
DATABASE Open Access

PRIN: a predicted rice interactome network
Haibin Gu†, Pengcheng Zhu†, Yinming Jiao, Yijun Meng and Ming Chen*

Abstract

Background: Protein-protein interactions play a fundamental role in elucidating the molecular mechanisms of
biomolecular function, signal transductions and metabolic pathways of living organisms. Although high-throughput
technologies such as yeast two-hybrid system and affinity purification followed by mass spectrometry are widely
used in model organisms, the progress of protein-protein interactions detection in plants is rather slow. With this
motivation, our work presents a computational approach to predict protein-protein interactions in Oryza sativa.

Results: To better understand the interactions of proteins in Oryza sativa, we have developed PRIN, a Predicted
Rice Interactome Network. Protein-protein interaction data of PRIN are based on the interologs of six model
organisms where large-scale protein-protein interaction experiments have been applied: yeast (Saccharomyces
cerevisiae), worm (Caenorhabditis elegans), fruit fly (Drosophila melanogaster), human (Homo sapiens), Escherichia coli
K12 and Arabidopsis thaliana. With certain quality controls, altogether we obtained 76,585 non-redundant rice
protein interaction pairs among 5,049 rice proteins. Further analysis showed that the topology properties of
predicted rice protein interaction network are more similar to yeast than to the other 5 organisms. This may not
be surprising as the interologs based on yeast contribute nearly 74% of total interactions. In addition, GO
annotation, subcellular localization information and gene expression data are also mapped to our network for
validation. Finally, a user-friendly web interface was developed to offer convenient database search and network
visualization.

Conclusions: PRIN is the first well annotated protein interaction database for the important model plant Oryza
sativa. It has greatly extended the current available protein-protein interaction data of rice with a computational
approach, which will certainly provide further insights into rice functional genomics and systems biology.
PRIN is available online at http://bis.zju.edu.cn/prin/.

Background
Proteins seldom perform their biological function inde-
pendently. Rather, they collaborate with other biological
molecules such as nucleic acids and proteins to accom-
plish complex biological processes. Protein-protein
interactions play fundamental roles in almost all biologi-
cal processes such as signal transduction, internal
equilibrium maintenance and organs formation [1].
Consequently, mapping genome-wide protein-protein
interactions has been one of the key tasks of systems
biology to understand cellular processes [2].
High-throughput experiments, like Yeast two-hybrid

system (Y2H), AP-MS method and Bimolecular

fluorescence complementation (BiFC) [1], have been
employed widely at genome-scale to construct protein-
protein interaction networks of model organisms such
as Saccharomyces cerevisiae, Caenorhabditis elegans,
Drosophila melanogaster, Homo sapiens and Escherichia
coli K12 [3-11]. But large scale experiments are far from
widespread use due to huge financial costs and time
consuming experiments. Computational approaches pro-
vide a rapid and convenient scan for a preliminary sight
before the commencement of comprehensive observa-
tions of experimental proteins interaction. They also
provide reasonable complements to existing experimen-
tal protein interaction networks. With in-depth study of
experimental protein interactions, especially the increase
of model organisms’ protein interaction data generated
by large-scale and high-throughput experiments, compu-
tational approaches to predict protein-protein interac-
tions in a particular species have been increasingly
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efficient and effective. Combined with literature extrac-
tion of existing protein interactions [12], genomic infor-
mation, protein structure and annotation information,
bioinformatics play an important role in method study
of protein-protein interaction prediction, high-quality
protein-protein interaction databases establishment,
software and webserver development for visualizing pro-
tein-protein interaction networks and genome-scale ana-
lysis of protein interaction networks [13-18].
Although protein-protein interactions confirmed in

the lab are in a low coverage of the whole proteome,
including those of model organisms such as human and
fruit fly [7-9,11], these findings can offer useful biologi-
cal information for the prediction of novel protein-pro-
tein interactions in a particular species of interest.
Machine learning methods like Naïve Bayes [19] and
SVM [20] have been used to extract biological informa-
tion from golden-standard protein interaction data to
model classifiers for prediction. Such computational
methods depend highly on the reliability of golden-stan-
dard data; hence show limitations in organisms that
have little existing experimental data for training.
Genome information is another important source for

protein-protein interaction prediction. These types of
method usually use genome information (gene neigh-
bourhood, gene fusion, domain fusion, gene co-expres-
sion, phylogenetic profile, subcellular co-location,
domain interaction and GO similarity etc.) to obtain
functional dependence between protein pairs [21]. Gene
neighbourhood hypothesizes that if proteins in different
genomes are corresponding to adjacent genes, these pro-
teins are considered to be functionally related and there-
fore are more likely to interact with each other [22].
Gene fusion means that if two functionally related pro-
teins in a genome possess homologous similarities, and
they can be fused into a compound protein, these two
proteins are likely to interact with each other [18]. Phy-
logenetic profile describes the presence of homologous
proteins in a series of species. By clustering phylogenetic
profiles, proteins with similar or identical phylogenetic
profile patterns are considered to be functionally linked,
and they are more likely to interact with each other as
well [23]. Early methods usually considered genomic
information independently (domain-domain interaction
methods used in SynechoNET [24]), but more and more
prediction methods combine several or all genome
information together to improve the precision of predic-
tion (integrated methods used in AtPID [25,26]).
Methods based on evolutionary information such as

correlated mutation, interologs [11,27], correlated evolu-
tionary rate have achieved dramatic improvements in
cross-species protein-protein interaction prediction. Evo-
lutionarily conserved protein-protein interaction is based
on the theory of evolutionary conservation of protein,

which is known as ortholog. The interolog method is
mainly dependent on protein ortholog algorithms such
as InParanoid [28-30]. Orthologous proteins are used to
locate conserved protein-protein interactions among
species. It has been proved that many pathways such as
GTPase signaling transduction significantly show their
evolutionary conservation in different species, especially
the pathway motif (patterns that recur within pathways
much more often than expected at random), appears in
many different pathways [31]. Over the years these pre-
diction methods of protein interactions have been suc-
cessfully applied in human, yeast, fruit fly and other
model species, achieving appreciated results [32,33]. The
Online Predicted Human Interaction Database (OPHID
[33]) extracts the evolutionarily conserved orthologous
protein-protein interactions from Saccharomyces cerevi-
siae and Drosophila melanogaster with the interolog
method, which is then combined with literature mining
data to construct the human protein interaction net-
work. The most important trend of interolog methods is
taking both the orthologous information and genomic
information into consideration to obtain high quality
protein-protein interaction networks, such as the
approaches applied in MPID [34] and AthPPI [35].
The complexity of plant materials presents a big

obstacle to find analytical protein-protein interactions in
plant proteomics research [36]. The genome-scale
experimental approach-based plant interactome has not
been constructed, only a few protein-protein interaction
networks are constructed to address several particular
biological questions. Arabidopsis thaliana is the only
plant species in which a global-goal applicable interac-
tome was computationally constructed [37]. There are
several Arabidopsis thaliana protein-protein interaction
databases with different approaches: AtPIN [38] and
AtPID [25,26] with integration approach, AthPPI [35]
and Predicted Arabidopsis Interactome [36] with intero-
log approach, and PAIR [39,40] with machine learning
approach. However, publicly available computational
protein-protein interaction resource for the model
monocotyledon Oryza sativa is still lacking.
Rare experimental protein interaction data and low

level of genomic annotation information are the two
main barriers for computational methods to be widely
used for Oryza sativa. Machine learning methods such
as SVM and Naïve Bayes Network require both high
quality golden-standard experimental data and huge
genomic annotations. As a result, interolog method
combined with limited rice genome information appears
to be a realizable way to construct an unprecedented
rice protein interaction network. In this study, we
attempt to computationally depict a panorama of rice
interactome with interolog method, where genome
information such as GO annotations, subcellular
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localization information and gene expression data are
utilised to validate the predicted protein interaction net-
work and at the same time, to extract significant biolo-
gical network properties.

Results
Network construction
Our network construction is divided into two main
parts: (i) integration of six reference model organism
interactomes and (ii) interologs between rice and the
reference organisms, as shown in Figure 1.
Experimental protein-protein interaction data of

model organisms is constantly increasing at a high rate.
In order to obtain high coverage and accuracy of our
predicted protein-protein interactions, we started with
the re-integration of public protein interaction databases
and species-specific protein interaction databases. Six
model organisms are selected as the reference species

for our prediction: Arabidopsis thaliana, Saccharomyces
cerevisiae, Caenorhabditis elegans, Drosophila melanoga-
ster, Homo sapiens and Escherichia coli K12, whose
experimental interactomes are the most complete and
reliable. Among these 6 model organisms, Arabidopsis
thaliana, a plant species, logically shares the highest
evolutionary conservation with rice, while Saccharo-
myces cerevisiae has the best coverage of its genome.
We derived their protein interaction data from public
non-species-specific protein-protein interaction data-
bases: BioGrid [41], IntAct [42-44], MINT [45-47] and
DIP [48], and additional data is from species-specific
databases: MIPS [49] for yeast, HPRD [50,51] for human
and TAIR [37] for Arabidopsis thaliana. As high-
throughput experiments are well-known for their high
rate of false positives, there are many noisy records with
redundancy and inaccuracy in public protein interaction
databases. We either corrected or discarded these errors

Figure 1 Multi-species interolog flowchart and PRIN architecture. Protein-protein interaction data of reference organisms (yeast, human,
fruitfly, worm, E.coli and A.thaliana) are integrated from public databases. The orthologous protein groups between rice and these reference
organisms are clustered by InParanoid algorithm. A mapping process, known as interolog, is used to predict protein-protein interactions.
Genomic features of rice are additionally mapped to the predicted interactome, RSSGO scores (see Results and Methods), co-localization and co-
expression Pearson correlation coefficient scores are calculated for further network validation and database annotation. Finally a well organized
web server PRIN is developed to visualize our network and search database.
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during the integration process. With their relatively less
redundancy and inaccuracy, species-specific databases
offer important supplementary data to our integration.
We finally integrated 533,927 interactions with 48,152
proteins of the 6 model organisms, which significantly
exceeds previous orthologous data used in interolog pre-
dictions. As shown in Figure 2, we integrated 6,670
interactions with 3,025 proteins of Arabidopsis thaliana,
196,258 interactions with 6,256 proteins of Saccharo-
myces cerevisiae, 272,246 interactions with 22, 986 pro-
teins of Homo sapiens, 31,036 interactions with 8,064
proteins of Drosophila melanogaster, 9,918 interactions
with 4,762 proteins of Caenorhabditis elegans and
finally, 17,799 interactions with 3,059 proteins of Escher-
ichia coli K12 (Additional File 1). InParanoid, as men-
tioned in background, calculates the ortholog among
proteins based on its own algorithm, using the best blast
score. We picked InParanoid as the ortholog algorithm
because its reliability and availability have been proven

among many other interolog methods. InParanoid clus-
ters ortholog pairs with “bootstrap confidence values”
and “inparalog scores”. “Inparalog scores” reflect the
conserved evolutionary distance between an ortholog
pair. In order to restrict the sensitivity and definition of
our prediction, only ortholog pairs with top “inparalog”
(score cut off 1.0) were selected in our interolog
method. The distribution of orthologs from 6 model
organisms is shown in Figure 2. By mapping the latest
version InParanoid7 [29] orthologous to our integrated
protein interaction database, we identified 76,585 pre-
dicted interactions with 5,049 rice proteins. Among
these interactions, 2,891 interactions are found in more
than one model organism.
Datasets based on InParanoid7 ortholog pairs without
score cut-off were also generated in our study, 1,144,911
protein interactions with 12,709 rice proteins were pre-
dicted totally (can be downloaded from our website),
which showed high redundancy and low sensitivity

Figure 2 Multi-species interolog distribution. Interologs from different species are clustered in different colours. Three kinds of data are
counted: A. integrated protein interaction, B. ortholog protein groups and C. predicted rice protein interactions. Homo sapiens contributes most
protein interactions in our integrated protein-protein interaction database, and Arabidopsis thaliana contributes most in InParanoid orthologous
protein groups, which shares the highest evolutionary conservation with rice. Nearly 74% of our final predictions are from Saccharomyces
cerevisiae, which has the highest coverage of its whole genome.
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based on our examination. As reported by Huang et al.
[32], true positive rate of prediction is significantly
reduced with the reduction of the InParanoid score cut
off, we omitted all this huge amounts of data from reli-
able rice protein interactions, and score cut off with 1.0
was taken as an internal quality control.

GO annotations of predicted interactome
Gene Ontology (GO) is an important bioinformatics tool
for genome-scale protein function annotation. GO tries
to explain the roles of genes or proteins in eukaryotic
cellular process through the establishment of a con-
trolled vocabulary. GO consists of three separate ontolo-
gies: cellular component (components of cells or
extracellular), molecular function (basic activities of a
gene product at the molecular level, such as binding or
catalysis) and biological process (collection of molecular
events or operation, with a strict definition of the begin-
ning and end). GO uses directed acyclic graph to con-
nect each ontology and renders tree hierarchical
relationships between these ontologies. Two proteins
involved in the same biological processes have higher
possibility to interact than two proteins that are not.
Moreover, the more specific a biological process the two
proteins are involved in, the likelihood of interaction is
higher. Similarly, a more detailed GO annotation will
provide a higher chance of interaction. GO mapping can
provide an effective measure of the possibility of pre-
dicted protein interactions that occur naturally. We
mapped the GO annotations derived from Gene Ontol-
ogy database [52,53] and Gramene [54] to the predicted
rice interactome, finally obtaining 4,277 proteins in our
network that were highly annotated, with over 84% cov-
erage. We used the well-known GO Slim classification
system to measure the distribution of GO terms in our
networks. We chose the standard UniProtKB-GOA GO
Slim to construct catalogs for GO terms, and GO Slim
Viewer provided by AgBase [55] were taken to calculate
the distribution of Go terms in our networks. As shown
in Figure 3A, proteins with Molecular Function GO
annotated “binding” (27%), with Biological process GO
annotated “metabolic process” (25%), and with Cellular
Component GO annotated “intracellular” (28%) and
appear most frequently in our network. Three separate
GO term distribution of the proteins in predicted inter-
action network were compared with that of the whole
rice genome. As shown in Figure 3B, the distribution of
proteins with Cellular Component terms vested in “cel-
lular component”, “intracellular” and “cell” is particularly
similar to rice genome (Additional File 2). This high
specific similarity also appears in Biological Process
terms vested in “metabolic process” and “cell differentia-
tion"; Molecular Function terms vested in “protein bind-
ing” and “hydrolase activity”. All these terms display the

highest distribution in our network. The Pearson corre-
lation coefficient scores for GO term distribution
between our network and rice genome were calculated:
score for Cellular Component terms was 0.97, sore for
Biological Process terms was 0.99 and score for Molecu-
lar Function terms was 0.95. These extremely high Per-
son correlation coefficient scores show that tthe
proteins in our predicted network exhibit equal distribu-
tion against the whole rice genome, rather than
restricted to only several certain biological aspects.
We lead Relative specificity similarity (RSS) scores

[56-58] into PRIN to evaluate the GO correlation coeffi-
cient between two interaction proteins. Relative specifi-
city similarity scores are mainly based on GO term
similarity and GO depth (see Methods). Three indepen-
dent RSSGO scores were calculated separately, RSScc

scores for GO cell component terms, RSSBP scores for
GO biological process terms and RSSMF scores for GO
molecular function terms. As the RSSGO distribution
shown in Figure 3C, RSScc scores of our network mainly
fall within 0.6~1; RSSBP scores mainly fall within
0.4~0.8; RSSMF scores mainly fall within 0.4~0.9. The
high proportion of RSSMF score 0~0.1 is mainly due to
the imperfection of rice GO molecular function terms.
All the proportions of score 1.0 in three kinds RSSGO

scores are very high: 41.77% for RSScc scores, 19.81% for
RSSBP scores and 27.38% for RSSMF scores. This shows
that two proteins in PRIN share stronger correlation in
GO annotation, indicating a higher possibility to interact
with each other.

Subcellular localization of predicted interactome
Subcellular localization is the specific location a protein
or gene product exists in where the cell, such as nuclear,
cytoplasm or cell membrane. It plays an important role
in understanding cellular organs function and compart-
mentalization characteristics. Proteins have to fulfill the
conditions for space identity during interactions; hence
interacting proteins tend to possess the same subcellular
localization, known as co-localization. Currently there is
no specific subcellular localization database for rice. The
rare and scattered rice subcellular localization informa-
tion presents a difficult task for figures collection. To
tackle this, we opted for a computational subcellular
localization identifier RSLpred [59], which is signally
better than another identifier Plant-PLoc [60] because of
its rice species-specific characteristic. With the integra-
tion of EBI and TIGR rice protein subcellular localiza-
tion as predicted by RSLpred, we finally obtained 14,308
interactions with subcellular localization information in
our predicted interactome, in which 49.1% is co-loca-
lized. Four kinds of protein subcellular localizations
were catalogued: chloroplast, cytoplasm, mitochondria
and nucleus. Nucleus-nucleus co-localization was
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responsible for the largest share (nearly 44.3%) among
all the protein interactions with subcellular localization
information; this may not be surprising because 64.2%
of proteins having subcellular localization annotations
were predicted to nucleus localized by RSLpred.

Co-expression of predicted interactome
If proteins exhibit interaction, there are some quantita-
tive requirements which are closely related to gene
expression profile. Using microarray based expression
data to predict protein-protein interactions has become
a trend in computational systems biology. In protein-
protein interaction prediction by gene expression, the
most common method is the calculation of the Pearson

correlation coefficient between two sets of gene expres-
sion data. Many predicted protein interactions based on
gene expression profile fall into indirect interactions,
also known as function related chains, resulting in high
level of false positives in the prediction data. Neverthe-
less, gene co-expression levels still contain important
reference value to protein interactions predicted by
interologs. This implies that, no gene expression correla-
tion does not entirely mean that the two proteins do not
interact, however, if two proteins gene expression corre-
late, it will greatly increase the possibility of interaction.
Especially, if a protein has a significant inhibition or
synergistic effect with another protein as shown by gene
expression profile, these two proteins should be strongly

Figure 3 Gene Ontology annotation analysis. A. The distribution of GO terms is cataloged based on the UniProtKB-GOA GO Slim. Molecular
Function GO terms “binding”, Biological process GO terms “cellular amino acid and derivative metabolic process”, and Cellular Component GO
terms “intracellular” appear most frequently in our calculation. B.GO terms distribution of PRIN (blue bars) shows a high specific similarity towards
the GO terms distribution of rice genome (red bars), which shows that PRIN has appreciated coverage over the whole cellular processes. C.
RSScc, RSSBP and RSSMF scores (see Methods) are calculated independently except self-interacted protein pairs.
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considered to interact. In our study, rice co-expression
data from Rice Array Database [61] was used to map to
our predicted interactome, which is derived from 830
rice Affymetrix microarray data (NCBI GEO AC:
GPL2025). The Pearson correlation coefficient score
(PCC score shown in Methods) was calculated to mea-
sure the correlation of two genes expression. Total of
57,345 of our predicted interactions successfully
obtained their PCC score, with a certain Pearson Corre-
lation Coefficient score cut off 0.5; eventually we
acquired 16,203 interologs with co-expression relation-
ship. The contribution of PCC score in PRIN is shown
in Figure 4. We discovered 2.8% protein pairs with sig-
nificant inhibition against each other (PCC score < -0.3).
However synergy (PCC score > 0) is much more prevail
than inhibition (PCC score < 0) in PRIN. Protein pairs
in our network mainly fall within 0.3~0.8 section, which
shows a significant co-relationship in their gene expres-
sion levels.

Web interface
The web interface of PRIN was developed with JAVA
(Struts, iBATIS, Spring frameworks) and was hosted on
an Apache web server. The project used MySQL 5.0 as
its database management system and Cytoscape Web
[62] to visualize the protein-protein interaction network.
We provide two ways to access our database: (i) a pro-
tein can be queried by its symbol name, Loc number, or
UniProt accession in the Protein Search page, then our
server will return all the proteins which are predicted to
interact with the submission. (ii) If users have a list of

proteins and want to know whether they interact
between each other, just paste this list of proteins into
the submit box of Interaction Search page, then our ser-
ver will return all the interactions involving these pro-
teins. PRIN provide both graphical results and table
results (containing PPI ID, protein ID, Interolog species,
co-localization, co-expression PCC score and RSS GO
score) for users to get proteins and interactions informa-
tion. More detail information can be seen through click-
ing protein ID and interaction ID in the result table.

Discussion
Network validation
A small data set of experiments determined rice protein-
protein interaction including 406 proteins and 430 inter-
actions is integrated from BIND [63] (Additional File 3),
IntAct [44] and PlaPID [64]. Although this experimental
interactome is too small a coverage on the rice whole
interactome, 95 proteins are also found in our network,
which constitute 230 interactions in our network and 66
interactions in the integrated experimental network.
Among these 66 interactions, 20 have been determined
by experiments, revealing a reasonable sensitive consid-
ering the rare and low coverage experimental data.
RSSGO score has been used as a reliable data training

method in earlier protein interaction prediction studies
[56-58]. In our study, RSSGO score was taken as an
inspection method towards our predicted data. We calcu-
lated the RSSGO score of protein pairs in our network,
both of RSSCC score, RSSBP score and RSSMF score above
0.5 is counted. It was found that 78.9% of them are in a
high co-annotated level as RSSGO score cut off 0.5. This
indicates that protein pairs in PRIN more likely to parti-
cipate in the same bioprocess, exhibits similar molecular
function and constitute to the same cellular structure,
which all leads to a high possibility of protein interaction.
We mapped the gene expression data to the 430

experimental interactions, and successfully found 368 of
them with PCC scores, in which 76 pairs having co-
expression. Although statistical meaning is obviously
lacking due to the limitation of rare experimental data,
it significantly indicates that interaction proteins have a
tendency to co-express. Protein pairs in our network
show an obviously high co-expression rate (28.3%), com-
pared to random pairs derived from global rice genome.
We calculated co-expression rate of all gene pairs
appeared in the microarray, and only 2.3% of them dis-
play co-expression pattern with Pearson correlation
coefficient score cut off 0.5. Therefore, the co-expres-
sion quality of our predicted network is highly notable.

Network visualization and topology
By loading the predicted rice protein-protein interaction
data to Cytoscape [62], we obtained visualization of the

Figure 4 Co-expression PCC scores distribution . Pearson
Correlation Coefficient score (see methods) is calculated to measure
the correlation of two genes expression level of protein pairs in
PRIN. Our results show an aggregation in PCC score between 0.3
and 0.8. With cut off 0.5, we finally obtained 28.3% of co-expressed
protein pairs in PRIN, which farly exceeds a random level of 2.3%
(see Discussion).
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whole network. We used Cytoscape plug-in NetworkA-
nalyzer [65] to get topological properties of our network
(Additional File 4). An inner-interactome of PRIN is
partially shown in Figure 5A. This type of inner-interac-
tome, also found in Arabidopsis thaliana and yeast,
implies that little proteins interact individually in the
interactome [36]. An insightful view of this core interac-
tome is presented in Figure 5B with nodes degree infor-
mation, subcellular localization and co-expression level.
We made a comparison of network topology properties
between the rice interactome and other six species
(Table 1). A connected component value of 102 suggests
that Oryza sativa has similar interactome connectivity
with Caenorhabditis elegans, stronger interactome con-
nectivity than Arabidopsis thaliana and Homo sapiens,
and weaker than Saccharomyces cerevisiae, Drosophila
melanogaster, Escherichia coli K12. Proteins in our pre-
dicted interactome possess an average of 29 neighbours,
which is closed to Homo sapiens, less than Saccharo-
myces cerevisiae, more than Arabidopsis thaliana, Droso-
phila melanogaster, Caenorhabditis elegans and
Escherichia coli K12. This finding may not be surprising
since yeast and human are the major interologs source
to our data. It has been shown in yeast and human that
the average number of neighbours will increase with
upgrading of interactome coverage, which indirectly
implies a relatively good coverage on our predicted
interactome.
The node degree of an interactome shows the number

of edges a protein is linked to, where self-interaction is
also counted. The node degree distribution of our net-
work shows the scale-free network topologies of rice
protein-protein interaction network. Apart from self-
interacted proteins, proteins in PRIN mainly fall within
2-10 degree hubs, as shown in Figure 5C. We con-
structed hub catalog by partly reference to Jane’s studies
[36]. As shown in Figure 5D, the node degree distribu-
tion of our network shows the scale-free network topo-
logical property. Most proteins in scale-free networks
have low interactions, and a few proteins have high net-
work connection degrees, which are called distribution
node proteins. Scale-free protein interaction network is
subject to distribution node proteins, and it has high
tolerance to sudden environment pressure.
The shortest path length distribution, as presented in

Figure 5E, demonstrates the significant small world
property of our predicted rice interactome. The small
world properties imply a strong fault-tolerance to our
network, as well as to real protein-protein interaction
networks [66]. The Small world property shows good
fault tolerance and stability of our network. When
expressions of a few proteins are suppressed under
environment pressure, biological pathways will not be
ended but can be completed by other alternative

proteins. In such small world networks, information
transmission speed is very fast, corresponding with rapid
changes of environment pressure. The stress centrality
counts how many times a protein being passed through
by a shortest path. If a protein is passed by a high
amount of shortest paths, it experiences higher stress,
suggesting that it has more important biological func-
tion [65]. The stress centrality distribution is shown in
Figure 5F.
The clustering coefficient is a ratio N/M, where N is

given as the number of edges between the neighbours of
a protein, and M is given as the maximum number of
edges that could possibly exist between the neighbours
of a protein. It is calculated as Cn = 2en/(kn (kn-1)),
where kn is the number of neighbours of n and en is the
number of connected pairs between all neighbours of
protein n [65]. The average of the clustering coefficients
of proteins in different degree is shown in Figure 5G.
The high clustering coefficient value suggests that pro-
tein-protein interaction in rice is highly modular, and
cellular function in real PPI network is likely to be
implemented in a highly modular approach. Research in
metabolic networks using the average clustering coeffi-
cient distribution has shown the modular tendency in
metabolic networks [67]. Therefore, clustering coeffi-
cient is a very useful methodology to identify functional
modular in rice protein-protein interaction network.
The neighbourhood connectivity of a protein, defined

by NetworkAnalyzer, is the average interaction numbers
of all neighbours of this protein. As shown in Figure
5H, the neighbourhood connectivity of PRIN first
increased followed by decreased. This indicates that pro-
teins in low degrees (<30) tend to interact with those of
proteins in low degrees, but in high degrees field (>30),
it is more prevail that proteins in high degrees interact
with those of low degree proteins in PRIN [68].

Conclusions
PRIN is based on a sophisticated computational method
known as interologs, combined with the genomic fea-
tures of rice. There are certain inner quality controls in
our network construction: the huge amount of inte-
grated model organisms’ protein-protein interactions,
manual proofreading mismatch IDs in database integra-
tion, restricted orthologous data with top InParanoid
score and manual verification of the resulting network.
Genomic feature of rice, such as GO annotations, sub-
cellular location and gene expression data, is mapped to
PRIN in order to validate our network and obtain biolo-
gically significant results as well. Finally we acquired
76,585 desirable interactions among 5,049 proteins
(Additional File 5). According to the comparisons with
small experiment interactome and random interactome,
PRIN shows satisfactory tendency in co-GO annotation,
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Figure 5 Network visualization and topology. A. Part of the core sub network derived from PRIN, and visualized by Cytoscape. B. Insight view
of PRIN. Proteins were mapped to 4 subcellular localization: nucleus (blue), mitochondria (cyan), chloroplast (green) and Cytoplasm (pink). Edge
colors correspond to co-expression level, and size of nodes corresponds to node degree. C. 7 kinds of hubs were cataloged in our network,
partly reference to Jane etal’s study [36]. Apart from self-interacted proteins, proteins in PRIN mainly fall into mini hubs, small hubs and medium
hubs. D. The shortest path length of PRIN has an aggregation between 2 and 4, showing significant small world properties. E. The node degree
distribution of our network shows the scale-free network topological property. F. The high clustering coefficient value indicates that rice protein-
protein interaction is highly modular. G. The stress centrality distribution of PRIN implies a strong fault tolerance. H. The first increased followed
by a decrease trend in the neighborhood connectivity distribution suggests that it is more prevail that proteins in high degrees interact with
low degree proteins in PRIN.
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co-localization and co-expression, making it reliable for
perspective studies in rice functional biology and sys-
tems biology. A well-organized web interface has been
developed for network visualization and database search,
which will be updated weekly for new interologs detec-
tion. It is publicly available at http://bis.zju.edu.cn/prin/.
We have found many conserved basic metabolic path-
ways among species through the interolog process and
most excitingly new protein complexes join known
pathways. Pathways expansion, metabolic module detec-
tion, and protein complex functional annotation based
on PRIN will be the most important features for our
further comprehensive genomic functional determina-
tion in PRIN.

Methods
Interologs
Our prediction is based on existing methods known as
interolog. Interolog method is based on a simple logical
principle: if ‘protein A’ and ‘protein B’ in a specific spe-
cies are orthologous with ‘protein A1’ and ‘protein B1’
respectively in another species, and the interaction
between ‘protein A1’ and ‘protein B1’ has already been
verified experimentally in the reference species, ‘protein
A’ and ‘protein B’ would then be predicted to interact
with each other. If interolog of protein A and protein B
is found in more than one species, the reliability of their
interaction is increased. Interolog method based on
multi-species considers evolution conservation between
protein interaction pairs, therefore naturally possesses
better sensitivity in cross species prediction.
Integration of six model organism interactomes is

based on our own integration methods. High-through-
put experiments determined and literatures derived pro-
tein-protein interaction data of 6 model organisms were
gained from public protein-protein interaction data-
bases: BioGrid, IntAct, DIP and MINT. Additionally,
species-specific protein-protein interaction databases
such as HPRD for human, MIPS for yeast, and TAIR for

Arabidopsis were also utilised, providing a significant
number of high-quality protein-protein interaction data.
An ID dictionary was created to provide cross-database
ID mapping, which is based on Biomart, PIR ID map-
ping service, Uniprot ID mapping service, documents
from Swissprot and script extraction from Uniprot XML
files. ID mismatching and multi-matching were manu-
ally corrected in our integration, and ID in old version
was merged into new version or deleted. The ortholog
data were gained from InParanoid database between rice
and 6 model organisms independently. InParanoid com-
pared all the protein sequence pairs in a species through
InParanoid’s own algorithm, which is based on blast cal-
culation but not simply the best blast score. Protein
with the highest similarity is selected as a candidate pro-
tein, ensuring that there is no other protein and its can-
didate protein has a higher similarity. All orthologous
proteins in two species were obtained through these
screening methods [28-30]. Only the top pairs clustered
by InParanoid core cut-off 1.0 were selected, exerting
certain controls on false positive rate of the data. Some
orthologs with low score that produce correct interac-
tions are more likely to be false positives. The ortholog
data is next mapped to integrated interactome, known
as interologs. We finally predicted 76,585 rice protein-
protein interactions among 5,049 proteins, with 2,363
interactions from Arabidopsis thaliana, 59,915 interac-
tions from Saccharomyces cerevisiae, 5,815 interactions
from Escherichia coli K12, 1,422 interactions from Cae-
norhabditis elegans, 3,070 interactions from Drosophila
melanogaster and 8,157 interactions from Homo sapiens.

GO annotation
Three independent Gene Ontologies (biological process,
molecular function and cellular component) for proteins
in PRIN were obtained from the Gene Ontology data-
base [53] and Gramene database [54]. Term description
was obtained from Gene Ontology database for network
clustering. GO clustering is based on existing methods
known as GO slim. UniProtKB-GOA GO Slim [69] was
chosen to construct catalog for GO terms, and GO Slim
Viewer provided by AgBase [55] was taken to calculate
the distribution of GO terms in our networks. Relative
specificity similarity (RSS) score of protein pairs in
PRIN based on GO annotation were calculated to evalu-
ate of the reliability of the predicted rice protein-protein
interaction. We applied tools provided by SPIDer [58] to
calculate the RSSGO score between two given GO terms.
RSS score is based on existing methods presented by
Wu [57]. RSS score can be defined as:

RSS(termi,termj) =
max depthGO

max depthGO+γ

α

α + β

Table 1 The comparison of interactome topology
between rice and model organisms

species average
degree

connected
component
value

self-
interaction
ratio

Oryza sativa 29 102 2.8%

Arabidopsis thaliana 4 152 5.5%

Saccharomyces
cerevisiae

61 2 0.8%

Homo sapiens 23 157 1.6%

Drosophila
melanogaster

7 55 0.9%

Caenorhabditis
elegans

4 105 2.1%

Escherichia coli K12 11 9 2.3%
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where, a measures specificity between two GO terms
(term i and term j) of a given protein, protein A, and a
can be defined as:

α = max max
pathm∈paths(termi)
pathm∈paths(termj)

(
The number of common terms

between termi and termj

)
- 1

where, b measures how relatively general term i and
term j are in the GO and b can be defined as:

β = max
(
min
u∈U

{dist(termi, u)},min
v∈V

{dist(termj, v)}
)

where, U = {all leaf nodes descending from term i}
and V = {all leaf nodes descending from term j}, ɣ mea-
sures the local distance between two terms relative to
the given protein, and ɣ can be defined as:

γ = dist(ProteinA, termi) + dist(ProteinA, termj)

And to a given interacted protein pair, protein A and
protein B, terms(A) and terms(B) are all the GO terms
corresponding to protein A and B. RSSGO(A, B) is
defined as the correlation strength between A and B
[56-58]:

RSSGO(A,B) = max
u∈terms(A)
v∈terms(B)

{ RSS(u,v)}

Three independent RSSGO scores were given. With a
certain cut off of 0.8, larger RSSBP score indicates that
two proteins having stronger correlation in biological
processes; larger RSSCC score indicates that two proteins
having higher similarity of cell components characteris-
tics; a larger RSSMF score indicates that two proteins are
more similar in molecular functions.

Subcellular localization
Rice subcellular localization data was obtained from the
prediction of RSLpred. RSLpred is an integrated predic-
tion server for rice subcellular localization based on four
kinds of SVM modules: amino acid composition, dipep-
tide composition, pseudo amino acid (pseAA) composi-
tion and evolutionary information of PSI-Blast. RSLpred
classified rice proteins into four 4 subcellular locations:
chloroplast, cytoplasm, mitochondria and nucleus. The
complete rice proteome of EBI and TIGR were pre-
dicted by RSLpred with a faster and traditional amino
acid composition based module, and these two files
were downloaded and combined to get the maximum
coverage over our protein interaction network. Consid-
ering the transport mechanism of proteins, we did not
adopt the winner-takes-all approach used in earlier stu-
dies [36], and all of subcellular localization sources pre-
dicted by RSLpred for a single protein were taken into

annotation. If one of the localizations of a multi-loca-
lized protein were the same with its interaction partner,
these two proteins are considered co-localized.

Co-expression
The Pearson correlation coefficients of two rice genes
were obtained from the RiceArray Database [61] calcula-
tion based on rice gene expression data in 830 rice Affy-
metrix microarray data (NCBI GEO AC: GPL2025).
Since there were only 34,016 out of 37,993 rice genes
(which have Affymetrix probeset matched) with a
unique match in Affymetrix probeset, 35% of protein
pairs in our predicted rice interactome successfully
mapped to co-expression Pearson Correlation Coeffi-
cient score. If gene A and gene B are the given two
genes, Xi and Yi are the gene expression level of A and
B in time i, the Pearson Correlation Coefficient score
(ɣ) can be given as follows:

γ =

1
m

∑m
i=1 XiYi − XY

σxσ y

where, X,Y mean the average gene expression amount
during time m, sx and sy means the standard deviation
of gene expression amount during time m. The value of
ɣ drops into -1 ~ 1, and -1 means gene expression pat-
terns of A and B are opposite (a expression increased,
the other down); 1means that gene expression patterns
of A and B are consistent (a expression increased, the
other up); 0 means that gene expression patterns of A
and B are without any contact. Since interacting pro-
teins may be mutually reinforcing (corresponding to ɣ >
0), may also be inhibited each other (corresponding to ɣ
<0), so we use the absolute value of ɣ as a co-expression
property between a predicted protein interaction.

Additional material

Additional file 1: Statistics of interolog. This file contains a statistics of
interolog data shown in Figure 2. Data resource from protein-protein
interaction databases for 6 organisms is listed in table.

Additional file 2: Statistics of GOA GO Slim. This file contains a
statistics of GO terms distribution based on standard UniProtKB-GOA GO
Slim shown in Figure 3A and Figure 3B. Three kinds of GO terms(Cell
Component, Biological Process and Molecular Function) are listed
separately in table.

Additional file 3: 430 experiments detected rice protein
interactions. This file contains 430 rice protein-protein interactions,
which are integrated from BIND, IntAct, and PlaPID. Proteins are listed in
RGAP locus id pairs with their RSSGO score and co-expression PCC score.

Additional file 4: Topological statistics of PRIN. This file contains
detail data resource shown in Figure 5. Topological statistics in hubs
distribution, node degree distribution, shortest path length distribution,
stress centrality distribution, average clustering coefficient distribution
and average neighbourhood connectivity distribution are calculated in
table.
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Additional file 5: 76,585 predicted rice protein interactions in PRIN.
This file contains 76,585 rice protein-protein interactions predicted by our
interolog method with high confidence. Protein description, RSSGO score,
co-expression PCC score, co-localization level and interolog species are
also involved in this file.
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