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Abstract

Background: Recent association analyses in genome-wide association studies (GWAS) mainly focus on single-locus
association tests (marginal tests) and two-locus interaction detections. These analysis methods have provided
strong evidence of associations between genetics variances and complex diseases. However, there exists a type of
association pattern, which often occurs within local regions in the genome and is unlikely to be detected by either
marginal tests or interaction tests. This association pattern involves a group of correlated single-nucleotide
polymorphisms (SNPs). The correlation among SNPs can lead to weak marginal effects and the interaction does
not play a role in this association pattern. This phenomenon is due to the existence of unfaithfulness: the marginal
effects of correlated SNPs do not express their significant joint effects faithfully due to the correlation cancelation.

Results: In this paper, we develop a computational method to detect this association pattern masked by
unfaithfulness. We have applied our method to analyze seven data sets from the Wellcome Trust Case Control
Consortium (WTCCC). The analysis for each data set takes about one week to finish the examination of all pairs of
SNPs. Based on the empirical result of these real data, we show that this type of association masked by
unfaithfulness widely exists in GWAS.

Conclusions: These newly identified associations enrich the discoveries of GWAS, which may provide new insights
both in the analysis of tagSNPs and in the experiment design of GWAS. Since these associations may be easily
missed by existing analysis tools, we can only connect some of them to publicly available findings from other
association studies. As independent data set is limited at this moment, we also have difficulties to replicate these
findings. More biological implications need further investigation.

Availability: The software is freely available at http://bioinformatics.ust.hk/hidden_pattern_finder.zip.

Background
The development of DNA microchip technology has
allowed the analysis of single nucleotide polymorphism
(SNPs) on a genome-wide scale to identify genetic
variants associated with diseases. Researchers have pro-
posed many methods to investigate association patterns
of complex diseases. Two recent reviews [1,2] presented
detailed analyses on many popular methods and tools,
such as multifactor dimensionality reduction (MDR) [3],
Random Jungle [4], Bayesian epistasis association map-
ping (BEAM) [5] and PLINK [6]. MDR is a popular
non-parametric approach for detecting all possible
k-way combinations of SNPs that interact to influence

disease traits. Random Jungle (i.e., Random Forest [7]),
is to solve classification and regression problems. In ran-
dom forest, decision trees are combined to produce
accurate predication. Its ability to handle the high
dimensional problems in GWAS has been shown in
[8,9]. BEAM designs a Bayesian marker partition model
which classifies SNP markers into three types: SNPs
unassociated with the disease, SNPs contributing to the
disease susceptibility independently, and SNPs influen-
cing the disease risk jointly with each other. In this
model, a first order Markov chain is designed for the
accommodation of correlation between adjacent SNPs.
Markov Chain Monte Carlo (MCMC) sampling is used
to optimize the posterior probability of the model. In
addition, the “B-statistic” designed in BEAM can be
used in the frequentist hypothesis-testing framework.
PLINK provides a toolkit for flexible analyses, in which

* Correspondence: eeyang@ust.hk; eexiangw@ust.hk; eeyu@ust.hk
1Department of Electronic and Computer Engineering, Hong Kong University
of Science and Technology, Hong Kong
Full list of author information is available at the end of the article

Yang et al. BMC Bioinformatics 2011, 12:156
http://www.biomedcentral.com/1471-2105/12/156

© 2011 Yang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://bioinformatics.ust.hk/hidden_pattern_finder.zip
mailto:eeyang@ust.hk
mailto:eexiangw@ust.hk
mailto:eeyu@ust.hk
http://creativecommons.org/licenses/by/2.0


various statistical tests for single-locus analysis, haplo-
type analysis and allelic-based interaction analysis are
implemented. Recently, a new method named “BOOST”
[10] allows examination of all pairwise interactions in
genome-wide case-control studies. As a result, many
genetic susceptibility determinants have been mapped.
However, there is another type of association pattern,

which often occurs within local regions in the genome
and may not be detected by these methods. This asso-
ciation pattern involves multiple correlated SNPs with
neither strong marginal effects nor strong interaction
effects. But they can jointly display strong associations.
Here we use some simple regression models to explain
this association pattern. Suppose we have two depen-
dent variables, X1 and X2, and one independent variable
Y. We can fit two regression models (or logistic regres-
sions for case-control data), Y ∼ β̃1X1 and Y ∼ β̃2X2, to
test the association significance of these two variables.
Here β̃1 and β̃2 are named as marginal coefficients. If
these two marginal coefficients are very small, single
variable analysis methods will consider them statistically
insignificant and ignore them.
However, if X1 correlates with X2, fitting the model Y

~ b1X1 + b2X2 may identify a new association pattern
with b1 and b2 (named as bivariate regression coeffi-
cients) being significantly larger than β̃1 and β̃2. This
phenomenon is referred to as unfaithfulness. It means
that the marginal effects of correlated variables do not

express their significant joint effects faithfully due to the
correlation cancelation [11]. Figure 1 provides some syn-
thetic examples to show the unfaithfulness involving two
variables. There are four scenarios to illustrate the rela-
tionship between marginal coefficients (marked using
red color) and bivariate regression coefficients. The first
scenario (Figure 1:(a)) is a reference case that involves
no correlations between X1 and X2. The marginal coeffi-
cients β̃1 and β̃2 are equal to the bivariate regression
coefficients b1 and b2, respectively. In the second sce-
nario (Figure 1:(b)), X1 is positively correlated with X2.
The marginal coefficients are bigger than the bivariate
regression coefficients. In the third scenario (Figure 1:
(c)), X1 is negatively correlated with X2. The marginal
coefficient β̃1 and β̃2 could be significantly smaller than
the bivariate regression coefficients b1 and. b2 In the the
fourth scenario (Figure 1:(d)), X1 is positively correlated
with X2. But the sign of b1 is the opposite of the sign of
b2. The correlation effect in the third scenario and the
fourth scenario causes the unfaithfulness. In mathe-
matics, the relationship between the marginal coeffi-
cients and the bivariate regression coefficients is
formulated as

E(β̃1) = β1 + β2ρ(X1,X2), (1)

where E(β̃1) is the expectation of the marginal coeffi-
cient β̃1, r(X1, X2) is the population correlation between
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Figure 1 Illustration of unfaithfulness in association studies. There are three regression models in each scenario: Y ~ b1X1 + b2X2,
Y ∼ β̃1X1 and Y ∼ β̃2X2. In this figure, the marginal coefficient β̃1 and β̃2 are shown as projections (marked with bold red color) of Y on
X1 and X2, respectively. (a) X1 is not correlated with X2. (b) X1 is positively correlated with X2. (c) X1 is negatively correlated with X2. (d) X1 is
positively correlated with X2 but the sign of b1 is the opposite of the sign of b2. Scenario (c) and Scenario (d) illustrate unfaithfulness.
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X1 and X2. The marginal coefficients depend on their
bivariate regression coefficients as well as the variable
correlation, as we illustrated in Figure 1. We will give
more explanation on this relationship in the high
dimensional setting in the discussion section.
From the statistical point of view, different correlation

patterns could cause the marginal coefficients β̃1 and β̃2

significantly different from the bivariate regression coeff-
cients b1 and b2 (shown in Figure 1). In fact, the issue of
unfaithfulness has been discussed in the causality litera-
ture [12]. In GWAS, the correlation among SNPs arises
due to the linkage disequilibrium pattern of the genome.
A natural question arises: Does the issue of unfaithful-
ness occur in GWAS?
To answer this question, a computational method for

detecting associations masked by unfaithfulness is neces-
sary. In this paper, we propose a simple method to
detect such associations involving two SNPs. It can eval-
uate each SNP pair in genome-wide case-control studies
in a fast manner. We have applied our method to ana-
lyze seven data sets from the Wellcome Trust Case
Control Consortium (WTCCC). The experimental
results show that these associations widely exist in
GWAS. In this work, we only handle the unfaithfulness
issue involving two SNPs while the unfaithfulness can
exist among a large number of markers. The detection
of associations involving three or more SNPs is too
time-consuming and beyond the scope of this work.

Results
Experiment on simulation study
The simulation study is designed to compare our proposed
method with other three methods for detecting associa-
tions in the presence of unfaithfulness. These three meth-
ods include the marginal association test (single-locus
analysis), Lasso [11,13] and BEAM [5]. The reasons that we
choose these methods for comparison are as follows:

• Marginal association test is used in almost every
GWAS due to its simplicity and effectiveness.
• Lasso is a shrinkage and selection method for (gen-
eralized) linear regression. It imposes a sparsity con-
straint (i.e., only a small fraction of variables are
relevant) and uses L1 penalty to eliminate irrelevant
variables. Fast algorithms are available for Lasso.
Thus, it can simultaneously analyze a huge number
of variables. It is very popular in genetics [11,14-16].
• BEAM has the capability of detecting both mar-
ginal associations and interactions in large-scale data
sets. It uses first order Markov chain to accommo-
date the correlation between adjacent SNPs.

The details about the parameter settings in simulation
are provided in the method section. In our simulation

study, we only handle the unfaithfulness involving two
associated variables X1 and X2 by using b1 > 0, b2 < 0
and r(X1, X2) > 0 as illustrated in Figure 1(d). The mar-
ginal coefficients β̃1 and β̃2 will be small due to the can-
celation given by Equation (1). When b1 > 0, b2 > 0 and
r(X1, X2) < 0 the unfaithfulness also happens. This cor-
responds to a situation that the minor alleles of both X1

and X2 increase the diseases risk but X1 and X2 are
negatively correlated, as illustrated in Figure 1(c).
The results in Figure 2 indicate that it is difficult for

existing methods to detect the association masked by
unfaithfulness while our proposed method achieves rea-
sonable performance. Specifically, the poor performance
of the marginal association test is not surprising since
the marginal effects are weak in the presence of unfaith-
fulness. Although Lasso can simultaneously analyze all
SNPs, it still suffers from the difficulty of detecting asso-
ciations masked by unfaithfulness. This agrees with the
analysis result in [11]. BEAM has a better performance,
which should be attributed to its first order Markov
chain designed for the accommodation of correlation.
But its performance is still not comparable with the per-
formance of our proposed method in most settings.
Another interesting point is that the statistical power of

existing methods decreases as the linkage disequilibrium
(LD) r2 increases. Although our proposed method also
degrades its performance when LD increases, it maintains
a relatively high power for strong LD (r2 = 0.7).

Experiment on seven data sets from WTCCC
We have applied our method to analyze the data sets
(14,000 cases in total and 3,000 shared controls) from
the WTCCC [17]. WTCCC studies seven common
human diseases, including bipolar disorder (BD), coron-
ary artery disease (CAD), Crohn’s disease (CD), hyper-
tension (HT), rheumatoid arthritis (RA), type 1 diabetes
(T1D) and type 2 diabetes (T2D). These data sets are
generated using the affymetrix 500 K chip. We first
apply a similar quality control procedure as suggested in
[17] to pre-process the data. The numbers of remaining
SNPs for seven data sets are around 360,000. In current
stage, BEAM cannot directly handle these data sets [2].
Table 1 lists the numbers of identified two-locus asso-

ciations masked by unfaithfulness under three statistical
significance thresholds with and without the distance
threshold for seven data sets. It shows that the unfaith-
fulness widely exists in these data sets. Some associa-
tions masked by unfaithfulness involve SNPs with at
least 1 M base pair distance. However, all of them are
located in the major histocompatibility complex (MHC)
region (The MHC region encodes a large number of
genes. It has extensive polymorphism and linkage
disequilibrium with the long distance [18]). Therefore,
the results in Table 1 provide the evidence that this
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association pattern typically occurs in local area. These
results also suggest that using the local search can speed
up the whole process in the future.
From the identified associations, we further conduct the

gene mapping and identify some suspicious genes closely
related with the disease traits. Table 2 and Table 3 report
the unadjusted single-locus P-values, the unadjusted joint
P-values, the marginal coefficients and joint bivariate

coefficients for these associations. The other details are
listed in the supplementary document (Additional file 1).
These identified associations coincide with Figure 1(d). To
date, we can only connect some identified associations to
publicly available results from other association studies.
Many identified association patterns still remain unex-
plained. In the following, we explain the details of some
associations that are confirmed by other studies.
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Figure 2 The performance comparison of four methods: Marginal association tests, Lasso, BEAM and the proposed exhaustive two-
locus joint analysis. 100 data sets are generated under each parameter setting. 1000 samples (500 cases and 500 controls) are simulated in
each data set. The power is calculated as the proportion of the 100 data sets in which the disease associated SNPs are detected.
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Bipolar disorder (BD)
Among associated SNP pairs identified from the BD
data set, we find two suspicious SNP pairs, (rs668860,
rs10873672) and (rs668860, rs6691970). The unadjusted
P-values for these two SNP pairs are 4.885 × 10-15 and
6.217 × 10-15, respectively. They are still significant after
Bonferroni correction. However, none of these three
SNPs (rs668860 is involved in both pairs) was reported
in [17] because their marginal effects are too weak to be
detected by the single-locus association test. The unad-
justed P-values for these three SNPs based on the sin-
gle-locus association test are 0.053, 0.245 and 0.216,
respectively. All three SNPs reside in the intron of gene
MCOLN2. The protein Mucolipin-2, encoded by gene
MCOLN2 and also known as TRPML2 (transient recep-
tor potential cation channel, mucolipin subfamily, mem-
ber 2), has been confirmed to have strong associations
with bipolar disorder in a family-based association study
[19]. To our knowledge, this is the first identified asso-
ciation between the MCOLN2 gene and the bipolar dis-
order risk in a population-based association study.
Figure 3 shows the joint distributions of the pair

(rs668860, rs10873672) (The other pair shares a similar
pattern.) in cases and controls and the corresponding
odds ratios. The genotype combination “CT/TT” has a

significantly higher odds ratio than other genotype com-
binations. Further investigations of the MCOLN2 gene
may help identify the causes of bipolar disorder disease.
We further use BEAGLE [20] to impute the SNPs in

this local area so that we can see the enriched signals
after imputation. This region includes 300 SNPs. It
begins with the SNP rs1030933 and ends with the SNP
rs1837329. After imputation, we analyze the imputed
data and the result is given in Figure 4. Figure 4(a)
shows the enriched signal. The intensity shows -log10P
values given by the joint regression (P-value is calculated
based on χ2

df=4). Figure 4(b) shows the LD structure of
this local area. Figure 4(c) shows the -log10P values
obtained using single-SNP analysis (P-values are calcu-
lated based χ2

df=2). Figure 4(d) shows the locations of

rs668860, rs10873672 and rs6691970. From Figure 4, we
can see the following:

• Although this region is in strong LD (see Figure 4
(b)), association masked by unfaithfulness does not
happen across the entire area. This shows that this
type of asssociation not only depends on the correla-
tion structure but also depends on the effects of the
SNPs, as we illustrated in Figure 1 (also see Equation
1).
• From Figure 4(c), the marginal effects of the
imputed SNPs are very weak. This indicate that this
type of association is not caused by some ungeno-
typed causative SNPs. Instead, it is a genuine effect.

Coronary artery disease (CAD)
We identify four suspicious associations involving five
SNPs. The unadjusted P-values for these four associa-
tions range from 2.310 × 10-13 to 5.551 × 10-15. The
unadjusted single-locus P-values for five SNPs involved
in these five associations indicate that they do not have
noticeable marginal effects. All five SNPs reside in the
intron of gene FSIP1 (fibrous sheath interacting protein
1). We have not found evidence to directly connect
gene FSIP1 with the coronary artery disease. However,
the LD analysis identifies a well studied gene THBS1

Table 1 The number of two-locus unfaithfulness
associations identified from seven diseases data sets
under different constraints

BD CAD CD HT RA T1D T2D

T1 48 31 25 46 132 153 67

T2 52 35 28 51 153 204 80

T3 60 36 29 52 165 252 84

T1 & Dist 0 0 0 1 1 1 0

T2 & Dist 0 0 0 3 17 17 0

T 3 & Dist 0 0 0 0 4 35 0

T1 - the threshold of Bonferroni-corrected P-value is 0.10; T2 - the threshold of
Bonferroni-corrected P-value is 0.20; T3 - the threshold of Bonferroni-corrected
P-value is 0.30; Dist - the physical distance threshold between two SNPs is at
least 1 Mb. This threshold is used to see how many unfaithfulness
associations involving two remote loci

Table 2 Some associations masked by unfaithfulness from the WTCCC data set

Disease SNP Xp Single-locus
P -value

SNP Xq Single-locus
P -value

Chr Gene Unfaithfulness
P -value

BD rs668860 0.053 rs10873672 0.245 1 MCOLN2 4.885 × 10-15

rs668860 0.053 rs6691970 0.216 1 MCOLN2 6.217 × 10-15

CAD rs7162070 0.867 rs16969478 0.160 15 FSIP1 5.551 × 10-15

rs1876853 0.903 rs16969478 0.160 15 FSIP1 2.310 × 10-13

rs8029602 0.853 rs16969478 0.160 15 FSIP1 5.274 × 10-14

rs16969475 0.823 rs16969478 0.160 15 FSIP1 1.259 × 10-13

T1D rs1058318 0.074 rs2252745 0.840 6 GNL1, PPP1R10 1.326 × 10-12

HT rs2300390 0.460 rs12482676 0.061 21 RCAN1 2.442 × 10-15
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(thrombospondin-1), which is centromeric to gene
FSIP1 and has been confirmed to increase the risk of
coronary artery disease in many studies [21-23]. It
would be of great interest to investigate gene FSIP1 in
determining genetic susceptibility to coronary artery
disease.
Here we also show the enriched signals obtained from

the imputation. Figure 5(a) shows the -log10P given by
the joint regression. Figure 5(b) shows the LD structure
(r2) in that region. Figure 5(c) shows the -log10P of sin-
gle SNP analysis. Figure 5(d) shows the locations of the
genotyped SNPs which are listed in Table 2. Again, the
marginal effects of the imputed SNPs are weak. We see
clearly that the signal of unfaithfulness appears in the
block-like manner.
Type 1 diabetes (T1D)
Most identified associations from the T1D data set are
linked with the MHC region. The MHC region at

chromosomal position 6p21 encodes many genes (such
as HLA-DQB1 and HLA-DRB1) that have been asso-
ciated with type 1 diabetes [17,24] by using the single-
locus test. However, it is still unclear which and how
many loci within the MHC region determine T1D sus-
ceptibility because of the functional complexity of this
small human genome segment. The MHC region has
been connected with more than 100 diseases, such as
diabetes, rheumatoid arthritis, psoriasis, asthma and var-
ious autoimmune disorders. Our results provide addi-
tional information to locate disease-associated loci.
Concretely, one suspicious association involves SNP
rs1058318 and SNP rs2252745. The unadjusted P-value
of this association is 1.326 × 10-12. The unadjusted sin-
gle-locus P-values of rs1058318 and rs2252745 are 0.074
and 0.840, respectively. SNP rs1058318 resides in the
intron region of gene GNL1 and SNP rs2252745 resides
in the intron region of gene PPP1R10. Both genes are

Table 3 Regression coefficients of those associations listed in Table 2

Disease SNP Xp β̃1(z Value) SNP Xq β̃2(z Value) r2 b1(z Value) b2(z Value)

BD rs668860 0.0162 (0.392) rs10873672 0.0679 (1.662) 0.961 -1.379 (-5.823) 1.402 (5.989)

rs668860 0.0162 (0.392) rs6691970 0.0706 (1.728) 0.958 -1.397 (-5.934) 1.421 (6.107)

CAD rs7162070 0.0301 (0.482) rs16969478 -0.108 (-1.732) 0.913 2.621 (5.671) -2.637 (-5.720)

rs1876853 0.0208 (0.331) rs16969478 -0.108 (-1.732) 0.913 2.354 (5.538) -2.372 (-5.603)

rs8029602 0.0175 (0.281) rs16969478 -0.108 (-1.732) 0.914 2.214 (5.594) -2.238 (-5.676)

rs16969475 0.0184 (0.294) rs16969478 -0.108 (-1.732) 0.913 2.110 (5.660) -2.132 (-5.746)

T1D rs1058318 0.0992 (2.269) rs2252745 -0.0167 (-0.375) 0.887 1.0292 (7.530) -1.005 (-7.219)

HT rs2300390 -0.0600 (-1.182) rs12482676 0.0531 (1.037) 0.903 -1.215 (-6.567) 1.224 (6.577)

Here we assume additive effects in regression.
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located in the MHC region and adjacent to each other.
Gene GNL1 belongs to the HLA-E class. The locus in
HLA-E has been strongly associated with type 1 diabetes
[25]. The detailed examination of the relationship
between gene GNL1 and gene PPP1R10 may provide
some new insights in studying the causes of type 1
diabetes.
Hypertension (HT)
Among associations identified from the HT data set, we
find one suspicious pair involving SNP rs2300390 and
SNP rs12482676. The unadjusted P-value is 2.442 × 10-15.
The unadjusted single-locus P-values for rs2300390 and
rs12482676 are 0.460 and 0.061, respectively. Both SNPs
reside in the intron of gene RCAN1. Gene RCAN1 mainly
functions as a regulator of calcineurin. Calcineurin partici-
pates in many cellular and tissue functions. Its abnormal
expression is associated with many diseases including
hypertension [26].
Crohn’s disease (CD), rheumatoid arthritis (RA) and type 2
diabetes (T2D)
Currently, we have difficulties to connect the identified
associations of CD, RA and T2D to publicly available
findings from other association studies. Their biological
implications need to be further explored.

Experiment on the Illumina data sets from other
independent studies
We further analyze the Crohn’s Disease data set [27], in
which 308,332 autosomal SNPs were assayed on the Illu-
mina HumanHap300 chip. After a standard quality control
(the proportion of miss values ≤ 10%, the minor allele fre-
quency ≥ 5% and the P-value of Hardy-Weinberg equili-
brium ≥ 0.0001), the number of remaining SNPs is 291,964.
We apply our method to this data set and do not find

any significant associations masked by unfaithfulness.
Our explanation is that Illumina chip uses the tagSNP
design and the correlation among SNPs is less than that
of Affymetrix 500 K chip used by WTCCC. This result
indicates that it is unlikely to detect associations masked
by unfaithfulness using the tagSNP design.
In order to check if imputation helps in identifying

significant association masked by unfaithfulness, we
focus on the SNP regions in which we have identified
associations from the WTCCC CD data set (Additional
file 1: Table S3), impute the corresponding SNP data
from [27], and re-run our analysis. Unfortunately, we
fail to replicate those findings in the WTCCC CD data
set. We have examined the imputation result carefully.
At those local regions we are interested in, few SNPs
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are directly genotyped. In the hapmap data, hundreds of
SNPs locate in those areas. This implies hundreds of SNPs
need to been imputed using the information coming from
the reference panel. In fact, the frequencies of those
imputed haplotypes are almost the same in cases and con-
trols. This is probably the reason that we cannot replicate
those findings. Hopefully, next-generation sequencing will
provide high resolution SNP data to resolve this issue.
Another important reason may be that these two CD data
sets are from different populations (one comes from Eur-
ope, another comes from north America).
Similarly, we have analyzed another RA data set [28]

from Genetic Analysis Workshop 16. This data set is
acquired from North American population. The SNPs
are genotyped by the Illumina chip. We also have diffi-
culties to replicate the findings of the RA data set from
WTCCC. We hope we can get access to more data sets
to verify our results in the future.

Discussion
The unfaithfulness issue in the high dimensional feature
space
In the high dimensional feature space, many features
could correlate with each other by chance, which leads

to the existence of unfaithfulness and poses a great chal-
lenge on feature selection and association analysis. In
this work, we only handle the unfaithfulness issue invol-
ving two variables (SNPs), while the unfaithfulness can
exist among a huge number of variables. The relation-
ship between the marginal coefficient (β̃i in Y ∼ β̃iXi)
and the regression coefficient (β̃i in b1X1+···+bpXp

+···+bsXs) is given as follows [11]:

E(β̃p) = βp +
∑

1≤q≤s,q �=p
βqρ(Xq,Xp) , (2)

where E(β̃p) is the expectation of marginal coefficient,
r(Xq, Xp) is the population correlation between Xq and

Xp. If βp ≈ −
∑

1≤q≤s,q �=p βqρ(Xq,Xp), then β̃p can be

close to zero no matter how large bp is. In addition, the
number of involved variables could be very big. To
exclude the effect of unfaithfulness in feature selection,
Fan and Lv [29] had to make an assumption that there
is a C > 0 such that |β̃p| ≥ C|βp| for p = 1,..., s, and then
proved that the truly associated variables will be among
those having the highest marginal coefficients.
In our simulation study, we only handle the unfaith-

fulness involving two associated variables X1 and X2 by
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using b1 > 0, b2 < 0 and r(X1, X2) > 0 as illustrated in
Figure 1(d). The marginal coefficients β̃1 and β̃2 will be
small due to the cancelation given by Equation (2).
When b1 > 0, b2 > 0 and r(X1, X2) < 0, the unfaithful-
ness also happens. This corresponds to a situation that
the minor alleles of both X1 and X2 increase the diseases
risk but X1 and X2 are negatively correlated, as illu-
strated in Figure 1(c). The simulation result shows that
the marginal test and Lasso perform poorly. The better
performance of BEAM should be attributed to its first
order Markov chain designed for the accommodation of
correlation. Although our exhaustive method performs
reasonably well, the direct extension of our method to
deal with three or more loci is computationally expen-
sive. Therefore, solving the unfaithfulness issue is still
challenging.

The Relationship between interaction models and
unfaithfulness
In this work, we only deal with a two-locus association
pattern involving the unfaithfulness. There are many
works [3,5,6,30] discussing two-locus associations. Most
of them belong to the category of interaction analysis
(see details in [1,2]). The SNP interaction is also referred
to as “epistasis”. The most common statistical definition
of interactions is the statistical deviation from the addi-
tive effects of two loci on the phenotype [2]. Using the
same example we discussed in the introduction section,
testing interactions between X1 and X2 is to first fit the
regression model (or logistic regressions for case-control
data) Y ~ b1X1 + b2X2 + b12X1X2 and then test the sig-
nificance of b12. There is no direct connection between
b1 (or b2) and b12 In the analysis of unfaithfulness, the
relationship between marginal coefficients (β̃1, β̃2) and
joint coefficients (b1, b2) is given in Equation (2). The
interaction term plays no role here. Therefore, it is not
appropriate to use interaction models to detect associa-
tions masked by unfaithfulness.

The Relationship between unfaithfulness and
confounding
Suppose we are studying the relationship between two
variables X and Y using model Y ∼ β̃X. Confounding
arises when there is another observed variable Z which
is independently associated with X and Y. Specifically,
we have β̃xz �= 0 for model X ∼ β̃xzZ and β̃yz �= 0 fot
model Y ∼ β̃yzZ. When studying the relationship
between X and Y, it is necessary to account for the con-
founding effect by using model Y ~ byzZ + byxX. In
other words, confounding is more like the situation illu-
strated in Figure 1 (b). Readers are referred to [31] for
the detailed explanation of confounding.
The unfaithfulness is different. For model Y ∼ β̃1X1

and Y ∼ β̃2X2, both β̃1 and β̃2 are close to zero. For

joint model Y ~ b1X1 + b2X2, both b1 and b2 are not
zero, as illustrated in Figure 1(c) and 1(d).

Biological interpretations
There are two possible biological interpretations. The
first interpretation is illustrated in Figure 1(d). Consider
two loci Xp and Xq which are positively correlated.
When Xq increases the disease risk (bq > 0) and Xp acts
as a protective locus (bp < 0), unfaithfulness happens.
The identified associations and their coefficients listed
in Table 3 indicate that these associations indeed exist.
The second interpretation is illustrated in Figure 1(c).

Consider two loci Xp and Xq which are negatively corre-
lated. When both Xp and Xq increase the disease risk
(bp > 0 and bq > 0), unfaithfulness also happens. This
case may be particularly interesting when analyzing
SNPs with low allele frequencies [32]. Suppose the allele
frequencies of both Xp and Xq are low and thus the
mutations happening at these two loci are relatively
recent. We can further assume the haplotype a - a does
not exist (because the probability of both two mutations
happen in a short period is very small). This implies
these two loci are negatively correlated. Unfortunately,
we do not identify this type of associations. Possible rea-
sons include: (1) The current genotyping chip is
designed based on the “common disease/common var-
iant” model [33,34], the low frequency SNPs are not
directly assayed. (2) The statistical power of current test-
ing strategy is relatively low to handle rare variants.

The unfaithfulness implications on tagSNPs
GWAS is considered as a powerful approach to detect-
ing genetic susceptibility of common diseases. Such stu-
dies require the genotypes of a huge number of SNPs
across the genome, each of which is tested for associa-
tion with the phenotype of interest. This is generally
referred to as the direct test of association, in which the
functional mutation is presumed to be genotyped. An
alternative approach is to take advantage of the correla-
tion between SNPs. This approach genotypes a subset of
SNPs, called tagSNPs, which are in high linkage disequi-
librium with other SNPs [33]. The association tests of
tagSNPs are used to indirectly infer the association of
other correlated SNPs. This approach is widely used to
save genotyping costs in GWAS. Many tagging methods
[33,35,36] have been developed to reduce the number of
markers to be genotyped. One key assumption in these
methods is that the association analysis of a set of highly
correlated SNPs is equivalent with the association analy-
sis of tagSNPs of this set. However, the existence of
unfaithfulness poses a challenge for these methods. The
weak marginal association of a tagSNP does not imply
the weak association of the corresponding genome
region in which this tagSNP is located. The reason is
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that some non-genotyped SNPs correlating with the
tagSNPs may jointly display strong associations in the
presence of unfaithfulness.
In this work, we analyzed the WTCCC data generated by

the Affymetrix 500 K chip and a Crohn’s disease data set
generated by the Illumina chip. The Affymetrix 500 K chip
spaces SNPs along the genome and the Illumina chip uses
the tagSNP design. LD becomes less apparent in the Illu-
mina data set and we did not find any association masked
by unfaithfulness. This result suggests that it is very diffi-
cult to detect these associations by using the tagSNP
design. If more SNPs could be genotyped in the future
GWAS, we would detect more unknown associations.

Conclusion
The phenomenon named “unfaithfulness” has been dis-
cussed as a mathematical concept in the literature. In this
work, we answered the question whether there exist asso-
ciations masked by unfaithfulness in genome-wide associa-
tion studies. We developed a simple and fast method to
examine all SNP pairs and demonstrated that our method
is applicable to analyze genome-wide SNP data sets. We
conducted experiments on both simulated data and seven
real data sets from WTCCC and identify many associa-
tions masked by unfaithfulness. As expected, these identi-
fied associations only occur in local area. This implies that
only the local search is needed to find such associations.
To date, we can only connect some identified associa-

tions to publicly available results from other association
studies. As independent data set is limited as this
moment, we have difficulties to replicate these findings.
The biological interpretation of many findings remains
unclear. It would be of great interest if their biological
functions could be investigated. In addition, we only
handle the two-locus associations in the presence of
unfaithfulness. Detecting such associations for three or
more loci is still an open problem.

Methods
Given a data set with L SNPs and n samples, we use Xl

to denote the l-th SNP, l = 1,···, L and Y to denote the
class label (0 for control and 1 for case). SNPs are bi-
allelic genetic markers. Capital letters (e.g. A, B,...) and
lowercase letters (e.g. a, b,...) are often used to denote
major and minor alleles, respectively. For simplicity, we
use {0, 1, 2} to represent the three genotypes {AA, Aa,
aa}, respectively.

Definition of the association masked by
unfaithfulness
Considering a pair of loci Xp and Xq, four logistic
regression models are typically involved to test associa-
tions masked by unfaithfulness:

M 0 : log
P(Y = 1)
P(Y = 0)

= β0, (3)

M 1 : log
P(Y = 1|Xp)

P(Y = 0|Xp)
= β0 + β̃p,1I(Xp = 0) + β̃p,2I(Xp = 1), (4)

M 2 : log
P(Y = 1|Xq)

P(Y = 0|Xq)
= β0 + β̃q, 1I(Xq = 0) + β̃q, 2I(Xq = 1), (5)

and

M1⊕2 : log
P(Y = 1|Xp,Xq)

P(Y = 0|Xp,Xq)
= β0+βp,1I(Xp = 0)+βp,2I(Xp = 1)+βq,1I(Xq = 0)+βq,2I(Xq = 1), (6)

where I(V = v) is the indicator function that takes the
value 1 if V = v is true and 0 otherwise. In order to
make the representation of both logistic regression mod-
els and log-linear models (introduced later) in a com-
pact and consistent way, we use the notation adopted in
[37] and rewrite the above logistic regression models in
the following forms:

M 0 : log
P(Y = 1)
P(Y = 0)

= β0, (7)

M 1 : log
P(Y = 1|Xp)

P(Y = 0|Xp)
= β0 + β̃

Xp

i , (8)

M 2 : log
P(Y = 1|Xq)

P(Y = 0|Xq)
= β0 + β̃

Xq

j , (9)

and

M 1⊕2 : log
P(Y = 1|Xp,Xq)

P(Y = 0|Xp,Xq)
= β0 + β

Xp

i + β
Xq

j . (10)

Please note that the superscripts Xp and Xq in Equa-
tion (8), Equation (9) and Equation (10) are merely the

labels and do not represent the exponents. The term β
Xp

i
represents the coefficient of Xp at category i. Through-
out this paper, we use ℳ to denote logistic regression
models. We will use M to denote log-linear models. The
log-likelihood function of a logistic model ℳ is denoted
as Lℳ, and its maximum likelihood estimation (MLE) is
denoted as L̂M. The log-likelihood function of a log-lin-
ear model M is denoted as LM, and its maximum likeli-
hood estimation (MLE) is denoted as L̂M. For example,
ℳ1 is a logistic regression model whose log-likelihood
function and MLE are denoted by Lℳ1 and L̂M 1

.
Our goal is to test if ℳ1⊕2 is significantly different

from ℳ0 when both ℳ1 and ℳ2 are not. The likeli-
hood ratio test is often used to conduct such tests. To
test the difference between ℳ1⊕2 and ℳ0, the following
three steps are involved:
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1. Fit a logistic regression model defined in Equation
(10) and obtain the log-likelihood L̂M 1⊕2

.

2. Compute the log-likelihood L̂M0
of the null logis-

tic regression model defined in Equation (7).
3. Calculate P-value using the c2 test on the value 2
(L̂M1⊕2 − L̂M0

) with degree of freedom df = 2.

Similarly, the test of difference between ℳ1 (or ℳ2)
and ℳ0 involves the following three steps:

1. Fit a logistic regression model defined in Equation
(8) (or Equation (9)) to measure the main effect of
Xp (or Xq) and obtain the log-likelihood L̂M 1

(or

L̂M 2
).

2. Compute the log-likelihood L̂M0
of the null logis-

tic regression model defined in Equation (7).
3. Calculate P-value using the c2 test on the value 2
(L̂M 1 − L̂M 0

) (or 2 (L̂M 2 − L̂M 0
)) with degree of

freedom df = 2.

Directly using regression methods for testing all pairs
of SNPs in GWAS would be very time-consuming.
Often the parallel computation was recommended [38].
Here, we propose to use log-linear models [37] instead
of logistical regression models in GWAS. We show that
this makes the likelihood ratio test computationally
more efficient in genome-wide SNP data analysis. In the
following, we briefly summarize the key components.
The details are explained in the supplementary docu-
ment (Additional file 1).

Likelihood ratio tests using log-linear models
Given two loci Xp and Xq, a contingency table of Xp, Xq,
Y will be used to test the association masked by unfaith-
fulness between (Xp, Xq) and Y. The size of the contin-
gency table is I × J × K, where I = 3, J = 3, K = 2. We
use nijk to denote the observed count in the cell (i, j, k)
in the contingency table (Table 4). Here nijk is consid-
ered as the realization of a random variable Nijk

assumed as Poisson-distributed in log-linear models.
We use the dot convention to indicate summation

over a subscript, e.g., ni.. =
∑

j,k nijk is the number of
observations with Xp = i. Similarly, we have
n.j. =

∑
i,k nijk and n..k =

∑
i,j nijk. We also have

nij. =
∑

k nijk, n.jk =
∑

i nijk and ni.k =
∑

j nijk. Throughout

this paper, we use μM
ijk to denote the expectation of Nijk

under log-linear model M, and use μ̂M
ijk to denote the

MLE of μM
ijk.

The equivalence between log-linear models and logis-
tic models are given in Table 5 (see model definitions in
the supplementary document (Additional file 1)). Here

we construct our test statistics based on three log-linear
models, which are the homogeneous association model
corresponding to the logistic regression model ℳ1⊕2,
the partial independence model corresponding to the
logistic regression model ℳ1 (or ℳ2), and the block
independence model corresponding to the null logistic
regression model ℳ0. Let L̂MH

, L̂MP
and L̂MB

be the log-
likelihood of the homogeneous association model MH,
the partial independence model MP and the block inde-

pendent model MB evaluated at their MLEs μ̂H
ijk, μ̂P

ijkand

μ̂B
ijk,, respectively.

Based on the equivalence, the deviance L̂M1⊕2 − L̂M0

of logistic regression models can be computed as

L̂MH − L̂MB =
∑
i,j,k

[
nijklog

μ̂H
ijk

μ̂B
ijk

]
, (11)

and the deviance L̂M 1 − L̂M 0
(or L̂M 2 − L̂M 0

) can be
computed as

L̂MP − L̂MB =
∑
i,j,k

[
nijklog

μ̂P
ijk

μ̂B
ijk

]
. (12)

In Equation (11) and Equation (12), μ̂P
ijk and μ̂B

ijk have

the closed-form solutions (please check the supplemen-
tary document (Additional file 1) for the derivation):

μ̂P
ijk =

ni.kn.jk
n.. k

, (13)

and

μ̂B
ijk =

nij.n..k
n

. (14)

Iterative Proportional Fitting (IPF) [37] can be used to

quickly estimate μ̂H
ijk. Specifically, initialize μ̂

H,(0)
ijk to be 1

for all i, j, k, then do IPF as follows:

μ̂
H,(1)
ijk = μ̂

H,(0)
ijk

nij.

μ̂
H,(0)
ij.

, μ̂H,(2)
ijk = μ̂

H,(1)
ijk

ni.k

μ̂
H,(1)
i.k

, μ̂H,(3)
ijk = μ̂

H,(2)
ijk

n.jk

μ̂
H,(2)
.jk

. (15)

The updating formulas may only be ill-defined if

μ
H,(1)
i.k = 0, μ

H,(1)
i.k = 0, or μ

H,(2)
.jk = 0, due to multi-colli-

nearity. If this happens, we set μ̂
H,(m)
ijk , (m = 1, 2,...) to

zero accordingly. Our experimental results show that

Table 4 The genotype counts in cases (Y = 1) and
controls (Y = 2)

Y = 1 Xq = 1 Xq = 2 Xq = 3 Y = 2 Xq = 1 Xq = 2 Xq = 3

Xp = 1 n111 n121 n131 Xp = 1 n112 n122 n132
Xp = 2 n211 n221 n231 Xp = 2 n212 n222 n232
Xp = 3 n311 n321 n331 Xp = 3 n312 n322 n332
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this solution works well in practice (We have compared
our results with the standard software R, in which the
multi-collinearity problem is elegantly handled when fit-
ting generalized linear models. It turns out that our
results agree with the results given by R). Then the test
statistics can be efficiently computed. As a result, we are
able to test every pair of loci to search for associations
masked by unfaithfulness in GWAS. Table 6 gives the
running time of our method for data sets of different
sizes.

An exhaustive approach to detecting the two-locus
associations masked by unfaithfulness in GWAS
This approach involves the following steps:

• Step 1. For all of L SNP markers, we first filter out
those SNPs with significant main effects using Equa-
tion (12) since we are only interested in those mar-
kers without significant main effects. The L P-values
can be adjusted by either the classic Benjamini-
Hochberg method for controlling false discovery rate
(FDR) or the Bonferroni correction for controlling
family wise error rate (FWER).
• Step 2. For the remaining L’ SNPs without signifi-
cant main effects, we check every pair using the
Equation (11). Again, the P-values can be adjusted
for controlling either FDR or FWER.

The P-value thresholds in both Step 1 and Step 2 are
specified by users. The default setting of the threshold is
0.1. The multiple factor for Bonferroni correction is
L’(L’ - 1)/2, where L’ is the number of SNPs after
removing those SNPs with significant marginal effects.

Since the number of SNPs with significant marginal
effects only accounts for a small fraction of the entire
SNP set, we have L’(L’ - 1)/2 ≈ L(L - 1)/2.

Simulation design
Let p(D|Gi) denote the probability of an individual being
affected given its genotype Gi (i.e., the penetrance of Gi),
and let p(D̄|Gi) denote the probability of an individual
not being affected given its genotype Gi. Based on the
definition of the odds of a disease

ODDGi =
p(D|Gi)

p(D̄|Gi)
=

p(D|Gi)
1 − p(D|Gi)

, (16)

the penetrance p(D|Gi) of the genotype Gi can be cal-
culated using

p(D|Gi) =
ODDGi

1 +ODDGi

. (17)

The disease prevalence p(D) and genetic heritability h2

are given as

p(D) =
∑
i

p(D|Gi)p(Gi), (18)

h2 =

∑
i (p(D|Gi) − p(D))2p(Gi)

p(D)(1 − p(D))
. (19)

The odds table of our simulation model is given in
Table 7. It is a multiplicative model of odds ratio, i.e., it
is an additive model on the log-odds scale. The reason
we choose this model is that we try to exclude interfer-
ence of the interaction effect when we discuss the
unfaithfulness. Essentially, the unfaithfulness arises due
to the correlation cancelation. The interaction effects
play no role here.
For simplicity, we restrict θ11 = θ12 = θa and θ21 = θ22

= θb. The parameter θa > 1 means that the minor allele
“a“ increases the disease risk. This corresponds to the
bivariate regression coefficient b1 > 0. Similarly, θb < 1
implies b2 < 0. In the presence of linkage disequilibrium
(linkage disequilibrium measure Δ > 0), unfaithfulness
arises. To simulate this situation, we further set θa = θ
and θb = 1/θ. In the simulation, the prevalence p(D) and

Table 5 Equivalence between log-linear models and logistic models for a three-way table with binary response
variable Y (MB: Block independence model

Log-linear model Logistic model

MB : logμijk = λ + λ
Xp

i + λ
Xq

j + λY
k + λ

XpXq

j
ℳ0 : b0

Mp : logμijk = λ + λ
Xp

i + λ
Xq

j + λY
k + λ

XpXq

ij + λ
XpY
ik M1 : β0 + β

Xp

i

MH : logμijk = λ + λ
Xp

i + λ
Xq

j + λY
k + λ

XpXq

ij + λ
XpY
ik + λ

XpY
jk M 1⊕2 : β0 + β

Xp

i + β
Xq

j

MP: Partial independence model. MH: Homogeneous association model).

Table 6 Running time of the proposed method for data
sets of different sizes

Data size Running time

n = 5, 000, L = 1, 000 3s

n = 5, 000, L = 5, 000 76s

n = 5, 000, L = 10, 000 303s

All timings are carried out on one desktop computer with 3.0 GHz CPU and
4G memory running Windows XP professional x64 Edition system. Here n is
the number of samples and L is the number of SNPs.
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the heritability h2 are controlled by the parameters a
and θ. We first specify the disease prevalence p(D) and
genetic heritability h2. Then we numerically solve the
parameters (a and θ) based on the above equations. We
set p(D) = 0.1 and h2 = 0.02. The details are given in
the supplementary document (Additional file 1).

Additional material

Additional file 1: In the supplementary document (Additional le 1),
we present the details of simulation. We also give a brief introduction
to log-linear models which are used in the main article. Finally, we
provide full lists of the results identified from the WTCCC data sets.
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