example, in (a), 71 clusters are generated and the top seven clusters include seven GBM genes. These
clusters span 436 MB chromosomal regions in total. Clusters with deletions (amplifications) are represented in blue (red). As M increases, the
number of clusters decreases. Although the values of M change, GBM genes are still located in the highly ranked clusters. When M = 12, a
cluster containing RB1 (MDM4) is indicated in light blue (light red), which denotes that RB1 (MDM4) lies slightly out of the cluster. (c)-(g) Clusters
with M values of 10, 11, 13, 14, and 15 are shown for GBM genes.
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highly ranks most of the important GBM genes and
reports only a small number of false positive positions–
although there is a possibility that these false positive
regions may include previously unreported GBM genes.
Table 1 shows the positions of clusters in chromosomes,
ranked according to the cluster scores when M = 12.
WIFA identified ten additional regions (other than the
above nine genes). Two regions include known cancer
related genes (MYCN [35] and IGFBPL1 [36]), though
the remaining eight regions do not contain any cancer
related genes; Additional File 2 contains the gene sym-
bols for all clusters. In contrast, GISTIC identified 17
additional regions. In these regions, five known cancer
related genes are included, one of which is MYCN. The
remaining 12 regions do not contain any cancer related
genes. Hence, both methods contain regions that may
require further analysis, or they might just be falsely
detected regions. Let us now revisit Figure 3 in order to
illustrate the use of the HIGH transform to detect focal
aberrations in GBM data [17]. Figure 3(a) presents the

SNP array data of 154 patients at positions from 52,767
to 55,790 KB in chr7. In this region, DNA amplification
seems apparent in multiple patients. Figure 3(b) then
gives the HIGH analysis for the corresponding region.
Note that the cluster from 54,145 to 55,790 KB ranks
2nd in Table 1 and contains EGFR.
We also applied the proposed method to a GBM data

set obtained by Kotliarov et al. [20]. We used the same
parameter values for C, L, M, and d as for the previous
GBM data, since both are generated using the same
SNP array platform. The HIGH analysis for this GBM
data generates eight clusters; among these clusters, one
focal deletion contains CDKN2A, and five focal amplifi-
cations contain MDM4, PDGFRA, EGFR, MDM2,
and CDK4 (Additional File 3 and Additional File 4).
Note that MET is not included in the focal aberrations
because amplification occurs only in a single sample.
The six GBM genes identified using this data are also
found in the previous GBM data set. This result con-
firms that our method is able to detect focal aberrations
that are consistent across different experiments.

Broad and focal aberrations in lung cancer
We applied our method to the 371 lung cancer patients
studied by Weir et al. [21]. Let us first explain how
some of the parameters in our Methods section can be
determined for a data set other than GBM data, by
using this data set as an example. We recall that the
parameters used for GBM data are C = 1.94, L = 9, M =
12, and Jtotal = 17. Since the average distance between
probes for GBM data set is 50 KB, the actual length of
genomes we average for yLOW is approximately

50K · 2Jtotal−L = 50K · 217−9 = 12.8M,

and the actual length of genomes we consider as a
focal aberration for yHIGH is approximately

50K · 2Jtotal−M = 50K · 217−12 = 1.6M.

For the lung data set, the average distance between
probes is 13 K and Jtotal := ⌈log 2(ntotal)⌉ = 18, where
ntotal is the number of total probes in the data set. Since
we want the actual length of genomes that we average
for yLOW and the actual length of genomes we consider
as focal aberrations to be similar to the GBM case, we
select L = 8 and M = 11. Then, the actual length of gen-
omes we average over for yLOW is approximately

13K · 2Jtotal−L = 13K · 218−8 = 13.2M,

and the actual length of genomes that we consider as
focal aberrations for yHIGH is approximately

13K · 2Jtotal−M = 13K · 218−11 = 1.664M.

Table 1 Clusters with focal aberrations in GBM

Score Pcluster Cytoband Start
(KB)

End
(KB)

# of
PA

Gene
Symbol§

-363 0 9p21.3,p22.1 19,639 24,327 42 CDKN2A

266 0 7p11.2 54,145 55,790 25 EGFR

101 0 4q12 52,600 55,926 9 PDGFRA

66 0 1q32.1 200,858 202,110 5 MDM4†

60 0 12q15 67,074 68,482 6 MDM2

36 0.015 12q13.3,
q14.1

55,820 57,257 4 CDK4

-35 0 13q14.2 46,386 47,510 3 RB1†

23 0.067 7q31.2 115,813 116,895 2 MET

-18 0 10q23.2,
q23.31

88,974 89,943 3 PTEN

-16 0 19q13.2,
q13.31

46,084 48,423 3

-15 0 9p21.1 32,101 32,432 3

8 0.001 17q22 47,672 49,744 2

-7 0.034 1p33 50,351 50,689 2

6 0 2p24.3 15,746 16,670 2 MYCN

-4 0 9p13.1 38,288 39,006 3 IGFBPL1

2 0.005 14q31.3 84,913 86,323 2

-2 0 9p12 40,722 41,675 3

-0.5 0 3p14.2 60,046 60,153 2

-0.2 0.033 14q21.2,
q21.3

42,887 43,214 2

19 statistically significant clusters obtained from the HIGH analysis are shown
when M = 12. ‘Score’ is the sum of Y∗

HIGH values for positions in the cluster.
‘Pcluster’ is the statistical significance of the cluster. Positive (negative) values
represent that a cluster contains amplified (deleted) focal aberrations. Clusters
are ordered by the absolute value of the score. Cytoband, the start and end
positions of cluster regions, the number of patients with focal aberrations (#
of PA), and GBM or cancer related genes included in the cluster are indicated.

§Gene annotations are based on hg18 human genome assembly.

†These genes are closely located to the focal aberrations. MDM4 is located at
chr1:202,752-202,794 KB, and RB1 at chr13:47,775-47,954 KB.
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With the value of C = 1.94, the number of nonzero
values in yHIGH of all chromosomes in the GBM data set
is about 10% of the number of nonzero values in the
sample. The value of C that provides approximately the
same percentage of nonzero values in yHIGH for the lung
data set is C = 5.2.
Using the LOW analysis, we then attempt to detect

broad aberrations in lung cancer. For this task, the
q-value is first calculated for each probe. As shown in
Additional File 5 (a) and 5 (b), with a threshold q-value
of 0.01: chr1p, 3p, 4q, 5q, 6q, 8p, 9, 10q, 13p, 15, 16q,
18, 21p, and 22 are deleted; and chr1q, 2p, 5p, 6p, 7, 8q,
14p, 17q, and 20q are amplified in the size of the chro-
mosome arm.
When Weir et al. [21] analyzed this lung cancer data

set using the GISTIC approach, they identified five
deleted focal regions and 17 amplified focal regions with
statistical significance: in these regions, ten known onco-
genes (MDM2, MYC, EGFR, CDK4, KRAS, CCNE1,
ERBB2, CCND1, TERT, and ARNT), two known tumor
suppressor genes (CDKN2A and PTEN), and six new
candidate genes (MBIP, NKX2-1, VEGFA, PTPRD,
PDE4D, and AUTS2) were found. We applied the WIFA
approach to this same data set (d = 50 KB). When M =
11, 20 clusters spanning 28 MB are generated. Table 2
and Additional File 6 present a detailed description of
these 20 clusters. The top-ranked cluster contains
MBIP, a new candidate gene that is also ranked at the
top in the GISTIC analysis. Among the 18 cancer
related genes noted above, six known oncogenes
(MDM2, EGFR, KRAS, CCNE1, ERBB2, and CCND1),
one known tumor suppressor gene (CDKN2A), and
three new candidate genes (MBIP, NKX2-1, and
VEGFA) are included in the focal aberrations. In addi-
tion, SS18 and FGFR1–which were identified by Weir et
al., though they did not consider them statistically sig-
nificant–are identified as having statistical significance
in our study. Let us now look at the remaining clusters
that do not contain cancer related genes reported by
Weir et al. We investigated whether or not these
remaining clusters contain other cancer related genes
(Table 2). Two genes SMAD7 (chr18q21.1) and FGF10
(chr5p12) are located in focal aberration regions. It is
known that SMAD7 functions as an intracellular antago-
nist of transforming growth factor beta (TGF-beta) sig-
naling and is frequently unregulated in various cancers
[37]. A recent study showed that a transgenic mouse
model with SMAD7 disrupted TGF-beta signaling and
increased lung carcinogenesis [38]. In our study, the
values of y∗HIGH in chr18:43,953-45,322 KB, where
SMAD7 is located, are positive in two patients. Indeed,
the averages of the log2 intensity ratio of these two
patients are higher than those of patients having zero
values in y∗HIGH (Additional File 7(a)). This result implies

the DNA amplification of SMAD7 in lung cancer. A
member of the fibroblast growth factor FGF10 has also
been reported in several cancer studies; multiple lines of
evidences show that FGF10 plays important roles in var-
ious cancer types, including prostate and pancreatic can-
cers [39,40]. Previously, the mRNA expression of FGF10
in the fetal lung of mice was shown to disrupt lung
morphogenesis [41], and the alternation of FGF path-
ways frequently occurs in lung cancer [42]. Our analysis
reveals that eight lung cancer patients contain DNA
amplification in the chr5:42,891-44,452 KB regions,
including FGF10. As shown in Additional File 7(b), the
average values of the log2 intensity ratios of samples
having positive values in y∗HIGH are higher than those of
samples having zero values in y∗HIGH. This result suggests
the possibility that the DNA copy numbers of FGF10
increase in lung cancer and might affect lung cancer
development.
Let us further explain the difference between GISTIC

and WIFA by looking at chr18:43,953-45,322 KB (where

Table 2 Clusters with focal aberrations in lung cancer

Score Pcluster Cytoband Start
(KB)

End
(KB)

# of
PA

Gene
Symbol§

118 0 14q13.2
q13.3

35,467 36,690 10 MBIP,NKX2-1

107 0 12p11.23
p12.1

24,055 26,685 4 KRAS

84 0 18q11.2
q12.1

20,300 23,537 4 SS18

62 0 7p11.2 p12.1 53,796 55,553 3 EGFR

54 0.006 18q21.1 43,971 45,322 2 SMAD7 ‡

51 0.064 12q15 67,983 69,669 4 MDM2 †

47 0.006 19q12 35,835 36,303 2 CCNE1 †

47 0 11q13.2
q13.3

68,164 69,500 3 CCND1

42 0.012 19q13.11
q13.12

37,716 41,040 5

35 0 22q11.21 19,057 19,785 2

33 0 17q12 q21.1 33,845 35,540 4 ERBB2

26 0.018 8p11.23 p12 38,417 39,171 2 FGFR1

24 0 10p11.21 37,594 38,717 2

22 0 6p21.33 30,143 30,911 2

15 0.023 6p22.1 p22.2 26,089 26,937 2

14 0.007 5p12 42,982 44,452 2 FGF10 ‡

10 0.064 6p21.1 43,240 44,227 2 VEGFA

10 0.019 10q11.21 42,184 43,133 2

9 0 9p21.3 24,546 25,375 2

-3 0 9p21.3 21,181 22,194 2 CDKN2A

When M = 11, 20 statistically significant clusters are shown. These clusters
contain known lung cancer genes or cancer related genes in other cancer
types. All genes contained in the 20 clusters are described in Additional File 6.
Columns are as described in Table 1.

§Gene annotations are based on hg18 human genome assembly.

†MDM2 is located at chr12:67,488-67,520 KB and CCNE1 at chr19:34,500 KB.

‡Cancer related genes identified using the proposed method, not GISTIC.
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SMAD7 is located), which was identified only by WIFA.
Figure 5(a) shows the log2 intensity ratios of two
patients for part of chr18. Although both samples are
commonly amplified in chr18:43,953-45,322 KB, the G-
values obtained by GISTIC are not large enough to
identify this region. The G-values are calculated by sum-
ming the log2 intensity ratios of the amplified samples;
40 samples are considered amplified in this region (log2
ratio>0.1). However, even though the original data from
two patients (Figure 5(a)) were highly amplified and
their differences with neighbors seemed significant, the
G-values did not capture this significance. This is
because the other 38 (amplified with less difference
between neighboring values than the two) samples were
also used to calculate the G-values, which resulted in
the significance of the two samples being obscured
(Figure 5(b)). In contrast, WIFA first calculates the dif-
ferences with neighbors for each sample, then sums the
differences. In WIFA, the y∗HIGH values are high for the
two samples, but the y∗HIGH values are zero for the other
samples since these other samples do not have any sig-
nificant difference with their neighbors. Therefore,
Y∗
HIGH–the summation of y∗HIGH values from multiple

samples–can reflect the significant differences with the
neighbors of these two samples (Figure 5(c)). Note that
both GISTIC and WIFA identify amplification in
chr18:20,300-23,559 KB.

To validate our choice of M, we conducted experi-
ments with various M values. For example, with M = 9,
37 clusters spanning 161 MB included 12 cancer related
genes, as shown in Additional File 8(a). However, even
though the M = 9 case identified two more genes com-
pared to M = 11, it required the search of five times
more genomic regions; refer to Additional File 8 for the
results of the other M values. Our analysis of lung can-
cer confirms that WIFA is useful for identifying cancer
related genes in focal aberrations across different cancer
types.

Comparison with other methods
We then compared our method with MCR and STAC.
For implementation, we used the MCR from waviCGH
[13](http://wavi.bioinfo.cnio.es/) and STAC from the
authors’ website (http://www.cbil.upenn.edu/STAC/).
Note that the input files from both methods should
have binary aberration calls of amplification, deletion, or
no change; hence, GLAD [10], a segmentation method,
was applied to single samples. The thresholds for ampli-
fication and deletion were then used to determine the
aberration regions. In MCR, the fraction of samples in
aberrant regions was used to determine the significant
regions. In STAC, the p-value of the footprint was used
as a measure of the significance of aberrant regions. For
WIFA, the cluster score is used for this purpose.
We used a series of simulation data as the basis of our

comparison, and generated the simulation data in two
steps. First, ten different underlying true data were gen-
erated using Multiple Sample Analysis [11](http://www.
cbil.upenn.edu/MSA/) software. For each true data, the
length of a genome, in terms of number of markers, was
4,500; in addition, the number of samples was 50; the
number of markers in the underlying concordant aber-
rations was 30; and the numbers of samples in concor-
dant aberrations varied from 50% to 70%. In ten true
data, the numbers of concordant aberrant regions varied
from five to seven, and there were one or two noncon-
cordant regions. Second, the background aberrations
were generated using a normal distribution. Because the
maximum (in absolute) values of the markers for each
sample were different, we set the standard deviation of
the normal distribution to be the multiplication of a
fixed number, which we refer to as the noise level, and
the maximum value of the true data.
We investigated noise levels of 0.2 and 0.4. Perfor-

mances of three methods are measured based on values
for the area under a curve (AUC) for the sensitivity and
false positive rate. For both noise levels, WIFA shows
very good performance in identifying concordant regions
in the simulation data, as shown in Figure 6. Note that
MCR performs slightly better than WIFA when the
noise level is 0.2, but WIFA is superior when the noise

Figure 5 Chr18:18-62 MB regions. Both GISTIC and WIFA identify
amplifications in chr18:20,300-23,559 KB, whereas amplifications in
chr18:43,954-45,322 KB including SMAD7 are only identified by
WIFA. (a) log2 ratios of two patients amplified in chr18:43,954-45,322
KB are shown. (b) G-scores in the same region by GISTIC are not
large enough to be identified. (c) Y∗

HIGH by WIFA is significantly
higher in the same region.
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level is 0.4. Considering that a lower noise level gener-
ally results in easier noise removal, we can conclude
that WIFA is the most useful in identifying concordant
regions in the simulation data. During these simulations,
the parameter values of C, L, and M in WIFA were
determined in the same manner as for lung cancer. In
MCR and STAC, 0.1 is used as the threshold value for
identifying amplifications and deletions in a single sam-
ple, after application of the GLAD segmentation
method.
We next compared WIFA with MCR and STAC using

real GBM data sets. As a measure of performance, we
used the length of genomes to identify known GBM
genes. In Figure 7, the y-axis represents the length of
the genome regions sorted based on the region signifi-
cance, and the x-axis represents the number of GBM
genes contained in the corresponding genomes in the
y-axis. Because methods with high performance require
a smaller length of genomes in their search for known
GBM related genes, methods closer to the x-axis gener-
ally outperform other methods. Here, on average, WIFA
typically shows the best performance, as nine genes can
be identified around 10,000 KB. In MCR and STAC, five
different thresholds of 0.1, 0.2, 0.3, 0.4, and 0.5 are used
to determine the amplification and deletion. In both
methods, the threshold value of 0.3 shows the best per-
formance. Figure 7 includes the graphs of the 0.3
threshold, along with one other threshold for compari-
son. In MCR, only three or four genes are identified
within 10,000 KB; more than 100,000 KB is required to
identify the remaining genes. In STAC, more than
10,000 KB is required to identify most of the genes.

Discussion and Conclusions
Our work is based on a wavelet analysis. The wavelet
analysis has been used in other papers to analyze array
CGH data (cf. [9], [43]); for example, in [9], it is shown

to perform well compared to approaches such as CBS, a
change-point method [8], and HMM [44]. Compared to
other wavelet-based approaches used to analyze array
CGH data, the main differences in WIFA include: (i) a
new parameter M is introduced, which is used to iden-
tify focal genomic aberrations more effectively; and (ii) a
new method that integrates multiple samples, as a post-
processing step in the wavelet analysis, is suggested in
order to identify cancer-related genes from a data set
having multiple samples. As a result, we were able to
detect cancer related genes with high rate of accuracy in
both GBM and lung data sets.
CNPs are another type of DNA variation that are

abundant in the normal population, and are usually
observed in kilobase or megabase DNA deletions or
duplications. When a HIGH analysis was applied to
SNP microarrays, deletions of a single SNP probe were
frequently observed. When these were compared to the
positions of known CNPs [22], many regions were
found to overlap (data not shown); these single SNP
probes were removed from our analysis since the rele-
vance of CNPs to cancer requires further study. How-
ever, if CNPs are the main subject of analysis, it is
possible that a new method based on our HIGH analysis
could be developed to achieve this task. As a promising
example, a single deletion of the SNP probe from 13
patients was observed at the 55,205,890 base position of
chr11 when the GBM data set was used [17]. Olfactory
receptor (OR) genes such as OR4C11, OR4P4, OR4S2,
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and OR4C6 are located at this position, and it was pre-
viously shown that the OR genomic location is fre-
quently affected by CNPs [45]. This observation
suggests that our wavelet analysis has the potential to be
broadly applied to detect various kinds of focal
aberrations.

Additional material

Additional file 1: Broad aberrations in GBM data [17]. Broad
aberrations of GBM data [17] are shown with a q-value threshold of 0.01:
(a) deletions are shown in chr6q, 9p, 10, 13, 14, and 22, and (b)
amplifications are shown in chr7, 8q, 17q, 19p, and 20.

Additional file 2: Clusters with focal aberrations in GBM data set
[17]. 19 clusters using HIGH analysis are shown when M = 12. ‘Score’ is
the sum of Y∗

HIGH values for positions in the cluster. Positive (or
negative) value represents that a cluster contains amplified (deleted)
focal aberrations. Clusters are ordered by the score. ‘Pcluster’ is a
statistical significance of the cluster. Chromosome, cytoband, start and
end positions of cluster regions, the number of patients with focal
aberrations, and genes in the focal aberrations are shown. Gene
annotations are based on hg18 human genome assembly.

Additional file 3: Focal aberrations in GBM data [20]. Focal
aberrations of GBM data [20] are shown with M = 12. Deletions
(amplifications) are indicated in blue (red). Focal deletions contain
CDKN2A, and focal amplifications contain MDM4, PDGFRA, EGFR, MDM2,
and CDK4.

Additional file 4: Clusters with focal aberrations in GBM data set
[20]. 8 clusters using HIGH analysis are shown when M = 12. ‘Score’ is
the sum of Y∗

HIGH values for positions in the cluster. Positive (or
negative) values indicate that a cluster contains amplified (deleted) focal
aberrations. Clusters are ordered by score. ‘Pcluster’ is the statistical
significance of the cluster. Chromosome, cytoband, start and end
positions of cluster regions, the number of patients with focal
aberrations, and genes in the focal aberrations are shown. Gene
annotations are based on hg18 human genome assembly.

Additional file 5: Broad aberrations in lung cancer data [21]. Broad
aberrations of lung cancer data are shown for a q-value threshold of
0.01. (a) Deletions are shown in chr1p, 3p, 4q, 5q, 6q, 8p, 9, 10q, 13p, 15,
16q, 18, 21p, and 22. (b) Amplifications are shown in chr1q, 2p, 5p, 6p, 7,
8q, 14p, 17q, and 20q.

Additional file 6: Clusters with focal aberrations in lung data set
[21]. 20 clusters from the HIGH analysis are shown when M = 11. ‘Score’
is the sum of Y∗

HIGH values for positions in the cluster. Positive (or
negative) values indicate that a cluster contains amplified (deleted) focal
aberrations. Clusters are ordered by score. ‘Pcluster’ is the statistical
significance of the cluster. Chromosome, cytoband, start and end
positions of cluster regions, the number of patients with focal
aberrations, and genes in the focal aberrations are shown. Gene
annotations are based on hg18 human genome assembly.

Additional file 7: log2 intensity ratio of patients in the regions
including SMAD7 and FGF10. (a) In the region chr18:43,954-45,322 KB
(133 probes), where SMAD7 is located, two patients have positive
y∗HIGH values. For each probe, the average values of intensities of the
two groups of patients are plotted: ‘Group1’ contains patients having
positive values in y∗HIGH and ‘Group2’ contains patients having zero
values in y∗HIGH. (b) In the region chr5:42,891-44,452KB (77 probes),
where FDF10 is located, eight patients have positive values in y∗HIGH. In
both cases, it is clearly shown that the log2 intensity ratio is higher in
patients having positive values in y∗HIGH than samples having a zero
value in y∗HIGH.

Additional file 8: Focal aberrations in lung cancer data for several
M values. Focal aberrations of lung cancer data [21] are shown. M values
used range from 9 to 12. (a)-(d) As described in Figure 4(a)-(g) in the
main text.
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