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approach in HMMs.

Background: Identifying recombinations in HIV is important for studying the epidemiology of the virus and aids in
the design of potential vaccines and treatments. The previous widely-used tool for this task uses the Viterbi
algorithm in a hidden Markov model to model recombinant sequences.

Results: We apply a new decoding algorithm for this HMM that improves prediction accuracy. Exactly locating
breakpoints is usually impossible, since different subtypes are highly conserved in some sequence regions. Our
algorithm identifies these sites up to a certain error tolerance. Our new algorithm is more accurate in predicting
the location of recombination breakpoints. Our implementation of the algorithm is available at http://www.cs.

Conclusions: By explicitly accounting for uncertainty in breakpoint positions, our algorithm offers more reliable
predictions of recombination breakpoints in HIV-1. We also document a new domain of use for our new decoding

Background

We consider the problem of locating recombination
breakpoints in viral genomes. The Human Immunodefi-
ciency Virus has been classified into several major phy-
logenetic groups called subtypes [1]. Recombination
between those groups is common [2], so a viral genome
can be composed of several regions arising from differ-
ent subtypes. Given a viral genome sequence, we would
like to identify whether it is a recombinant, and which
subtypes gave rise to which regions of its sequence.

Identifying recombinations is important for epidemio-
logical monitoring of the virus, as well as for the design
of potential vaccines and treatments. For example, some
subtypes develop more resistance to anti-retroviral
drugs than others [3]. Accurate identification of recom-
bination patterns is also crucial to detecting superinfec-
tions in patients [4].

One current method for detecting recombinations
uses profile HMMs; we describe others in the next sec-
tion. Profile HMMs are a widely used tool in modelling
families of sequences and can be thought of as a way of
summarizing multiple sequence alignments of a
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sequence family [5]. A profile HMM is composed of
three sequences of match, insert and delete states.
Match states correspond to consensus columns in the
multiple alignment. Each match state can make a transi-
tion to a corresponding insert state, which models resi-
dues appearing between consensus columns. Finally, a
chain of silent delete states accounts for the possibility
of a sequence skipping some consensus columns in the
alignment. Figure 1 shows an example of a profile
HMM. Profile HMMs are derived from multiple
sequence alignments using standard algorithms [6]. The
jumping profile hidden Markov model (jpHMM) (7], as
shown in Figure 2, represents each HIV subtype as a
profile HMM derived from an alignment of sequences
from this subtype. Transitions between each pair of sub-
types are added in each column to model possible
recombinations between subtypes. These transitions are
called jumps and are assigned very low probability, as
the number of recombinations in a sequence is low
compared to its total length. Predicting recombinations
is achieved using the classical Viterbi algorithm (see e.g.
[6]). Schultz et al. [7,8] show that using the jpHMM
with the Viterbi algorithm to predict recombinations
outperforms Simplot, then the most commonly used
recombination detection tool.
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Figure 1 A profile hidden Markov model. A profile HMM for an
alignment with 5 consensus columns. Rectangles represent match
states. Diamonds represent insert states. Circles represent delete
states as well as (silent) begin and end states.

We apply a novel algorithm to further improve the
accuracy of predictions provided by a jpHMM. Our key
observation is that in many cases, high similarity
between different subtypes makes it impossible to pin-
point breakpoint positions. We focus on approximately
predicting breakpoint positions rather than maximizing
the probability of being exactly correct. We have
demonstrated the efficiency of a similar decoding strat-
egy for transmembrane protein topology prediction in
previous work [9], where we also developed much of
our algorithmic framework.

Related work

Many tools have been developed for HIV recombination
detection. These tools can be divided into two groups:
those based solely on comparisons between sequences

Figure 2 A jumping profile hidden Markov model. A jumping
profile hidden Markov model for 2 subtypes. States sharing the
same label are coloured with the same colour. Red arrows indicate
jump transitions between subtypes. For clarity, jumps involving
insert or delete states have been omitted.
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and those which are additionally based on phylogenetic
reconstruction.

Among the tools based solely on sequence compari-
son, Simplot [10] is perhaps the most well-known. It
provides a graph showing the local similarity of a query
sequence to a set of reference sequences. Another tool,
RIP [11] also operates on the same principle. The jump-
ing profile hidden Markov model (jpHMM) [7] uses pro-
file hidden Markov models to model different subtypes
and predict recombinations. Here, comparisons are
made between the query sequence and profile HMMs
describing collections of sequences belonging to the
same subtype.

Tools using phylogenetic information try to detect
recombinations by reconstructing phylogenies for differ-
ent regions of sequence alignment and comparing them
to detect topology changes, which suggest recombina-
tion took place. The REGA HIV subtyping tool [12]
uses a sliding window approach to reconstruct phyloge-
nies for different regions in the alignment, though it
only identifies the subtypes without predicting break-
point positions. DualBrothers [13] and cBrother [14]
divide the sequence alignment into segments with differ-
ent evolutionary parameters and different phylogenetic
histories. They then use Markov Chain Monte Carlo to
sample from the posterior distribution of such partitions
and their corresponding trees. GARD [15] uses a genetic
algorithm to find a maximum-likelihood partition of the
alignment into segments with different evolutionary his-
tories. De Oliveira Martins and Kishino [16] try to
account for uncertainty of segment assignments by
using a distance measure between mosaic structures and
applying a centroid estimator.

Several phylogeny-based tools use phylogenetic HMMs
(phylo-HMMs) to model topology changes along the
sequence alignment. Each state in a Phylo-HMM corre-
sponds to a phylogenetic tree and emits a column of the
multiple sequence alignment. Husmeier and Wright [17]
use a phylogenetic HMM with three states to detect
recombinations between four sequences. Kedzierska and
Husmeier [18] propose a heuristic technique using an
HMM that emits tree topologies. Westesson and
Holmes [19] use a version of the EM algorithm to train
a phylogenetic HMM with a fixed, user-defined number
of tree topologies. Webb, Holmes and Hancock [20]
integrate out the branch lengths in the phylogenies to
speed up the MCMC inference.

We note that the HMMs used in these phylogeny-
based approaches are very different from the jpHMM
model we employ. A state in a phylo-HMM emits a col-
umn in the multiple sequence alignment of the analyzed
sequences. In contrast, a jpHMM is a single-sequence
HMM where each state emits a base of the sequence
under analysis. While phylogeny-based methods take a
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multiple sequence alignment as an input, the jpHMM'’s
input is only the single recombinant sequence to be ana-
lyzed: the multiple alignments already built are encapsu-
lated in the probabilistic properties of the profile HMM.
A state path through the jpHMM corresponds to an
assignment of regions of the input sequence to the sub-
types modelled by the profile HMMs.

Phylogeny-based methods provide more flexibility in
modelling sequence evolution, but they often require
the knowledge of evolutionary parameters to work prop-
erly and are computationally expensive. In contrast, pro-
file-based approaches are simpler. They do require
parameters that summarize existing multiple alignments,
though this is perhaps easier data to infer than are evo-
lutionary rates. Profile methods are also typically faster,
as they do not require the evaluation of tree likelihoods
for a number of different topologies; their computation
is also accelerated using heuristics such as beam search
[21]. Phylogenetic approaches which do not enumerate
over many tree topologies, but instead efficiently com-
pute the optimal ones, could in principle give fast run-
times, but have not been used widely for HIV.

The jpHMM does not use any phylogenetic informa-
tion, but it differs from other phylogeny-free approaches
in that it compares the input sequence to profile HMMs
rather than single sequences representing different sub-
types. Here, we focus on improving the prediction accu-
racy of jpHMM by applying a new decoding algorithm
to infer recombination breakpoints.

Recently, some other approaches have also been pro-
posed to account for uncertainty of boundary locations
in recombination detection. Schultz et al. [8] detect
uncertainty regions in the Viterbi prediction where the
posterior probability of the predicted subtype is below a
certain threshold. Nédnési et al. [22] devised a novel
decoding algorithm for HMMs which maximizes the
expected number of breakpoints predicted up to a certain
error tolerance, but does not assess the joint probability
of all breakpoints; more detail is in Néandsi’s thesis [23].

These methods have drawbacks. The algorithm by
Ndnasi et al. is too computationally expensive to be
practical on full-length viral sequences and has only
been evaluated on a small region of HIV alignment. The
newer approach of Schultz et al. [8] still uses the Viterbi
algorithm to locate breakpoints, although it gives more
insight into their credibility.

While our approach bears some resemblance to the
two methods mentioned above, it differs from both in
that it optimizes a global objective while allowing for
small local errors in our prediction.

Our approach
Schultz et al. [7] use the classical Viterbi algorithm for
jpHMM decoding, despite its many drawbacks. The
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Viterbi path may have extremely small probability and is
unlikely to be correct overall for sequences having more
than a few elements. Also, we are interested in finding a
correct labelling, rather than an optimal state path in
the model. In many situations, likely labellings consist of
a large number of low-probability paths. In such cases,
the Viterbi algorithm chooses the labelling that corre-
sponds to the most likely state path, but the posterior
probability of such labelling may be much lower than
the posterior probability of a labelling composed of
many low-probability paths. This phenomenon is known
as the path/labelling problem [24]. Even in the absence
of the path/labelling problem, the Viterbi path is unli-
kely to be exactly correct in cases where there is much
uncertainty about exact border positions. Many different
labellings will then have similar probabilities, and the
most probable labelling will not necessarily be correct.

In our previous work on robust HMM decoding [9],
we ameliorate some of these problems by searching for
the centre of the most probable ball of predictions
rather than a single prediction. A ball of radius r
centred at a specific labelling A for the sequence con-
tains a number of paths with labellings at distance less
than an upper bound r from A. The number of such
paths grows exponentially with . We often find balls of
large posterior probability, giving us more confidence
that the centre of the ball is close to the true labelling.
We define balls on labellings rather than paths, so the
path/labelling problem is avoided.

Our ball algorithms, with our border shift distance
(defined in the next section), are a natural choice for
the problem of recombination prediction. Our priority
in this problem is accurately predicting which subtypes
have occured in our sequence. Since subtypes are highly
similar in many places, exactly predicting breakpoints
appears impossible, meaning that we should instead
focus on approximately predicting breakpoints. Where
subtype similarity is low, we obtain quite accurate pre-
dictions by shrinking the ball radius.

Preliminaries

A labelled HMM is defined by a transition matrix A, an
emission matrix E, and a labelling function /. The matrix
A is a stochastic m x m transition matrix where a; gives
the probability of transition from state i to state j; E is
an m x |Y| emission matrix where e, gives the prob-
ability of emitting symbol o € ¥ in state k. The labelling
function [ assigns to each state a single label from the
set A of possible labels. Many states often share a single
label. We assume that the model starts in a state x,.

In the context of recombination detection with jpHMM,
each state corresponds to a column in the alignment of
sequences from a particular subtype. For each subtype and
each consensus column in the alignment of the subtype,
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we have a match, insert, and a delete state. Each state is
labelled by the subtype it belongs to. An HMM con-
structed this way has a large number of states: around 3 -
9000 - 14 = 378000, where the factor of 9000 is the num-
ber of consensus columns in each subtype alignment, and
14 is the number of subtypes modelled by the jpHMM.
This number of subtypes is higher than the usual number
of HIV subtypes reported in the literature [1] because the
creators of the jpHMM-HIV chose to model the sub-sub-
types Al, A2, F1 and F2, and the CRF 01_AE, as well as
HIV group O and the Simian Immunodefficiency Virus, as
separate subtypes [7]. The number of labels is 14, one for
each subtype.

A path in an HMM is a sequence of states x = xg, Xy, .

., x,, visited by the model at each step. We denote the
corresponding sequence of emissions as yy, . . ., ¥,. The
labelling A corresponding to path x is defined as A =
£(xo), £(x1), €(x2), . . ., €(x,). For a generic sequence z, .
..z, we write zéto denote the subsequence z;, . . ., z;.

Wewriteé:utodenotezh...,z,»:u,...,u.

Since a typical sequence contains only a few breakpoints,
a labelling for a sequence will usually have many consecu-
tive positions with the same label. Given a labelling A =
exo) fvo fir oo s S Su S s fo oo fio oo s fio Which con-
sists of Ay followed by a number of positions labelled f;,
then a number of positions labelled f, (which is different
from f1), and so on, we define its footprint to be the
sequence f = f, . . ., fi; this corresponds to the overall
labelling of the sequence, but with the label boundaries
entirely flexible. Typically, regions with the same label cor-
respond to features: in our application, they are sequence
intervals derived from a single subtype. Footprints are
typically much shorter than a sequence of emissions.

Consider two different labellings A and A’ for the same
sequence y. We define their border shift distance d(k, \)
as a function of the feature boundaries, as follows.

First, if A and A’ have different footprints, they are
incompatible; their distance is . Otherwise, let f= f, . .
., fx be their common footprint, and let b;(1) be the
position in A corresponding to the first emission from
the interval labelled f;,;. The border shift distance
between A and A’ is then max; - ; _ x1 |b;(A)-b;(\)]| it is
the maximum boundary shift between the correspond-
ing features in two labellings. Figure 3 shows how we
compute this distance.

A ball of radius r centered at a labelling A, denoted as
B(A, r), is defined as the set of all labellings A’ having
distance at most r from A.

Methods

Computing ball probabilities

Our first algorithm computes, for a given labelling A, the
probability of a ball of radius r centered at . We use a
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Figure 3 The position of borders in labellings. The ith border for
a labelling A, biA), is the first position in 4 with the label f,;. The
shift in the ith border, between two labellings A and A’ that share
the same footprint fis [b,A) - bAd)).

variant of the traditional forward algorithm for HMMs
[6], which computes the probability that an HMM gen-
erates a sequence Y, in O(nm?) time.

Let f = fi, . . ., fx be the footprint of 1. We create k
groups of states Gy, . . ., Gy, each corresponding to the
label set Lf, of states with label f;, for each position in
the footprint. Each state in Ly is represented in G;.
States in the new model have exactly the same emission
probabilities as in M, but we may only make transitions
from states in G; to those in G; or G;,;, with the same
transition probabilities as in M. (To make a proper
HMM, we can create a “dump” state for paths in M that
do not respect the footprint we seek, or not bother.) See
Figure 4.

We also restrict the set of possible states visited at
each position of the sequence. We require that transi-
tion from the initial state has to be made to one of the
states in G;. The other entries in the first column of the
forward table will be set to 0. Likewise, states from
group G; can only be visited at positions b, - r to b; +
r -1 - to ensure that the shift from G, to G;,; occurs
between b; - r and b; + r. Finally, we require that the
state at the last position of the sequence is in group G;.
The standard forward algorithm computes the probabil-
ity of B(4, r) on this HMM.

Figure 4 Computing the probability of a footprint. To compute
the probability of a footprint f=f;, . . ., fi, we create a group states
G; for each entry in f, corresponding to the states in M labelled f. A
path compatible with the footprint must first go from xq to one of

the states in G;, then eventually go to G,, and on to G, Transitions

are only allowed from G; to G, or Gy, ;.
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Let L be the size of the largest label set. The runtime
of this algorithm is O (L? Y"1, tj)where ¢; is the number
of allowed labels at the i-th position of the sequence.
For r = 0, which corresponds to computing the prob-
ability of a single labelling, we only allow 1 label at each
position, so computing the probability of a labelling
requires O(L*n) time. Now observe that increasing r by
1 increases the overall number of active labels by at
most 2k. This gives us the runtime of O(L*(n + kr)). In
the case of jpHMMs for HIV recombination detection,
this runtime is small compared to the standard forward
algorithm because L = m /14 (there are 14 subtypes and
sub-subtypes represented in the jpHMM for HIV) and
both k and the chosen value of r are small compared to
n.

Optimization

Finding the most probable ball of radius r is NP-hard
even when we restrict the centres to being consistent
with a fixed footprint [9]. In practice, however, we can
find high-probability balls efficiently by sampling from
the distribution of state paths and using local search. If
there exists a high-probability ball in the space of paths,
we likely sample a path within that ball; then, the local
search procedure moves us towards the centre of the
ball. We used this method to predict transmembrane
protein topology [9]. Unfortunately, our previous local
search algorithm requires performing many forward and
backward passes, which makes it too computationally
expensive for use with jpHMMs. Here, we present a
more efficient local search algorithm that exploits the
fact that the distances between breakpoints are large.

If the size of the footprint is 2 (only one breakpoint),
we can recover the most probable ball of radius r by
doing exhaustive search. We could calculate the ball
probability for every possible placement of the break-
point, for every choice of two recombining subtypes.
This requires (z - 1|A|* ball computations, or a total
runtime of O(1*L*|A|%), which is too large.

We now reduce this runtime. For any HMM M, let
¢in(k) =Pry1,....yi, A} =h,x; = k] be the probability
that M, started at the initial state x,, emits y;, . . ., y;
while visiting only states with label # and that x; = k.
Obviously, @, ,(k) = 0 if the label of state k is not /.
Analogously, let Bij(k) = Prlyic1..yn, AL, =j, X = k] be
the probability that M, started at state &, emits y;, . . .
y,, while visiting only states labelled with j. For a label-
ling A(h, j, i + 1) consisting of two intervals labelled &
and j with a breakpoint at position i + 1, the probability
of A(h, j, i + 1) is the dot product of ¢;;, and fB;;. We
obtain all forward vectors ¢;; by running the algorithm
for computing the probability of a labelling for a label-
ling where all positions are labelled with /. Similarly, we
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obtain the backward vectors 8;; by running a similar
backward algorithm for a labelling consisting only of ;.
Once we have all the vectors, we can find the most
probable ball by a linear scan. The overall runtime of
this procedure amounts to O(nL*|A|?).

In many cases, this runtime can be further improved if
we know the location of some reference ball B(\’, r)
with posterior probability over 0.5. Since the path prob-
abilities add up to 1, we know that the maximum prob-
ability ball must intersect B(A’, r) The centres of
intersecting balls must have distance at most 2r, and the
footprints must be the same, so we are left with only 4r
+ 1 candidate ball centres as opposed to n -1. We need
to compute only around 6r dot products, giving runtime
O(nL?*). The asymptotic runtime is dominated by the
forward and backward passes and not dependent on r
since computing each dot product takes O(L) time, so
computing dot products at all positions would take O
(nL) time. Nevertheless, considering only 6r positions
yields a substantial practical improvement in the con-
stant factor.

The initial guess about the location of the reference
ball can be obtained by sampling several paths from the
conditional distribution Pr[x}[y}] using standard algo-
rithms [25,26] and computing the probability of a ball
containing all (or most) of the sampled paths.

Similar exhaustive search procedures quickly become
impractical as the number of breakpoints grows. How-
ever, we can use this approach as a heuristic to optimize
each breakpoint separately. If distances between subse-
quent breakpoints are large, compared to the ball radius,
there may be very little dependence between subsequent
breakpoints, so optimizing for each breakpoint sepa-
rately yields a good approximation to the globally opti-
mal ball centre. For the first breakpoint, computing the
probability of the breakpoint occuring at every position
is carried out as in the one-breakpoint case except that
we assume that the borders 2 to k occur within a refer-
ence ball for which backward table values were pre-
viously calculated. As we move to the next breakpoint,
we calculate the forward values based on the optimal
location of previous breakpoints, while the backward
vectors still come from the calculation for the reference
ball. This way, our algorithm only requires performing
one additional forward pass after the backward pass for
the reference ball has been performed.

Our complete optimization algorithm is as follows.
First, we sample 10 paths from the HMM to determine
a reference ball for our local search. We determine the
majority footprint in the sample set and discard samples
with a different footprint. We estimate the mean and
variance of each breakpoint position from the sample.
From this estimate, we derive a biased estimate of the
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standard deviation which we multiply by./2 to get a
biased estimate 7 sof the ball radius ry 5 such that a ball
centered at the mean labelling with radius rg 5 has 0.5
posterior probability (the factor of /2 follows from
Chebyshev’s inequality). We then compute the probabil-
ity of the ball centered at the mean labelling with radius
fos (in case where there are multiple breakpoints, we
take the maximum 7, 5 across all estimates). For each
breakpoint, we perform the optimization procedure
described above.

Choosing the ball radius adaptively
The choice of r in the algorithm above may greatly
influence the results, as we shall see in our experimental
results. For breakpoints which occur in places where the
two subtypes are highly similar, the uncertainty about
breakpoint positions will be greater than in low-similar-
ity regions. Thus, we may automatically adapt the ball
size to the amount of uncertainty in a particular break-
point. For a sequence with many breakpoints, the uncer-
tainty about breakpoint positions may vary between
breakpoints, so we alter our definition of balls to accom-
odate this.

An interval region R(f, [vy, wil, . . ., [V, wyi]) for a
footprint f = fi, . . ., fx and a set of intervals [vy, wq], . ..
, [Vie wi] is a set of labellings defined as follows:

R(f, [vi,w1], ..., [vrwe]) = {1 : Ahas footprint f, and all boundaries b;(1)
are found in the intervals|v;, w;|}

For each breakpoint, we require that the interval cho-
sen for that breakpoint has overall probability of at least
half of the probability if that breakpoint was free to
occur anywhere in the sequence. In other words, if we
start from the reference ball as our initial interval
region, then the probability is decreased at most by half
each time we update an interval. Subject to that require-
ment, we identify the smallest possible interval for each
breakpoint. This enables intervals for different break-
points to have different width, thus accomodating differ-
ent levels of uncertainty about the position of different
breakpoints.

The algorithm for finding small interval regions is
analogous to the algorithm for finding most probable
balls. As in the previous case, we optimize each interval
separately after computing the probability of the break-
point occuring at each position of interest. We find the
optimal interval for a single breakpoint with a simple
greedy linear-time algorithm: traverse the list of prob-
abilities {py, po, ..., p,} and maintain a variable v. At step

i, v denotes the maximal index such that Z;zv pj > 0.5

(if no such index exists, we set v = 0). When the algo-
rithm moves to the (i + 1)-st step, v is increased if pos-
sible. The minimum interval corresponds to the
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minimum value of i - v found during the execution of
the algorithm.

Reducing the number of active states by beam search
Since our jpHMM has over 300, 000 states, running the
standard forward and backward algorithms is computa-
tionally infeasible. We speed up the runtime of the algo-
rithm by noticing that, at any sequence position, most
entries in the forward table contain values very close to
zero. Ignoring those entries has little impact on predic-
tions but can greatly reduce computation time. Beam
search [21] limits the number of active states at each
position, by ignoring every entry in the dynamic pro-
gramming table whose value is below {p* where p* is
the entry with the highest value and ¢ is some prede-
fined threshold. Following the decision made by the
creators of jpHMM [7], we set & to 107°.

Results and Discussion

Data used

We have evaluated the performance of our local search
algorithms on several semi-synthetic data sets and one
real data set. All of the semi-synthetic data sets were
produced by artificially recombining real viral sequences
from different subtypes. We have also run our algo-
rithms on real recombinants and compared their predic-
tions to published breakpoints and to the predictions
made by other algorithms. It is not possible to fully eval-
uate our approach on real recombinants because their
precise breakpoints are unknown, and human annota-
tions are performed with the assistance of a variety of
tools including ones we are comparing our work against
[27]. By artificially recombining real sequences, we hope
to create data sets that resemble real sequences as clo-
sely as possible while still having known ground truth
values. Our implementations are available at http://
www.cs.uwaterloo.ca/~jmtruszk/jphmm_balls.tar.gz.

We compared our method to the standard implemen-
tation of jpHMM decoding using the Viterbi algorithm,
and to DualBrothers [13], which was chosen as a repre-
sentative of phylogeny-based methods for recombination
detection. We also tried to run ST-HMM [20], but it
appears prohibitively slow for this task. DualBrothers
takes as input a multiple alignment of subtype reference
sequences and the query sequence and outputs a collec-
tion of trees together with their posterior probabilities
for each column of the alignment. We chose one
sequence from each subtype to serve as reference. For
each query sequence, we used MAFFT [28] to align it to
the reference sequences. We then ran the MCMC sam-
pler for 50000 steps, discarding the initial 25000 steps as
burn-in. For each position in the query sequence, its
subtype was assigned by taking the most probable
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phylogeny at this position and finding the subtype that
was topologically closest to the query sequence in that
phylogeny. We broke ties arbitrarily.

We used three data sets from Schultz et al. [8] which
we call the 1000-1000, 500-1500 and 300-1500 data
sets. In all data sets, each artificial sequence was cre-
ated by taking two real sequences from different sub-
types, aligning them and composing them into one
sequence by alternating intervals from each parent
sequence. For example, in the 300-1500 data set, the
first interval consisted of roughly 300 initial positions
from the first sequence, followed an interval of length
1500 from the second sequence starting immediately
after the base that was aligned to the last base from
the first interval. The third interval had 300 positions
taken from the first sequence and so on. The parental
sequences were taken from the 6 most common HIV
subtypes (A, B, C, D, F, G) and CRF 01_AE. Each of
these three data sets has 40 sequences generated this
way.

In another data set from Schultz [29], with single
breakpoints, each sequence consisted of two intervals
taken from two parental sequences. The breakpoint
locations were chosen uniformly at random. Here, par-
ental sequences from all subtypes and sub-subtypes
were used. This data set contains 106 sequences. In a
second set of experiments, we tested the ability of the
Viterbi algorithm and our ball algorithms to identify
short inserted regions in the sequence that come from a
different subtype than the rest of the sequence. If a
region is too short, it will not be detected by any algo-
rithm since the model will favour paths that do not
make two low-probability jumps into and out of a differ-
ent subtype. Our ball algorithms should be more cap-
able of identifying such short regions. To test this
hypothesis, we generated sequences with two break-
points, with a fixed distance between the breakpoints.
Each sequence was a recombinant of two out of eleven
most common subtypes, with one sequence for every
choice of the two subtypes. We generated four data sets
this way for different insertion lengths (see Additional
file 1).

In the final set of experiments, we run all the algo-
rithms on 20 real CRFs taken from the Los Alamos HIV
sequence database [27]. We used the reference strains
for CRFs 2 to 9, 11 to 21, and CRF 23. When comparing
the predictions to the published breakpoints, we dis-
carded the 5 CRFs whose annotation had been produced
with the aid of jpHMM for a more fair comparison; we
also discarded all CRFs whose annotation contained
intervals labelled as ambiguous or unknown. This pro-
duced a set of 9 CRFs. When comparing the predictions
of various algorithms, we used the whole data set of 20
CREFs.
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We used two accuracy measures to evaluate the algo-
rithms. For each true breakpoint recovered by an algo-
rithm, we calculated the distance between the predicted
and actual (or reported) breakpoint positions. We report
the median of these distances for each experiment. In
addition, we report the breakpoint sensitivity, defined as
the fraction of the true breakpoints that were identified
by an algorithm. We consider a true breakpoint identi-
fied if a prediction contains a breakpoint within 300
positions of the true breakpoint and the subtypes on
both sides of the predicted breakpoint match the true
subtypes. If the prediction contains a breakpoint that
does not correspond to a true breakpoint in the above
way, we report it as a false positive.

Overall results

Table 1 shows the median breakpoint error for the first
set of experiments. For r = 5 and r = 7, our algorithms
outperformed Viterbi predictions in terms of the median
distance between predicted and actual breakpoints. The
adaptive region algorithm gave similar results, but it did
not offer any further improvement over the ball algo-
rithms for the above parameter choices. DualBrothers
had much higher median distance than all algorithms
based on the jpHMM.

We used the Wilcoxon signed rank test to compare
the distribution of breakpoint errors between Viterbi
and ball algorithms. For » = 5, the p-values for the four
data sets in Table 1 are 4 -10° 3 .10°%, 3 -10°®, and 3
107, respectively.

The HMM algorithms all managed to reconstruct the
vast majority of breakpoints, while DualBrothers did
not. Our ball algorithms noticeably outperformed
Viterbi on the 300-1500 data set. For the other data
sets, the differences were negligible. Table 2 shows the
sensitivities for all experiments. In this set of experi-
ments, no false positives were found for Viterbi. Our
algorithms produced no false positives on all data sets

Table 1 Comparison of different algorithms

Method Single 1000- 500- 300-1500
breakpoint 1000 1500
Viterbi 7 (3.17) 6 (2.17) 7(2.20) 7 (3.16)
max ball, r =1 6 (2.16) 6 (2.18) 7 (1.19) 7 (2.16)
max ball, r =2 5(2.16) 6 (1.17) 6 (2.18) 6 (2.15)
max ball, r =5 4 (1.12) 5(3.14) 5(3.15) 5(2.13)
max ball, r =7 4(2.12) 5(33.14) 6314 63.12)
max ball, r =10 6 (3.10) 7 (3.14) 8(3.14) 7 (3.10)
max ball, r=15 7 (3.1 9 (4.14) 10 (5.15) 7 (4.12)
min region 4 (1.13) 5 (2..14) 6 (2.16) 5(2.14)
DualBrothers 57(45.71) 51 (42.67) 48(37.54) 45

(40.51)

Shown are the median and interquartile range of differences between
predicted and actual breakpoints for the four initial experiments.
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Table 2 Number of breakpoints recovered Table 4 False positives on short intervals
Method Single 1000- 500- 300- Method 250 200 150 100
breakpoint 1000 1500 1500 Viterbi 2110 4/110 8/110 10/110
Viterbi 105/106 359/360  327/360  344/360 max ball 7 = 5 2110 4110 11110 14/110
max ball, r = 5 105/106 360/360 326/360 350/360 Shown are the fraction of false positive breakpoints for different interval
max ball, r =7 105/106 360/360 326/360  350/360 lengths.
max ball, r =10 105/106 360/360 326/360  350/360
max ball, r =15 105/106 360/360  326/360  350/360  breakpoints and had substantially higher median break-
min region 105/106 360/360  326/360  350/360  point distance to the published breakpoints that it
DualBrothers 76/106 146/360 81/360 27/360

Shown are the fractions of recovered breakpoints for each experiment.

except the 500-1500 data set, where each ball algorithm
produced 2 false-positive breakpoints. DualBrothers
recovered less than half of the breakpoints on each data
set except the first and also gave a considerable number
of false positives (120,122,130 and 104 for single break-
point, 1000-1000, 500-1500 and 300-1500 data sets,
respectively). DualBrothers tended to make the most
mistakes on sequences derived from subtype A, often
confusing it with CRF_01.

In the second set of experiments, we see that the
accuracy of both Viterbi and ball algorithms deteriorates
gradually as interval length decreases. Ball algorithms
managed to identify more correct breakpoints for all
interval lengths. For all algorithms, the number of false-
positive breakpoints increases as intervals get smaller,
with ball algorithms yielding slightly higher false-positive
rates than Viterbi. The results are shown in Table 3 and
Table 4. Since the choice of ball radius does not affect
the number of correctly identified breakpoints, we only
report results for » = 5. Among the correctly predicted
breakpoints, the median error rates for ball algorithms
were smaller than for Viterbi similarly to the first set of
experiments(results not shown).

For the 9 real recombinants whose published break-
points had not been inferred using jpHMM, the ball
algorithm and Viterbi generally gave very similar results
(see Table 5). Both algorithms predicted roughly half of
the published breakpoints; the balls algorithm predicted
two more than did Viterbi. Somewhat surprisingly,
Viterbi had slightly lower median breakpoint distance to
the published breakpoints, though this result is not sig-
nificant according to the Wilcoxon signed-rank test (p =
0.42). DualBrothers recovered fewer of the published

Table 3 True positives on short intervals
Method 250 200 150 100
Viterbi 96/110 79/110 45/110 25/110
max ball, r =5 100/110 85/110 58/110 29/110

Shown are the fractions of recovered breakpoints for different interval
lengths.

recovered than the other two algorithms. Figure 5 shows
predictions of all the algorithms for one of the published
CRFs.

There was not much agreement between DualBrothers
and the other two programs on all real recombinants.
Only 38 out of 150 breakpoints identified by DualBr-
others for all 20 recombinants were also identified by
jpHMM. In contrast, 136 out of 146 breakpoints identi-
fied by the ball algorithm were identified by jpHMM.
The median distance between corresponding break-
points was 61 between DualBrothers and jpHMM, com-
pared to 4 between balls and jpHMM. This is not
surprising since the ball algorithm uses the same model
parameters as jpHMM.

The balls found by our ball algorithm often contain
most of the probability mass given the model and the
sequence. Out of the 106 sequences in the single-break-
point dataset, 81 of the balls found by our algorithm
had over 0.5 posterior probability, for r = 5.

Our prototype C++ implementation of ball algorithms
processed the 1000-1000 dataset in about 15.5 hours on
a standard desktop computer. The approximate time to
analyze a sequence (average length 9256) is 23 minutes
with our ball algorithms, which compares well with the
17.5 minutes required to use the simpler Viterbi algo-
rithm, in our prototype. Schultz et al. [7] achieve a sub-
stantial speedup, to 6.7 minutes per sequence, using
their implementation of Viterbi, but we expect that opti-
mizing our methods in this domain will require only
small overhead, compared to their jpHMM-HIV pack-
age. The running time of DualBrothers was about 120
minutes per sequence. While a faster implementation of
DualBrothers exists [14], we were not able to compile it
on our system.

Error analysis

The strikingly lower sensitivity in all experiments on the
500-1500 data set is due to an artifact of the data set
rather than flaws in the algorithms. In 33 sequences from
that data set, some of the true breakpoints were located
after the last consensus column of the multiple sequence
alignment of HIV sequences. The bases in that region are
modelled by an additional insert state emitting letters
according to a background frequency, so the model cannot
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Table 5 Comparison with published breakpoints
Method predicted not predicted extra breakpoints distance
Viterbi 39 33 5 17(4.54)
max ball, r =5 41 31 5 21(6.53)
DualBrothers 22 50 19 65(37.82)

For each algorithm, we report the number of published breakpoints that have been predicted by the algorithm and the number of predicted breakpoints that do
not correspond to any of the published breakpoints, as well as the median distance between published and predicted breakpoints.

distinguish between any two subtypes in that region. Con-
sequently, no algorithm that uses jpHMM will be able to
predict any recombination breakpoints in the unconserved
region at the end of the sequence.

The higher median breakpoint error for ball algorithms
with larger radii is because in many cases, most of the
probability mass is concentrated in a small fragment of the
most probable ball which is located away from the centre.
Moving away from the concentration region might
increase the ball probability by a very small amount, which

causes the algorithm to pick a ball whose centre is rela-
tively far from the region where the breakpoint is likely.
On the other hand, if the ball radius is too small (e.g. r =
2) the algorithm often picks small regions of high prob-
ability and ignores many other likely breakpoint locations,
which causes errors similar to those made by Viterbi.

Conclusions
We have presented two novel algorithms for predicting
recombinations in viral genomes. The ball algorithm
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identifies recombination breakpoints up to a user-
defined accuracy, while the interval region algorithm
attempts to choose the accuracy adaptively based on the
observed uncertainty of breakpoint locations. Both algo-
rithms account for the inherent uncertainty about pre-
cise breakpoint locations. This leads to an improvement
over the Viterbi algorithm for jpHMM in both identify-
ing the correct breakpoints and their approximate loca-
tions. Our algorithms also show improvement on
difficult instances of the problem where distances
between breakpoints are small.

Both algorithms have similar accuracies in our experi-
ments. Contrary to our expectations, the interval region
algorithm does not perform better than the ball algo-
rithm with suitable parameter choices. The interval
region algorithm may still be preferred in situations
where there is a lot of uncertainty about some break-
point positions but little uncertainty about others.

Additional material

Additional file 1: Data sets. This file contains sequences and their
annotations for the single-breakpoint and short interval data sets.
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