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Predicting disease-associated substitution of a
single amino acid by analyzing residue interactions
Yizhou Li, Zhining Wen, Jiamin Xiao, Hui Yin, Lezheng Yu, Li Yang, Menglong Li*

Abstract

Background: The rapid accumulation of data on non-synonymous single nucleotide polymorphisms (nsSNPs, also
called SAPs) should allow us to further our understanding of the underlying disease-associated mechanisms. Here,
we use complex networks to study the role of an amino acid in both local and global structures and determine
the extent to which disease-associated and polymorphic SAPs differ in terms of their interactions to other residues.

Results: We found that SAPs can be well characterized by network topological features. Mutations are probably
disease-associated when they occur at a site with a high centrality value and/or high degree value in a protein
structure network. We also discovered that study of the neighboring residues around a mutation site can help to
determine whether the mutation is disease-related or not. We compiled a dataset from the Swiss-Prot variant
pages and constructed a model to predict disease-associated SAPs based on the random forest algorithm. The
values of total accuracy and MCC were 83.0% and 0.64, respectively, as determined by 5-fold cross-validation. With
an independent dataset, our model achieved a total accuracy of 80.8% and MCC of 0.59, respectively.

Conclusions: The satisfactory performance suggests that network topological features can be used as
quantification measures to determine the importance of a site on a protein, and this approach can complement
existing methods for prediction of disease-associated SAPs. Moreover, the use of this method in SAP studies would
help to determine the underlying linkage between SAPs and diseases through extensive investigation of mutual
interactions between residues.

Background
Genetic variation is a major driving force in the evolution
of organism. In individuals, specific genetic mutations
such as SNPs can be deleterious and cause disease. The
human genome project has yielded massive amounts of
data on human SNPs, and this information can be used
to further investigate human diseases. It is estimated that
the human genome contains 10 million SNP sites [1]. As
a major repository of human SNPs, the NCBI dbSNP
database [2] contains ~25 million human entries in the
release of build 130. The annotation of single nucleotide
polymorphisms (SNPs) is attracting a great deal of atten-
tion. Non-synonymous SNPs (nsSNPs), also referred to
as single amino acid polymorphisms (SAPs), are SNPs
that cause amino acid substitutions, and these are
believed to be directly related to diseases. Thus far, only
a small proportion of SAPs has been associated with

disease. To date, ~20,000 non-synonymous SNPs are
available with explicit annotation in the Swiss-Prot data-
base [3,4]. Therefore, it is desirable to develop effective
methods for identifying disease-related amino acid sub-
stitutions [5].
Several computational models have been developed for

this purpose. Evolutionary information is commonly
considered to be the most important feature for such
a prediction task. Based on sequence homology, an ear-
liest predictor SIFT was developed by Ng and Henikoff
[6,7]. The PANTHER database was designed based on
family Hidden Markov Models (HMMs) to determine
the likelihood of affecting protein function [8]. PolyPhen
[9-11] showed that the selection pressure against dele-
terious SNPs depended on the molecular function of the
proteins. Sequence/structural attributions were also
incorporated in many studies. Satisfactory results were
obtained by Ferrer-Costa [12] using mutation matrices,
amino acid properties, and sequence potentials. By using
attributions derived from other tools, an automated
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computational pipeline was constructed to annotate dis-
ease-associated nsSNPs [13]. Many other models have
been developed based on this combination strategy
[14-21]. Saunders and Baker evaluated the contributions
of several structural features and evolutionary informa-
tion in predicting deleterious mutations [22]. Wang and
Moult undertook a detailed investigation of SNPs in
which they studied the effects of the mutations on mole-
cular function [23]. Recently, Mort et al., [24] Li et al.,
[25] and Carter et al. [26] functionally profiled human
amino acid substitutions. They found a significant differ-
ence between deleterious and polymorphic variants in
terms of both structural and functional disruption. Yue
et al. [27-29] performed comprehensive studies on the
impact of single amino acid substitutions on protein
structure and stability. In these studies, stability change
was also regarded as an important factor that contribu-
ted to dysfunction. Detailed studies were carried out by
Reumers et al., [30] and Bromberg et al. [31] in which
the extent of the functional effect of a mutation was
correlated to its effect on protein stability.
Wang et al., [23] and Yue et al. [27] showed that the

functional impacts of a mutation are closely related to
its protein structural context. Recently, Alexander et al.
[32] showed how the fold and function of a protein is
altered by mutations. They observed a conformational
switch between two different folds triggered by a single
amino acid substitution, which directly proved the
dependence of protein structure and function on amino
acid interactions. Therefore, the challenge that is faced,
especially when there is a lack of annotations on the
functional role of a residue, is how to incorporate such
useful features for detecting disease-associated muta-
tions. To resolve this, in our study a complex network
was employed to depict protein structure.
Owing to their potential for systematic analysis, com-

plex networks have been widely used in proteomics. This
method can also be used to represent a protein structure
as a network (we call it protein structure network, PSN)
in which the vertices are the residues and the edges are
their interactions. This provides novel insight into pro-
tein folding mechanisms, stability, and function. Greene
et al., and Bagler et al. described the small-world and
even scale-free [33] properties of such network, which
were independent of the protein structural class [34].
Vendruscolo et al., and Dokholyan et al. determined that
a limited set of hub vertices with large connectivity plays
a key role in protein folding [35-37]. In another study,
hubs were defined as residues with more than four links,
and these brought together different secondary structure
elements that contributed to both protein folding and
stability [38]. All these studies suggest that protein struc-
ture network (PSN) facilitates the systematic analysis of
residue interactions both locally and globally. PSN also

has the advantage of capturing the role of a residue in
protein structure and function.
Using this information, Cheng et al. developed a solely

structure-based approach named Bongo to predict dis-
ease-associated SAPs [39] and obtained a satisfactory
positive predictive value. Their study emphasized that
the functional essentiality of a site is closely correlated
to its role in maintaining protein structure. Their study
showed that PSN should be capable of detecting poly-
morphic mutations. However, their method performed
poorly in detecting disease-associated mutations, which
was believed to be due to the inability of Bongo to
identify functional roles of the residue. In this study, we
demonstrated that PSN can also perform well in pre-
dicting disease-associated mutations.
We carried out a comprehensive analysis on the net-

work properties of mutations by using a dataset com-
piled from Swiss-Prot. We tried to determine how
disease-associated variants differ from polymorphism
variants in terms of network topological features. Four
well-established network topological features, degree,
clustering coefficient, betweenness, and closeness, were
calculated based on protein structure networks and used
to predict disease-associated SAPs. The neighborhood of
the mutation was also investigated. These features offer
a quantitative description of residue interactions. We
compared their performance with that of conservation
features. Finally, a model was constructed to predict dis-
ease-associated SAPs by combining network topological,
conservation, and properties of neighboring residues
around a mutation (environmental features) as well as
several features reported in previous studies. The satis-
factory performance suggested that studying residue
interactions can help to distinguish disease-associated
SAPs from polymorphic SAPs.

Results
Analysis of topological features for disease-associated
and polymorphic SAPs
Four well-established network topological features,
degree, clustering coefficient, betweenness, and closeness–
were used to characterize disease-associated SAPs. First,
an analysis was carried out to determine the extent to
which disease-associated and polymorphic SAPs differ in
terms of such topological features.
Figure 1 shows that the two types of SAPs differ in dis-

tributions of topological features. The frequency was spe-
cified as the ratio of SAPs with the value within [x,x+d) to
the total number of SAPs. The degree reflects the number
of direct interactions to an SAP. Figure 1a shows that dis-
ease-associated SAPs tend to have more neighbors than
polymorphic SAPs. It is obvious that disease-associated
SAPs are scored by higher closeness (Figure 1b).
This suggests that a centrally located residue in a PSN is
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probably directly related to protein function. For between-
ness and clustering coefficient, the distributions of disease-
associated and polymorphic SAPs are less distinct.
However, as shown in Figure 1c and Figure 1d, higher
frequencies were detected for disease-associated SAPs in
the high-scoring region.

Comparing network topological features with
conservation features
Conservation features are considered to be the most
important features for predicting disease-associated
SAPs. Therefore, we compared the performance of
topological features, as well as environmental features
with widely used conservation features in predicting dis-
ease-associated SAPs. Three feature sets were con-
structed: a conservation feature set (f-set 1), topological
feature set (f-set 2) and neighboring environmental fea-
ture set (f-set 3). Here, f-set 1 comprises seven elements:

position-specific scores and observed percentages for the
wild-type and variant residues, changes in these two mea-
sures upon mutation, and the conservation score. More-
over, f-set 2 consists of the four topological features
mentioned above, which are derived from the wild-type
protein structure. Finally, f-set 3 consists of topological
features and the conservation scores of the five most con-
served neighboring residues around the SAP under study.
These three feature sets were separately used to con-

struct prediction models based on the random forest
algorithm. Details of their performances are listed in
Table 1. By using the conservation feature set, ACC and
MCC values of 74.1% and 0.45, respectively, were
achieved. It is noteworthy that the sensitivity always
appears to be better than the specificity. This is probably
caused by the unbalanced ratios of disease-associated
SAPs to polymorphic SAPs, as well as by the complexity
of the cause of disease [23,24]. A sensitivity of ~80%

Figure 1 The frequency distributions of a) degree; b) closeness; c) betweenness; and d) clustering coefficient for disease-associated
and polymorphism SAPs. In Figure 1c, the x-axis indicates the betweenness values scaled by sequence length. Here, the intervals for the
frequency calculation were set to 1, 0.03, 1 and 0.1.
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suggests that conservation features can properly reflect
the fragility of a residue to substitution. In the case of f-
set 2, ACC and MCC were 74.6% and 0.46, respectively.
Using f-set 3, an ACC and MCC values of 77.5% and
0.52, respectively, were achieved. This shows that net-
work-based neighboring residues can properly reflect
the environment around an SAP.

Feature evaluation
Previous studies have shown that several features, such
as solvent accessible area, probability of the substitution
according to PAM250, aggregation propensities, and his-
tocompatibility leukocyte antigen (HLA) family can dis-
criminate disease-associated SAPs from polymorphic
SAPs [21]. Hence, further analysis of feature importance
was performed by employing the feature estimation
module in the random forest package in R. As shown in
Figure 2, the feature HLA family has the highest score,

Table 1 Performance for each feature set by 5-fold cross-
validation

Sensitivity (%) Specificity (%) ACC (%) MCC

All feature set
(200 a,2b)

89.8 72.7 83.0 0.64

37-feature set
(200,3)

91.0 72.3 83.6 0.65

f-set 1c

(100,4)
79.7 65.4 74.1 0.45

f-set 2d

(300,3)
81.2 63.6 74.3 0.45

f-set 3e

(200,1)
85.4 67.0 78.1 0.54

Optimized parameters for random forest are listed in parentheses. Detailed
description of each feature set is given in the Results section.
a the optimal value of ntree (the number of trees to be grown).
b the optimal value of mtry (the number of variables selected to determine
the decision at a node of the tree).
c the conservation feature set.
d the network feature set.
e the environmental feature set.

Figure 2 Importance score of each feature determined by using the random forest algorithm in the R package. Scores were averaged
over 100 times. Here, suffices W, M and N indicate wild-type, mutant and environment, respectively. For environmental features, suffix numbers
were used to indicate different neighboring residues. det_Frequency denotes the frequency difference between wild-type and mutant residues
whereas det_PSSM denotes the PSSM score difference between wild-type and mutant residues.
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which is consistent with that reported by Ye et al. [21].
Conservation features expectedly exhibited high scores.
Scores for the frequency difference and PSSM score dif-
ference between wild-type and variant residues were
notably higher than those for these two features them-
selves. This indicates that a position would tolerate
alteration between similar residues without having a
marked influence on the local structure. Interestingly,
the score of closeness is not higher than that of between-
ness, although the results from our above analysis
showed a significant difference in its distribution
between disease-associated SAPs and polymorphic SAPs.
As reported earlier [40], this feature is well correlated
with conservations and could be the reason for its per-
formance in this step. The environmental features were
observed informative for the prediction, of which the
closeness and conservation were even top ranked. This
suggests that interactions between residues are crucial
for the protein structure. Moreover, it was also observed
that the topologically important neighbors would be
more conserved. In this sense, these network-based fea-
tures can reflect the structural/functional importance of
residues.

Performance of our model for prediction of disease-
associated SAPs
Using all the features, we constructed a model to predict
disease-associated SAPs based on a random forest
algorithm. ACC and MCC values of 83.0% and 0.64,
respectively, were achieved using this method with 5-fold
cross-validation (Table 1). The corresponding sensitivity
and specificity were 89.8% and 72.7%, respectively. When
using the top-ranked 37 features in the last evaluation
step (37-feature set), the performance would be slightly
improved. The ACC reached 83.6% while the sensitivity
improved by ~1.2%. For further evaluation, an indepen-
dent dataset was used to test the method (Table 2). The
sensitivity and specificity were 86.6% and 71.9%, respec-
tively, when all features were used. The corresponding
ACC and MCC values were 80.8% and 0.59, respectively.
For the 37-feature set, a sensitivity of 87.3% and specifi-
city of 72.1% were achieved. The corresponding ACC and
MCC values were 81.3% and 0.60, respectively. We also

tried the support vector machine algorithm on our data-
set, which gave a lower performance (results not shown).
SIFT, PolyPhen-2, Bongo and SAPRED, four well estab-

lished methods, were used for benchmarking. With our
independent dataset, SIFT [6] yielded a sensitivity of
79.5% and specificity of 71.3% while PolyPhen-2 yielded
a sensitivity of 74.1% and specificity of 78.1% (Table 2).
Bongo achieved a low sensitivity of 21.6% and specificity
of 84.7%, which were similar with the results reported
by Cheng et al. [39]. Using the dataset compiled by Ye
et al. [21], our method achieved a sensitivity of 90.5%
and specificity of 66.5% (ntree = 300 and mtry = 3). The
corresponding ACC and MCC were 82.3% and 0.60,
respectively. SAPRED achieved a higher sensitivity of
93.8% and a lower specificity of 61.3%. It yielded an
ACC of 82.6% and MCC of 0.60. It should be noted that
in this study, network features were introduced to depict
an SAP instead of conventional structural features such
as nearby functional sites, secondary structure, and
hydrogen bonds. The satisfactory performance suggests
that network features also include the information
provided by structural features and this method can
complement to the existing methods for predicting
disease-associated SAPs.

Discussion
From a biological viewpoint, mutual restraint of residues
is crucial for the correct functioning of a proper struc-
ture [23]. Network topological features were adopted in
the present study to describe both local and global resi-
due interactions: degree and clustering coefficient were
used for the former, and closeness and betweenness were
used for the later. This can be understood from the fun-
damental aspects of protein structure. A special local
structure is usually maintained by the cooperation of
several residues. In this case, residues with more neigh-
bors would naturally be more crucial in residue interac-
tions [34], which would exert a greater influence on the
local structure. In this sense, the frangibility upon resi-
due substitution may be related to the density of the
local structure. In biology, high betweenness is expected
in the case of key residues that acting as a bridge in
protein structure[41], such as those that bring together
two different secondary structures. It was reported that
closeness could indicate the functional role of a residue
[40]. So, it is not surprising that high closeness values
were observed for disease-associated SAPs. It is there-
fore reasonable to use these features to depict the struc-
tural/functional role of a residue.
Moreover, it was observed that the topologically

important neighbors would likely be more conserved. It
would be reasonable to expect that an SAP close to
structural/functional key residues would more likely to
be associated with diseases. This is why several studies

Table 2 Performance of different methods based on an
independent dataset

Methods Sensitivity (%) Specificity (%) ACC (%) MCC

All feature set 86.6 71.9 80.8 0.59

37-feature set 87.3 72.1 81.3 0.60

SIFT 79.5 71.3 76.3 0.51

PolyPhen-2 74.1 78.1 75.7 0.51

Bongo 21.6 84.7 46.6 0.09
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have designed features to indicate the distance of an
SAP to the function site [9,10,21]. In this sense, these
network-based environmental features can depict the
environment an SAP lies in.
We also compared network features with widely used

conservation features. In contrast to conservation fea-
tures, network features characterize the SAP in such a
manner that its interactions with other residues in local/
global protein structure are revealed. The performance of
these features further proves their ability to distinguish
disease-associated SAPs from polymorphic SAPs from
the viewpoint of the roles of the focused residues in pro-
teins. Moreover, the performance of the environmental
feature set demonstrates that a dysfunctional mutation is
closely correlated to the environment it lies in.
We compared our method with several well estab-

lished approaches. The satisfactory performance of our
method suggests that network features indicate the
importance of a position in the context of the entire
protein. It is therefore reasonable to believe that study-
ing SAPs by analyzing residue interactions in a protein
is both feasible and promising.

Conclusions
Residues are in contact with each other, but their posi-
tions and conformations are restricted to ensure the
maintenance of proper structure and function. Here, we
represented a protein structure as a network, which
allowed us to study the correlation between residues.
Our results suggest that network topological features
can appropriately reflect the role of a disease-associated
SAP in both local and global structures by exploiting its
correlation with other residues in a protein. The good
performance obtained with the environmental feature
set proves the feasibility of our method in detecting a
disease-associated SAP by investigating the properties of
its neighboring residues.
Several types of interactions are involved in a protein

structure, including hydrophobic, hydrogen bond, van
der Waal and electrostatic interactions. These may play
specific roles in maintaining protein structure or func-
tion. It is still a challenge to feature such interactions in
a protein structure network, although PSN has exhibited
its advantage in revealing correlations between residues.
It is anticipated that a PSN with more refined residue
interactions should accurately reflect the structural/
functional role of a residue in a protein. We will con-
duct further analysis in our future studies.

Methods
Data collection
We compiled an SAPs dataset from the Swiss-Prot var-
iant page [3,4]. To construct protein structure

networks, only variants that mapped to 3D structures
were considered. Here, we extracted the protein struc-
tures of the wild-type from the ModSNP [3] on the
EXPASY website. We then removed problematic struc-
tures with incorrect residue substitution or erroneous
position record. The final dataset contained 6527 SAPs
from 1094 proteins, including 3953 disease-associated
and 2574 polymorphic SAPs, among which 127 pro-
teins contained both disease-associated and poly-
morphic SAPs. An independent dataset was randomly
selected, which consisted of 218 proteins with 696
disease associated and 456 polymorphic SAPs (see
Additional file 1). It was used as a benchmark for eval-
uating our model as well as for comparing it with
other published methods. The remaining 876 proteins
with 3257 disease associated and 2118 polymorphic
SAPs were used to perform 5-fold cross-validation (see
Additional file 2).

Random forest
The random forest package in R was employed for
model training. The prediction models were provided
in the additional files (see Additional file 3). The ran-
dom forest is an ensemble classifier based on decision
trees[42,43], which has been commonly used for classi-
fication and regression tasks. Two parameters, ntree
and mtry, is crucial in this algorithm. ntree is the num-
ber of trees to grow and mtry is the number of vari-
ables selected to determine the decision at a node of
the tree. In this study, they were optimized using a
grid search approach. During the grid search, the opti-
mal ntree and mtry were determined based on 5-fold
cross-validation. The random forest package also offers
a module for feature evaluation in which three mea-
sures are provided: selection frequency, Gini impor-
tance and permutation importance. In this study, we
used the permutation importance to distinguish infor-
mative features from uninformative features. The esti-
mation procedure was repeated 100 times, and the
averaged values were used for this measurement. Here,
sensitivity, specificity, total accuracy (ACC), and Mat-
thew’s correlation coefficient (MCC) were adopted for
model evaluation. The Formula for each measure is
listed as follow:

Sensitivity TP
TP FN

= + (1)

Specificity TN
TN FP

= + (2)

Accuracy TP TN
TP FN TN FP

= +
+ + + (3)
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MCC TP TN FP FN
TP FP TP FN

TN FN TN FP

= × − ×
+ +
+ +

( )( )

( )( )
(4)

where TP is the number of correctly predicted positive
sample, TN is the number of correctly predicted nega-
tive sample, FP is the number of incorrectly predicted
positive sample, and FN is the number of incorrectly
predicted negative sample.

Protein structure network
In a protein, residue interactions arise from covalent
and/or non-covalent bonds between atoms. For conveni-
ence, the contacts are defined as follows: each residue is
represented by the center of its side chain atom posi-
tions, but in the case of glycine, the Ca is treated as the
center. A contact is therefore identified on the condition
that the distance between the centers of the two resi-
dues are within 6.5 Å [44]. Several topology features
were derived from such networks.

Feature extraction
Four network topological features were examined in this
study.
Degree is the number of edges incident to a vertex.

This is calculated as

( ) ,i ai j
j N

=
∈
∑ (5)

where ai,j is the number of contacts between vertices i
and j, and N is the set of total vertices. Within a protein
structure, the δ(i) of a residue refers to its direct connec-
tivity to other residues and is a non-negative integer value.
The clustering coefficient is a measure of the closeness

the neighbors of a vertex. It can be defined as

C i
ei

i i

( ) =
−( )

2
1 

(6)

where ei is the virtual and δi(δi-1)/2 is the maximum
possible number of edges between the neighbors of
vertex i.
Closeness is a centrality measure of a vertex and is

defined as the average geodesic distance to all other
vertices. It can be calculated as-

CC i
N

di j
i j

( )
,

= −

≠
∑

1
(7)

where N is the total number of vertices and di,j is the
shortest path between vertices i and j. The closeness
score indicates the status of a residue in the entire pro-
tein structure.

Betweenness refers to how often a vertex occurs on the
shortest paths between other vertices. It can be calcu-
lated as

B
n i

ni
j k

j kj k N j k

=
( )

∈ ≠
∑ ,

,, ,

(8)

where nj,k is the number of all geodesics linking ver-
tices j and k. The term nj,k(i) indicates the number of
shortest paths connecting j and k passing through vertex
i. Betweenness is sensitive to the protein length. To
avoid the bias, the feature was scaled by the protein
length. This parameter was reported to performed well
in identifying the hot spots in protein interactions[41].
For more detailed descriptions of these parameters,
please refer to Newman and Watts[45,46].
Other sequence and structural features employed in this

study include sequence conservation, point accepted
mutation (PAM) 250, solvent accessible area, aggregation
propensities and HLA family. Solvent accessibility was
reported to be an important feature in SAP prediction.
We derived the solvent accessible area of each residue by
using DSSP[47].
Position-specific iterated BLAST (PSI-BLAST) [48] has

been generally used in studies on proteomics. In this
study, it was implemented against the Swiss-Prot data-
base with an E-value cutoff of 1E-3 and 3 iterations.
The output position-specific scoring matrix (PSSM) and
weighted observed percentage for both wild-type and
variant as well as their differences were taken to charac-
terize a mutation. Furthermore, the conservation score
of an SAP site can be defined as

Score p pi i j i j

j

= −
=

∑ , ,log 2

1

20

(9)

where pi,j is the frequency of amino acid j at position i.
A lower value suggests lower entropy (more conserved)
at a position and vice versa.
In our method, probability of the substitution according

to PAM250 was taken to score a mutation. For a more
detailed description please refer to Dayhoff et al. [49]. In
previous studies, aggregation propensity was thought to be
a significant factor in disease susceptibility[30]. Therefore,
this feature was adopted here. Aggregation propensities for
wild-type and variant amino acids were taken from
TANGO[50]. The aggregation propensity change for a
fragment upon a single variant was also taken into account.
Moreover, by following the approach described by Ye et al.
[21], a feature was employed to determine whether a pro-
tein in which an SAP is located belongs to the HLA family.
Based on the structure network, neighboring residues

were extracted as those with direct contacts with an
SAP, i.e., those with a distance to the focused residues
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that was no more than 6.5 Å. We investigated the
properties of neighboring residues in terms of network
topological features and conservation scores. Our analy-
sis indicated that, the five most conserved neighboring
residues can appropriately reflect the environment
around a mutation. For SAP sites with less than five
neighbors, zeros were added. Thus, the environmental
feature of a SAP site could be encoded by a 25-dimen-
sioned vector.
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