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Abstract

Background: Identification of discourse relations, such as causal and contrastive relations, between situations
mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with
discourse relations would be very useful for developing and evaluating methods for biomedical discourse
processing. However, little effort has been made to develop such an annotated resource.

Results: We have developed the Biomedical Discourse Relation Bank (BioDRB), in which we have annotated
explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus.
Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB), which has discourse
relations annotated over open-domain news articles. We introduced new conventions and modifications to the
sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for
identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for
coarse sense classification (accuracy 90.9% and F1 score 0.89). These results are comparable to results obtained
with the same classifier on the PDTB data. With more refined sense classification, there is degradation in
performance (accuracy 69.2% and F1 score 0.28), mainly due to sparsity in the data. The size of the corpus was
found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at
about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB
(accuracy 54.5% and F1 score 0.57).

Conclusion: Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense
disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature,
but more refined sense classification requires either richer features or more annotated data. The poor performance
of a classifier trained in the open domain and tested in the biomedical domain suggests significant differences in
the semantic usage of connectives across these domains, and provides robust evidence for a biomedical
sublanguage for discourse and the need to develop a specialized biomedical discourse annotated corpus. The
results of our cross-domain experiments are consistent with related work on identifying connectives in BioDRB.

Background
Biomedical literature is a rich resource of biomedical
knowledge. The desire to retrieve, organize, and extract
biomedical knowledge from literature and then analyze
the knowledge has boosted research in biomedical text
mining. As described in recent reviews [1-4], the past 10
years have shown significant research developments in
named entity recognition [5-7], relation extraction [8,9],
information retrieval [10,11], hypothesis generation [12],
summarization [13-16], multimedia [17-21], and ques-
tion answering [22,23]. Garzone and Mercer [24,25] and

Mercer and DiMarco [26] have explored how to connect
a citing paper and the work cited. Light et al [27] have
identified the use of speculative language in biomedical
text. Wilbur et al. [28,29] defined five qualitative
dimensions (i.e., focus, polarity, certainty, evidence and
directionality) for categorizing the intention of a sentence.
Looking at larger units of text, Mullen et al. [30] and

Yu et al. [20,31] defined discourse zones of biomedical
text including introduction, method, result, and conclu-
sion, and developed supervised machine-learning
approaches to automatically classify a sentence into the
rhetorical zone category. Biber and Jones [32] adapted
unsupervised TextTiling methods [33] to segment bio-
medical text into different discourse units on the basis
of lexical similarities among the units. “BioContrasts”
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[34] is an information extraction system that extracts
contrastive information between proteins from texts on
the basis of manually curated rules and regular expres-
sions that focus on negation as an expression of con-
trast. Castano et al. [35] built a system for anaphora
resolution in biomedical literature. Szarvas et al [36]
annotated negation, speculation and scope in biomedical
text. Agarwal and Yu [37,38] have investigated the
detection of hedges, negation, and their scopes in bio-
medical literature.
One important output of this research on biomedical

text has been the creation of new annotated resources
specific to the biomedical domain. For example, the
GENIA corpus is a collection of biomedical literature,
annotated with various levels of linguistic and semantic
information, including coreference [39]. The ART cor-
pus [40,41] contains sentence-wise annotations of scien-
tific papers (covering topics in physical chemistry and
biochemistry) with core scientific concepts (e.g. goal,
hypothesis, experiment, method, result, conclusion, moti-
vation, observation). These resources are valuable
because they can be used to evaluate the effectiveness of
text-mining methods developed for the biomedical
domain. They can also be used to evaluate whether
methods developed for the open domain can generalize
to biomedical literature, which then determines whether
new biomedical-specific training data needs to be
created.
To date, there has been little work on processing or

annotating discourse relations in biomedical text. A
discourse is considered to be a coherent sequence of
clauses, sentences or propositions. Discourse relations,
such as causal, temporal, and contrastive relations, are
relations between eventualities and propositions men-
tioned in a text, from which we can draw deep or
complex inferences about the text. Often, discourse
relations are realized in text by explicit words and
phrases, called discourse connectives, but they can also
be implicit.
Many tasks, including question answering and infor-

mation extraction, require one to retrieve and process
information that spans more than a single sentence
while also recognizing discourse relations that exist
between sentences. For instance, in Example (1), queries
related to the “conflicting interactions of MRL631 with
g-secretase” can only be answered accurately once the
contrastive discourse relation, expressed with the con-
nective however, between the two sentences is identified.

(1) Our studies suggest that MRL631 is not able to
access intracellular g-secretase for APP processing
and APP traffoiking. However, it interacts with
g-secretase residing at the cell surface for Notch pro-
cessing. From [42].

Causal and justification relations also constitute a very
important part of the knowledge dealt with in informa-
tion extraction, and are often expressed across sen-
tences: for instance, the connective therefore in Example
(2) signals a justification relation between the first two
sentences, i.e, the fact that “there is the presence of a
major 90-to-100-kDa protein of unknown sequence in
both the rat otoconia and the Xenopus utricular (calci-
tic) otoconia” is the reason for believing that “calcitic
otoconia contain a similar 90-to-100-kDa protein.”

(2) In both the rat otoconia and the Xenopus utricu-
lar (calcitic) otoconia, the presence of a major 90-to
100-kDa protein of unknown sequence has been
reported [3]. Therefore, calcitic otoconia probably
contain a similar 90- to 100-kDa major protein,
regardless of the species. In contrast, the Xenopus
saccular (aragonitic) otoconia contain a major
22-kDa protein (otoconin-22) [5], which is a sPLA2-
related 127-aa glycoprotein with two N-glycosylation
sites. From [43].

Discourse relations can also be useful for categorizing
citations and the relations between citations to enhance
information retrieval: the connective in contrast in
Example (2) signals a contrast relation between two
cited articles, “3” and “5”, mentioned in two different
sentences.
Although the discourse relations in the examples

above are explicitly expressed in the text by a discourse
connective, this is not always the case. Discourse rela-
tions can also be implicit between sentences. In Example
(3), for instance, a causal relation is inferred between the
two sentences, i.e., “the overproduction of numerous
cytokines in the synovial membrane” is inferred as being
the result of “the membrane having an infiltrate of a
variety of inflammatory cells.” However, there is no
explicit connective (e.g., as a result, or so) to express
this relation.

(3) The synovial membrane of rheumatoid arthritis
(RA) is characterized by an infiltrate of a variety of
inflammatory cells, such as lymphocytes, macro-
phages, and dendritic cells, together with prolifera-
tion of synovial fibroblast-like cells. Numerous
cytokines are overproduced in the inflamed joint.

The challenge of processing discourse relations
involves several subtasks, which have been tackled in
the open (non-specialized) domain.

• Identifying discourse connectives. Many of the lexi-
cal items that can function as explicit connectives
also have other non-connective functions [44,45].
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Thus, connectives need to be functionally
disambiguated.
• Identifying the arguments of discourse connectives.
In addition to identifying the connectives themselves,
it is also important to accurately identify the two
situations (called arguments) that the connectives
relate, since they are not necessarily adjacent to each
other [46-50]).
• Identifying the senses (i.e., semantics) of the rela-
tion. While detecting the senses of explicit connec-
tives has met with a good degree of success
[44,51,52], owing to the observation that explicit
connectives are not very ambiguous, implicit rela-
tions, on the other hand, have proved to be much
more challenging [53-58].
• Deriving Composite Discourse Structures. Once the
elementary relation structures (i.e., a relation and its
two arguments) have been identified, the task of
combining these elementary structures into more
complex structures has important ramifications for
tasks such as summarization [59].

The largest effort at annotating discourse relations is
the Penn Discourse Treebank, or the PDTB [49], which
contains annotations of discourse relations on the open-
domain Wall Street Journal corpus [60]. To facilitate
discourse processing research in the biomedical domain,
we have adopted the PDTB framework to annotate dis-
course relations, their arguments, and their senses in
biomedical literature. The corpus we have selected is a
24-article subset of the GENIA corpus [39], which is a
collection of articles from the biomedical literature. It
has been compiled and annotated within the scope of
the GENIA project, and the 24 articles (with a total of
approx. 112000 word tokens and approx. 5000 sen-
tences) that form our Biomedical Discourse Relation
Bank (BioDRB) have also been annotated for corefer-
ence relations and citation relations [61].
In this article, we describe our work towards the crea-

tion of the BioDRB. We show that the PDTB framework
can be successfully adapted to the biomedical domain,
and that discourse relations can be reliably annotated.
We present classification experiments for sense disambi-
guation of explicit connectives, showing that the
BioDRB sense classifier performs as well as the PDTB
classifier. We also present experiments to show that the
current size of the BioDRB corpus may be sufficient for
this task. Finally, we explored whether NLP methods
developed using the PDTB can be generalized to the
biomedical domain. For the same task of explicit con-
nective sense detection, we show that a classifier trained
on the PDTB performs poorly on BioDRB. These results
highlight the discourse-level differences between the
open domain and the biomedical domain, and support

the need for developing a specialized corpus of biomedi-
cal texts annotated with discourse relations. The results
of our cross-domain experiments are consistent with
our related work on identifying connectives in the
BioDRB [45].

Methods
For annotating discourse relations in biomedical litera-
ture, we adapted the annotation framework of the
Penn Discourse TreeBank (PDTB) [49]. The PDTB
http://www.seas.upenn.edu/~pdtb annotates the argu-
ment structure, semantics, and attribution of discourse
relations and their arguments over the 1 million word
Wall Street Journal portion of the Penn Treebank [60].
It follows a lexically-grounded approach to discourse
structure [62,63]. A discourse relation is defined as a
strictly binary, informational relation between abstract
objects (AOs) mentioned in a text, such as events,
states, and propositions [64]. By convention, the two
AO arguments are called Arg1 and Arg2, with Arg2 as
the argument syntactically bound to the connective,
and Arg1 as the other argument. Discourse connectives
are words or phrases used to express discourse rela-
tions in text, and in the PDTB, they are drawn from
three well-defined syntactic classes: subordinating con-
junctions (e.g., because, when, since, although), coordi-
nating conjunctions (e.g., but, or, nor) and adverbials
(e.g., however, otherwise, then, as a result, for example).
Example (4) shows the causal connective because and
its two arguments. (Throughout this paper, phrases
expressing discourse relations are underlined, Arg1
appears in italics, Arg2 appears in boldface, and the
sense is provided in parentheses at the end of the
example.) Also annotated in the PDTB are implicit dis-
course relations between adjacent sentences, for which
annotation involves insertion of a connective that best
expresses the relation, and other explicit expressions
(called alternative lexicalizations) of relations that do
not belong to the pre-defined syntactic classes. For
sense classification, a three-tier hierarchical scheme
was developed for the PDTB, from which one or more
labels are selected for each relation. Attribution, which
is also annotated in the PDTB, is not handled currently
in BioDRB.

(4) She hasn’t played any music since the earthquake
hit. (Temporal:Succession)

PDTB contains 100 distinct types of discourse connec-
tives. Of the total 40,600 tokens in the corpus, 19053 are
realized by explicit expressions, either connectives or
alternative lexicalizations. Over the years, the PDTB
research group has developed an effective set of dis-
course annotation tools, guidelines, work flows, and
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validation methodologies that we have used as a basis
for our work.
The PTDB annotation framework has several impor-

tant advantages over alternative approaches. First, the
framework focuses on identifying individual relations
and their arguments, which are important for text
mining, while remaining neutral on the higher-level dis-
course organization. This is important because there is
little agreement among researchers on the specification
of the most descriptively adequate data structure for
representing discourse [65]. The structures proposed so
far range from tree structures (e.g., Rhetorical Structure
Theory (RST) [66], Linguistic Discourse Model (LDM)
[67], and RST-based binary trees [68] to more complex
forms that incorporate multiple inheritance (D-LTAG
[63] and Segmented Discourse Representation Theory
(SDRT) [69]), to full-fledged graphs (Discourse Graph-
bank [70]). The PDTB is, therefore, a particularly attrac-
tive framework since it aims to remain neutral with
respect to higher-level discourse organization, and
instead focuses on annotating the more local discourse
relations. Higher-level structures in this approach are
left to “emerge” from the annotations of low-level rela-
tions. Some recent investigations on the combinatorial
possibilities of discourse relations in the PDTB suggests
that directed acyclic graphs (DAGs), and not trees, may
be the most appropriate structural representation for
discourse [71,72].
Second, discourse relations in the PDTB are lexically

anchored, for both explicit and implicit connectives. In
the latter case, annotators “insert” a connective expres-
sion to express the implicit relation, and then proceed
to annotate the sense of the inserted connective. Such a
lexically-grounded approach substantially increases the
inter-annotator agreement [73], as confirmed in our
pilot annotation study [74,75].
Finally, since its release, the PDTB has been success-

fully used by many researchers for both linguistic and
computational studies
[44,46-48,50-52,54-57,71,72,76-84], which shows that
there is much to be gained from adopting this approach.
The PDTB framework has also been adopted for dis-
course annotation in other languages (e.g., Turkish [85],
Hindi [86,87], Chinese [88], Czech [89] and Italian [90])
as well as other domains such as conversational dialo-
gues [90].

Results and Discussion
Biomedical Discourse Relation Bank: BioDRB
In the BioDRB, we have annotated all explicit and impli-
cit discourse relations, the arguments of discourse rela-
tions, and the senses of discourse relations. In keeping
with the theory-neutral approach of PDTB, we annotate
only individual relations and do not attempt to show

dependencies across relations. We have adapted the
PDTB guidelines to better incorporate discourse-level
features specific to biomedical texts. Here we present
some salient aspects of the BioDRB annotation
guidelines. Further details are provided in the complete
documentation of the guidelines [91], available from
http://spring.ims.uwm.edu/uploads/biodrb_guidelines.pdf
Discourse Relations and their Realization
Discourse relations in the BioDRB are first broadly clas-
sified in terms of their manner of realization. There are
four types of relations:

(a) Relations realized by Explicit discourse
connectives,
(b) Implicit relations,
(c) Relations realized by alternatively lexicalized
expressions (AltLex),
(d) Absence of a discourse relation, or No Relation
(NoRel).

Explicit Discourse Connectives are closed-class lexi-
cal items drawn from four well-defined syntactic classes:
subordinating conjunctions (Example 5), coordinating
conjunctions (Example 6), discourse adverbials (Example
7), and subordinators (Example 8). The syntactic classes
themselves are not provided as part of the annotation,
but were rather used to train the annotators to identify
connectives. Arguments of explicit connectives can be
identified within the same sentence as the connective,
i.e., intra-sententially (Example 5,6,8) or in different sen-
tences, i.e., inter-sententially (Example 7).

(5) Because RA PBMC include several cell types in
addition to T cells, some inflammatory cytokines
released from macrophages and other lymphocytes
might have affected the production of IL-17 from
T cells. (Cause:Reason)
(6) IL-17 was also detected in the PBMC of patients
with osteoarthritis, but their expression levels were
much lower than those of RA PBMC. (Concession:
Contra-expectation)
(7) IL-17 production by activated RA PBMC is
completely or partly blocked in the presence of the
NF-�B inhibitor pyrrolidine dithiocarbamate and the
PI3K/Akt inhibitor wortmannin and LY294002,
respectively. However, inhibition of activator pro-
tein-1 and extracellular signal-regulated kinase
1/2 did not affect IL-17 production. (Contrast)
(8) Recent observations demonstrated that IL-17 can
also activate osteoclastic bone resorption by the
induction of RANKL (receptor activator of
nuclear factor �B [NF-�B] ligand), which is
involved in bony erosion in RA [7]. (Purpose:
Enablement)
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Annotation of an explicit connective proceeds by first
identifying and marking the connective text span, then
identifying and annotating the text spans associated with
its two arguments, and finally, labeling the sense of the
relation. Thus, for Example (5), the following informa-
tion is annotated:

• Relation type: Explicit
• Connective span: “Because”
• Arg1 span: “some inflammatory cytokines released
from macrophages and other lymphocytes might
have affected the production of IL-17 from T cells”
• Arg2 span: “RA PBMC include several cell types in
addition to T cells”
• Sense: Cause:Reason

An important task in annotating explicit connectives
involves determining whether or not the lexical item in
question expresses a discourse relation, i.e., a relation
between two abstract objects. Several lexical items that
function as discourse connectives have other non-
connective functions as well. For instance, also as a dis-
course connective is used to express the presence of two
AO items in a list, as in Example (9). However, also can
sometimes be used in a non-list sense, when it is used
to imply that something has been “presupposed” [92], as
in Example (10).

(9) These data show that ITK is required for IL-2
production induced by SEB in vivo, and may regulate
signals leading IL-2 production, in part by regulating
phosphorylation of c-jun. The data also suggest that
perturbing T cell activation pathways leading to
IL-2 does not necessarily lead to improved
responses to SEB toxicity. (Conjunction)
(10) To determine whether CD123+ cells in synovial
tissue were also nuclear RelB+, formalin-fixed tissue
was double-stained for RelB and CD123 without
hematoxylin counterstaining.

Implicit Relations are annotated inter-sententially
between sentences not related by an explicit connective,
and only within paragraphs. If a discourse relation is
inferred between the sentences, the annotator must
insert a connective that best expresses the inferred
relation, then mark the arguments, and finally, assign a
sense to the relation. Example (11) shows that the anno-
tator perceived Arg2 as standing in contrast with Arg1,
that there is no explicit connective to relate these two
arguments, and that the annotator inserted on the other
hand as the connective to express the inferred relation.

(11) Expression of the brca1 mutant in a p21-null
background caused little rescue of the cells in the

thymus, but provided a recovery in the lymph nodes
that was equivalent to that produced in the p53-null
background. Implicit = On the other hand
Introduction of the brca1 gene in cells carrying
an antiapoptotic Bcl2 transgene induced signifi-
cant rescue of cells in the thymus, but produced
little recovery of cells in peripheral (lymph node)
compartments. (Contrast)

For implicit relations, it is crucial that the annotator
does not perceive any “redundancy” in the expression of
the relation after inserting the connective. A redundancy
effect would instead lead to the annotation of the AltLex
relation type, discussed next.
Alternative Lexicalizations (AltLex) of relations are

also annotated inter-sententially. They are identified
when a discourse relation is inferred between sentences
not related by an explicit connective, but insertion of a
connective to express the implicit relation leads to
“redundancy” in the expression of the relation. What
such redundancy means is that the relation has in fact
been lexicalized, but with an expression that cannot be
syntactically classified as an explicit connective. For
instance, in Example (12), the situation described by
Arg2 is implicitly perceived to be a result of the situa-
tion in Arg1, but insertion of an implicit connective
such as as a result clearly creates a redundancy. In such
cases, the annotator must look for and annotate the
“AltLex” expression. In this example, the AltLex is
identified with the subject-verb sequence These results
suggest. In the annotation, AltLex spans are always fully
contained within Arg2 spans. In Example (12), for
instance, the underlined AltLex span is also in boldface,
showing that it is contained in the Arg2 span.

(12) As shown in Figure 3a,3b, the intensity of
IL-10R1 expression on CD4+ T cells was signicantly
increased in RA patients compared with in healthy
controls.
These results suggest that the intracellular signal
transduction pathway of IL-10 may be impaired
in CD4+ T cells of active RA. (Cause:Claim)

Syntactically, AltLex expressions are open class lexical
items that cannot be defined as explicit connectives
[81]. In particular, while explicit connective expressions
are fixed, or lexically invariant, AltLex expressions result
from a more productive and compositional process.
They often appear as subject-verb sequences (Example
12), although other syntactic patterns are found as well,
such as prepositional phrases and verb phrases. Semanti-
cally, they are typically composed of two elements - one
that denotes the relation, and the other that refers
anaphorically to Arg1. In Example (12), the verb suggest
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denotes the relation, whereas the subject These results
refers anaphorically to Arg1.
No Relation (NoRel) is the type assigned when a

sentence does not appear to relate to any other sentence
in the prior text. NoRel is annotated in only two specific
cases. The first kind of NoRel is annotated within the
“Abstract” section of the articles, some of which are par-
titioned into “Background”, “Case Presentation”,
“Results”, “Conclusion”, etc. These “Abstract” sections
are not separated by any paragraph boundary, but we
treat them as such, and indicate these boundaries
with the NoRel label. Example (13) illustrates one such
NoRel annotation from the “Abstract” section of an
article.

(13) Background: CC Chemokine Receptor 3
(CCR3), the major chemokine receptor expressed on
eosinophils, binds promiscuously to several ligands
including eotaxins 1, 2, and 3. (...) It is therefore
important to elucidate the molecular mechanisms
regulating receptor expression. Implicit = NoRel
Results: In order to define regions responsible for
CCR3 transcription, a DNAse hypersensitive site
was identified in the vicinity of exon 1.

The second kind of NoRel was annotated for typologi-
cal errors that led, for example, to some sentences being
duplicated in the article. Since we didn’t want to admit
a non-semantic repetition relation, these were annotated
as NoRel. Such cases are rare in the corpus.
For NoRel, Arg1 and Arg2 are, by convention, the

immediately adjacent and complete sentences.
Arguments of Discourse Relations
The smallest syntactic unit for the realization of an AO
argument of a discourse relation is a clause, tensed or
non-tensed. Verb phrases can also be legal arguments
when the connectives are not verb phrase conjunctions
themselves. In addition, because we take discourse rela-
tions to hold between AOs, nominalizations are allowed
(Example 14) as arguments, since they can denote
events.

(14) She was originally considered to be at high risk
due to the familial occurrence of breast and other
types of cancer, (Cause:Reason)

There are no syntactic constraints on how many
clauses or sentences an argument can contain. Semanti-
cally, however, arguments are required to be minimal in
that “only as much should be selected as an argument
as is necessary for interpreting the relation”. Example
(15) shows Arg1 as well as Arg2 spanning over multiple
sentences for the AltLex generalization relation. How-
ever, for both Arg1 and Arg2, all the included sentences

are necessary and sufficient because for the generaliza-
tion relation in question, the specific details as well as
the generalization of the details are distributed across
exactly these multiple sentences.

(15) We show here that mice lacking ITK have much
reduced IL-2 production and T cell expansion in
response to SEB in vitro and in vivo. We also show
that SEB induced the activation of the JNK MAPK
pathway in responding T cells in vivo, and that ITK
null T cells were defective in the activation of this
pathway in vivo. However, toxicity analysis indicated
that both WT and ITK null animals were similarly
affected by SEB exposure. Our data suggest that
ITK is required for full IL-2 secretion following
SEB exposure, and that this may be due to the
regulation of the JNK pathway by ITK in vivo.
However, reducing T cell signals does not neces-
sarily lead to better physiological responses to
SEB exposure. (Restatement:Generalization)

Finally, except for NoRel, there are also no constraints
on how far away a relation’s Arg1 and Arg2 arguments
can be from each other. That is, they need not be
adjacent. Example (16) shows Arg1 and Arg2 in non-
adjacent sentences for the explicit connective However.
Unlike PDTB, where arguments of implicit relations are
required to be adjacent, implicit relations in BioDRB
can have non-adjacent arguments.

(16) The studies concerning the functional interac-
tion between the NF-�B pathway and members of
the steroid hormone receptor family, and their role
in synovial inflammation, have advanced signifi-
cantly, although with controversial results [10,11]. In
particular, after binding with E2, oestrogen receptors
have been shown to interact with NF-�B factors, via
transcriptional co-factors, resulting in mutual or
non-mutual antagonism. Other studies hypothesize
that, since oestrogen receptors may repress both
constitutive and inducible NF-�B, the overexpression
of NF-�B-inducible genes in oestrogen receptor-
negative cells might contribute to malignant cell
growth and chemotherapeutic resistance [12,13]. On
the contrary, further studies report that E2 blocks
the transcriptional activity of p65 in macrophages
[14]. However, these opposite observations arise
using different cell lines (human/animals) and
culture conditions as well as different hormone
concentrations [15]. ...

Senses of Discourse Relations
All explicit, implicit and AltLex relations are annotated
with sense labels that indicate their semantics. Senses
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are organized in two tiers, with the second subtype tier
specifying further refinements to the sense type in the
top tier. The complete BioDRB sense classification is
shown in Table 1.
For any relation, the sense annotation consists of

selecting a sense subtype label whenever subtypes are
available for a type. Thus, for the “Cause” sense, the
annotator is required to select one of its four subtypes,
i.e., the type level label cannot be chosen. Type-level
labels can only be selected when the sense does not
have any subtypes available, for example “Contrast”.
Refinements at the subtype level are of two kinds. One
kind specifies refinements of the semantics, while the
other kind specifies the directionality of the arguments.
Thus, for example, the three subtypes of the “Condition”
sense type specify in more detail the nature of the con-
ditional dependence between Arg1 (antecedent) and
Arg2 (consequence), by indicating whether the antece-
dent describes a hypothetical situation ("Hypothetical”),
an assumed fact ("Factual”), or a non-fact ("Non-
Factual”). On the other hand, the two subtypes of the
“Concession” sense (in which one argument creates an
expectation denied by the other argument) indicate the
directionality of the concession: In the “Contra-
expectation” subtype, Arg1 raises the expectation that
Arg2 denies, while in the “Expectation” subtype, Arg2
raises the expectation that Arg1 denies.

With some connectives, more than one sense can be
inferred. Annotators are allowed to assign upto two
senses to a connective. In Example (17), for instance,
two senses are annotated for the connective as:
“Temporal:Synchronous” and “Cause:Justification”.

(17) Tumors detected by this new technology could
have unique etiologies and/or presentations, and
may represent an increasing proportion of clinical
practice as new screening methods are validated
and applied. (Temporal:Synchronous/Cause:
Justification)

The BioDRB sense classification was adapted from the
PDTB sense classification [93]. Below, we first define
the BioDRB senses, and then discuss the major differ-
ences with PDTB.
Cause The sense type “Cause” is used when the two
arguments of the relation are related causally and are
not in a conditional relation. There are four subtypes
for this sense. “Reason” and “Result” hold when the
situation described in one of the arguments is the cause
of the situation described in the other argument. They
differ from each other only in the directionality of the
causality. “Reason” is used when Arg2 is the cause and
Arg1 the effect, while “Result” is used when Arg1 is the
cause and Arg2 the effect. The other two subtypes,
“Claim” and “Justification”, hold when the situation
described by one of the arguments is the cause, not for
the situation described by the other argument, but
rather for the truth or validity of the proposition
described by the argument. The difference between the
two is again in directionality, with “Claim” used when
Arg1 presents the evidence for the truth of Arg2, and
“Justification” used when Arg2 presents the evidence for
the truth of Arg1.
Condition The sense type “Condition” is used to
describe all subtypes of conditional relations. There are
three subtypes. The subtype “Hypothetical” holds when
if Arg2 holds true, Arg1 is caused to hold at some
instant in all possible futures. However, Arg1 can be
true in the future independently of Arg2. The subtype
“Factual” is a special case of the subtype “Hypothetical”,
and applies when Arg2 is a situation that has either
been presented as a fact in the prior discourse or is
believed by somebody other than the speaker/writer.
The subtype “NonFactual” applies when Arg2 describes
a condition that either does not hold at present or did
not hold in the past. Arg1 then describes what would
also hold if Arg2 were true. (There were no occurrences
of the Non-Factual conditionals in the corpus.)
Purpose The sense type “Purpose” is used when one
argument presents a situation and the other argument
presents an action, and the engagement of the action

Table 1 BioDRB sense classification for
discourse relations

Type Subtype Type Subtype

CAUSE Reason CONDITION Hypothetical

Result Factual

Claim Non-Factual

Justification

PURPOSE Goal TEMPORAL Synchronous

Enablement Precedence

Succession

CONCESSION Contra-
Expectation

ALTERNATIVE Chosen-
Alternative

Expectation Conjunctive

Disjunctive

CONTRAST INSTATIATION

CONJUNCTION EXCEPTION

SIMILARITY CONTINUATION

CIRCUMSTANCE Forward-
Circumstance

BACKGROUND Forward-
Background

Backward-
Circumstance

Backward-
Background

RESTATEMENT Equivalence REINFORCEMENT

Generalization

Specification
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enables the situation to occur. The two subtypes “Goal”
and “Enablement” capture difference in directionality:
“Goal” applies when Arg1 presents an action that
enables the situation in Arg2 to obtain, whereas
“Enablement” applies when Arg2 presents an action that
enables the situation in Arg1 to obtain.
Temporal The sense type “Temporal” is used when the
events described in the arguments are related tempo-
rally. There are three subtypes, which reflect the order-
ing of the arguments. “Precedence” is used when the
Arg1 event precedes the Arg2 event; “Succession”
applies when the Arg1 event follows the Arg2 event;
and “Synchronous” applies when the Arg1 and Arg2
events overlap.
Concession The sense type “Concession” applies when
one of the arguments describes a situation A that
creates an expectation for a situation C, while the other
asserts (or implies) ¬C. Two “Concession” subtypes cap-
ture a difference in the roles of the arguments. “Expec-
tation” is used when Arg2 creates an expectation that
Arg1 denies, while “Contra-Expectation” is used when
Arg1 creates an expectation that Arg2 denies.
Contrast The sense type “Contrast” is used when the
values for some shared property in Arg1 and Arg2 are
in opposition to each other. These oppositions need not
be at opposite ends of a graded scale and can be con-
text-dependent. There are no subtypes for this sense.
Similarity The sense type “Similarity” is like “Contrast”
in that it involves the comparison of the values for some
shared property of Arg1 and Arg2. The compared values
in this case are similar to each other (and not in
opposition).
Alternative The sense type “Alternative” is used when
the two arguments denote alternative situations. There
are three subtypes. The “Conjunctive” subtype is used
when both alternatives hold or are possible. The “Dis-
junctive” subtype is used when two situations are evoked
in the discourse but only one of them holds. The “Cho-
sen Alternative” subtype is used when multiple alterna-
tives are evoked in the discourse, and one argument
asserts that one of the alternatives was chosen.
Instantiation The sense type “Instantiation” is used
when Arg1 evokes a set and Arg2 instantiates one or
more elements of the set. What is evoked may be a set
of events, a set of reasons, or a generic set of events,
behaviors, attitudes, etc. There are no subtypes for this
sense.
Restatement The sense type “Restatement” is used when
the situation described by Arg2 restates the situation
described by Arg1. The three subtypes “Specification”,
“Generalization”, and “Equivalence” further specify the
ways in which Arg2 restates Arg1. “Specification” applies
when Arg2 describes the situation described in Arg1 in
more detail. “Generalization” applies when Arg2

summarizes Arg1, or in some cases expresses a
conclusion based on Arg1. “Equivalence” applies when
Arg1 and Arg2 describe the same situation from differ-
ent perspectives. (There are no occurrences of the
“Equivalence” sense in the corpus.)
Conjunction The sense type “Conjunction” is used
when Arg1 and Arg2 are members of a list, defined in
the prior discourse, explicitly or implicitly. No subtypes
are defined for this sense.
Exception The sense type “Exception” applies when
Arg2 specifies an exception to the generalization
specified by Arg1. In other words, Arg1 is false because
Arg2 is true, but if Arg2 were false, Arg1 would be true.
No subtypes are defined for this sense.
Reinforcement The sense type “Reinforcement” is used
when Arg2 is provided as fact to support claims or
effects associated with Arg1. No subtypes are defined
for this sense.
Continuation The sense type “Continuation” applies
when Arg1 expands the discourse by identifying an
entity (concrete or abstract) in Arg1 and saying
something about it. Crucially, for this relation, it must be
the case that no other discourse relation holds. “Conti-
nuation” occurs frequently as an implicit relation, but it
can also be associated with the explicit connective and.
Circumstance The sense type “Circumstance” is used
when one argument provides the circumstances under
which the situation in the other argument was obtained.
No causal relation is implied here. In BioDRB, this rela-
tion was introduced specifically to capture the circum-
stantial relation between an experimental set-up and the
observations and results obtained from the experiments.
Two subtypes capture difference in directionality. In
“Backward Circumstance”, Arg1 describes the circum-
stance and Arg2 describes the resulting situation. In
“Forward Circumstance”, Arg2 describes the circum-
stance and Arg1 describes the resulting situation.
Background The sense type “Background” is used when
one argument provides information that is deemed
necessary or desirable for interpreting the other argu-
ment. Two subtypes capture difference in directionality.
In “Backward Background” Arg1 provides the back-
ground information for Arg2, while in “Forward Back-
ground”, Arg2 provides the background information for
Arg1. No further subtypes are specified for this sense.
The BioDRB sense classification reflects the following

changes from the PDTB classification:

• First, in the PDTB, the sense classification consists
of three tiers, with four sense classes at the top tier.
Three of the four class-level senses in the PDTB
(namely, “Contingency”, “Temporal”, “Comparison”,
and “Expansion”) are eliminated as we felt they were
too broadly-defined to be useful. The only class-level
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sense we retained is “Temporal”, but this has been
reassigned as a type-level sense in the two-level
BioDRB hierarchy.
• Second, we have collapsed some of the subtype-
level senses. For the “Condition” sense type, for
example, we do not maintain the PDTB distinction
between the subtypes “Present-Factual” and “Past-
Factual”, and label both as “Factual”. A similar
reduction is done for “Non-Factual”.
• Third, we have introduced some new senses,
namely “Purpose”, “Similarity”, “Continuation”,
“Background”, “Reinforcement”. “Continuation” and
“Background” are reformulations of the PDTB
EntRel (Entity Relation) relation type, whereas “Pur-
pose”, “Similarity”, and “Reinforcement” are senses
that we believe were confounded with other senses
in PDTB. For example, “Purpose” relations were
annotated as “Result”, “Similarity” relations were
annotated as “Conjunction”, and “Reinforcement”
relations were annotated as either “Conjunction” or
“Restatement”.
• Finally, we have eliminated the separate type-level
representation of pragmatic senses and have instead
listed them as subtypes. These apply to the current
subtypes for “Cause”, namely “Claim” and “Justifica-
tion”. We did not find instances of the other prag-
matic senses listed in PDTB.

Even though the PDTB class-level senses are not used
in BioDRB, it is still possible to reconstruct the PDTB
sense classes from the BioDRB sense types. This may be
important for comparing the performance of NLP meth-
ods across the two domains, as we have needed to do
for our own experiments on sense disambiguation
below. Table 2 provides the reconstructed generalization
of the BioDRB sense types into the four sense classes of
PDTB.

Summary of BioDRB Annotations
The BioDRB corpus is available through the GENIA
corpus release site http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/. BioDRB contains a total of 5859 relation

tokens for the four different relation types: Explicit,
Implicit, AltLex and NoRel. Table 3 shows the relation
type distribution in the corpus. Token counts are given
in the second column, and the unique (expression) types
are shown in the third column. In counting the unique
types for explicit connectives, we did not treat modified
and unmodified connective expressions as the same
type. Thus, for example, the connectives after and one
day after were treated as distinct types. For implicit rela-
tions, we counted the connectives that were inserted by
the annotators.
Table 4 shows the sense distributions across the dif-

ferent relation types. Since explicit connectives and
AltLex expressions can have multiple senses, we have
listed multiple sense occurrences separately, to illustrate
the extent of this kind of ambiguity. Note that for impli-
cit relations, multiple senses are not permitted.
In a given context, explicit connectives can have mul-

tiple sense interpretations, as shown in Table 4. How-
ever, a given connective can have different sense
interpretations in different contexts as well. The extent
of contextual ambiguity is shown in Table 5. For con-
nectives with multiple senses, only the first sense pro-
vided in the annotation is used here. There are a total
of 27 connectives types (column 1) exhibiting sense
ambiguity to varying degrees.
Column 2 provides the number and names of different

senses associated with the connectives, while column 3
provides the total number of tokens for the connective.
The total number of tokens for all these ambiguous
connectives is 1328, which constitutes 50.4% (1328/
2636) of the total number of explicit connective tokens.

Annotation Task Procedure
For the task of annotating discourse relations, each
annotator was given an article and instructed to read
the article from beginning to end while marking up
relations. No pre-defined lists of connectives were pro-
vided to annotators, although the connective list from
PDTB was provided as an example of what to look for.
Annotators were strongly encouraged to identify
additional connectives when they were observed. At a
high-level, the annotation procedure is encapsulated as
follows:

Table 2 Grouping of BioDRB sense types into PDTB
generalized classes

BioDRB Type-level Senses PDTB Class-level
Sense

Concession, Contrast Comparison

Cause, Condition, Purpose Contingency

Temporal Temporal

Alternative, Background, Circumstance,
Conjunction, Continuation, Exception, Instantiation,
Reinforcement, Restatement, Similarity

Expansion

Table 3 BioDRB distribution of relation types

Relation Type No. of Tokens (%) Types

Explicit 2636 (45%) 179

Implicit 3001 (51.2%) 57

Altlex 193 (3.3%) 165

NoRel 29 (0.5%) -

TOTAL 5859 -
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For every new sentence encountered while reading the
text:

1. First determine if there is an explicit connective
that relates the sentence to the prior context via a
discourse relation. If so, mark this explicit connec-
tive, its arguments, and its sense(s). Label the rela-
tion type as Explicit.
2. If there is no explicit connective present to relate
the sentence with the prior context, try to insert an
implicit connective to express the inferred implicit
relation, annotate its sense, and mark its arguments.

In case the inferred relation is one of the senses of
“Continuation”, “Background”, or “Circumstance”, no
connective can be inserted, so use the dummy label
“NONE” in place of an implicit connective. Label
the relation type as Implicit.
3. If insertion of an implicit connective leads to
redundancy in the expression of the relation, identify
and mark the AltLex expression that expresses the
relation, annotate its sense, and mark its arguments.
Label the relation type as AltLex.
4. If the sentence does not seem to relate coherently
to any sentence in the prior text, label the relation
type as NoRel, mark the current sentence as Arg2
and the previous sentence as Arg1.
5. After annotating the relation of the sentence with
the previous context, identify and annotate any
sentence-internal explicit connectives that have both
their arguments in the same sentence.

Limitations
While we believe that the scope of discourse relations
captured in BioDRB is larger than that of the framework
from which it was adapted, there are two types of
relations that are currently not handled. We describe
these below. The main reason for their exclusion is the
challenge associated with their annotation. We plan to
address these challenges in future extensions to the
corpus.
First, we have not annotated implicit or AltLex rela-

tions between events and situations mentioned within a
single sentence. For example, in the sentence “In parti-
cular, after binding with E2, oestrogen receptors have
been shown to interact with NF-�B factors, via tran-
scriptional co-factors, resulting in mutual or non-mutual
antagonism.”, an Altlex “Result” relation can be inferred
between the “interaction of oestrogen receptors with
NF-�B factors” and “mutual or non-mutual antagon-
ism”, anchored in the verb resulting. Such relations were
excluded because it is challenging to identify the clausal
boundary “sites” where they are inferred. Although the
syntactic parse of a sentence can be used for this pur-
pose, we did not have a sufficiently accurate sentence
parser for our texts.
Second, coordinating conjunctions (e.g., and, or) that

conjoin verb phrases in a sentence can potentially indi-
cate discourse relations between two situations. What’s
more, the conjunction and can often express more than
the sense of “Conjunction”, including at least the “Tem-
poral” and “Result” senses. For example, the cojunction
and in the sentence “Thus SEB can interact directly
with MHC class II molecules on APCs and activate T
cells bearing the proper TcR Vb chains.” can be taken
to express a conjunction of two independent situations,

Table 4 Distribution of senses in BioDRB.

Sense Explicit Implicit AltLex TOTAL

Alternative 31 3 3 37

Background - 132 1 133

Cause 339 98 105 542

Circumstance 8 221 1 230

Concession 257 70 2 329

Condition 22 - - 22

Conjunction 421 641 3 1065

Continuation 24 831 - 855

Contrast 205 75 2 282

Exception 7 2 - 9

Instantiation 21 53 14 88

Purpose 616 - 1 617

Reinforcement 22 60 19 101

Restatement 69 445 19 533

Similarity 5 - - 5

Temporal 394 370 16 780

Cause/Background 8 - - 8

Cause/Conjunction 5 - - 5

Cause/Reinforcement - - 1 1

Cause/Temporal 6 - 3 9

Concession/Background 2 - - 2

Concession/Circumstance 1 - - 1

Condition/Circumstance 2 - - 2

Condition/Temporal 5 - - 5

Conjunction/Temporal 70 - 1 71

Continuation/Reinforcement 1 - - 1

Contrast/Background - - 1 1

Contrast/Concession 1 - - 1

Purpose/Conjunction 1 - - 1

Reinforcement/Conjunction - - 1 1

Temporal/Circumstance 92 - - 92

Temporal/Continuation 1 - - 1

TOTAL 2636 3001 193 5830

Multiple senses provided for connectives are shown separately.
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namely “SEB interacting with MHC class II molecules
on APCs” and “SEB activating T cells bearing the proper
TcR Vb chains”. In addition, either a causal, temporal or
enablement relation might be inferred here. While such
conjunctions appear often in the BioDRB, we decided to
exclude them because it is difficult to distinguish them
from conjunctions that don’t have a discourse function.

Evaluation of Annotation Reliability
Each article was annotated by two annotators who were
premed students at the University of Pennsylvania. The
domain expertise of the annotators is crucial for allow-
ing them to identify the correct sense of discourse con-
nectives and to identify the existence of implicit
relations. The annotators were extensively trained (by
the first author) with regard to knowledge of linguistic
syntax, semantics, and discourse, following which they
were given a tutorial on the biomedical discourse anno-
tation guidelines. The annotation was carried out over a

period of three years, with annotators annotating at an
average speed of 7 minutes per relation.
We computed agreement for connective identification,

argument identification and sense labeling. Explicit and
AltLex relations were treated separately from implicit
relations.
For agreement on the identification of explicit connec-

tives and AltLex expressions, we calculated the percen-
tage of overlapping tokens identified by the annotators,
since one annotator could have selected some connec-
tives or AltLex’s that the other did not. For example, if
one annotator identified 20 connectives and the other
identified 30 connectives, this could mean that there
were 15 tokens that were common to both, and that
there were 35 tokens some of which were identified by
one annotator while the others were identified by the
other annotator. The agreement was then reported as
the percentage of common over common and uncom-
mon tokens (i.e., 43% (15/35) for the artificial case

Table 5 Contextual ambiguity of explicit connectives

Connective Type Senses Tokens

accordingly 2: Cause, Conjunction 2

although 2: Concession, Contrast 76

and 6: Cause, Concession, Conjunction, Continuation, Purpose, Temporal 274

as 3: Cause, Purpose, Temporal 23

both upon 2: Circumstance, Temporal 2

but 2: Concession, Contrast 42

by 3: Cause, Purpose, Temporal 262

nally 2: Conjunction, Temporal 21

however 2: Concession, Contrast 117

in part by 2: Cause, Purpose 3

in particular 2: Instantiation, Restatement 4

in response to 3: Cause, Circumstance, Temporal 12

in turn 3: Cause, Conjunction, Temporal 6

in 2: Circumstance, Purpose 3

indeed 2: Circumstance, Reinforcement 15

on the other hand 2: Concession, Contrast 6

once 2: Circumstance, Temporal 7

second 2: Conjunction, Temporal 3

since 2: Cause, Temporal 52

so 2: Cause, Restatement 7

then 2: Restatement, Temporal 91

therefore 2: Cause, Restatement 75

thus 2: Cause, Restatement 77

upon 2: Cirsumstance, Temporal 15

when 3: Circumstance, Condition, Temporal 65

while 4: Concession, Conjunction, Contrast, Temporal 64

whilst 2: Concession, Contrast 4

Total - 1328
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illustrated above). We achieved 82% agreement. The
major sources of mismatch were subordinators, which
are harder to identify than conjunctions and adverbials,
and AltLex’s.
For agreement on argument spans, we used both the

exact match criterion as well as the more relaxed partial
match criterion [73]. With the exact match criterion,
annotators are taken to agree on an argument only
when their respective selections are identical or fully
overlapping, whereas the partial match criterion allows
agreement even in the case of partial overlap. Argument
agreement was computed only on the connectives where
the annotators agreed. For Explicit and AltLex relations,
we achieved an exact match of 88% and 81% on Arg2
and Arg1, respectively. This difference is understand-
able, since Arg1s are generally harder to identify than
Arg2s. With partial match, we achieved an agreement of
93% and 86% for Arg2 and Arg1, respectively. Agree-
ment on implicit relations was lower, at 88% and 75%
for Arg2 and Arg1, respectively. The most likely reason
for lower agreement for implicits is that non-adjacent
arguments were allowed in the BioDRB, which makes
the task of identifying the arguments harder.
Since sense guidelines allow an annotator to select

multiple senses for a given connective, we took annota-
tors to agree on sense labeling if at least one sense for a
connective was the same across both annotators.
Furthermore, since the sense labeling task involved clas-
sifying a given set of connectives into multiple nominal
categories, namely 31 sense categories in total (see
Table 1), we report the agreement by computing the
kappa score. For explicit and AltLex relations, the kappa
score was 0.71, with the observed agreement at 0.85 and
the expected agreement at 0.48. For implicit relations,
the kappa score was 0.63, with the observed agreement
at 0.82 and the expected agreement at 0.52. The kappa
scores for both explicit and implicit relations are there-
fore in the range generally accepted as substantial
agreement.
Following the double-blind annotation and agreement

calculations, the disagreements were adjudicated by an
expert. We also made further reviews of the corpus to
correct for any remaining guideline-related errors.

BioDRB Data, Tools and Representation
Data
The source corpus over which the BioDRB has been
annotated consists of 24 full-text articles from the
GENIA corpus [39]. The GENIA corpus is a collection
of articles from the biomedical literature. It has been
compiled and annotated within the scope of the GENIA
project http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/.
The 24 GENIA articles were selected by the GENIA

group in 2006 by searching the PubMed entries with

two MeSH terms “Blood cells” and “Transcription fac-
tors”. Among the returned entries, 24 articles were
open-access that are considered representative of the
scientific text style of this domain [94]. This full-text
data collection has been annotated with coreference (by
the GENIA group) and citation relations [61], and
therefore represents one of the most comprehensively
annotated full-text biomedical corpora. Our annotation
of discourse relations on this corpus will further enrich
the data resource, and will assist future text mining
applications.
Altogether, the articles have a total of 112483 words

and 4911 sentences. Sentence counts were obtained
with the UIUC sentence segmentation tool http://
cogcomp.cs.illinois.edu/page/tools_view/2.
Annotation Tools and Representation
We used a recently released version of the discourse
annotation tool, called “Annotator”, distributed by the
PDTB group. It is freely available from http://www.seas.
upenn.edu/~pdtb/PDTBAPI, and differs from earlier
versions primarily with respect to its simpler data
representation. The tool allows for the annotation of
relations, their arguments, as well as senses, all within
the same interface.
Following PDTB, BioDRB annotations are represented

in a “stand-off” style, in that the annotation files are
physically distinct from the source files. Text span anno-
tations are represented in terms of their character o sets
in the source files, and can be easily retrieved program-
matically. When text spans are discontinuous, which is
possible for both connective spans and argument spans,
they are represented as sets of offsets. Each element of
the set is associated with one part of the discontinuous
spans and the order of the elements in the set reflects
the linear order of the discontinuous spans in the text.
Annotation files are at text files, with each line repre-
senting a single relation token and all its annotated fea-
tures (separated with the “ |” delimiter). Since we used
the tool developed initially for PDTB, which also anno-
tated additional attribution features, only some of the
“|” separated fields are relevant for BioDRB. These are
shown in Table 6. The first column provides the field
number (starting count from 0) and the second column
describes the annotation that the field contains. Other
fields are simply left blank. For implicit relations, no
span offsets are provided since there is no lexical item
associated with the relation. To identify the location of
the implicit relation, the start offset of its Arg2 span is
used as the identifier.
Table 7 shows several examples of the annotation

representation. Row 1 shows the entry of multiple
senses ("Temporal.Precedence” and “Conjunction”) for
an explicit connective. Row 2 shows a set of span o sets
("21670..21678;21729..21737”) for a discontinuous
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explicit connective text span, with the elements sepa-
rated by a semi-colon. A discontinuous text span for
Arg2 ("10090..10100;10106..10209”) is shown in Row 3.
Rows 4 and 5 show the annotation for an implicit and
AltLex relation, respectively.

Sense Detection of Explicit Connectives
Predicting the sense of discourse relations is an impor-
tant subtask of discourse parsing. Prior work on dis-
course relation sense detection has tackled the task of
identifying the senses of explicit connectives separately
from implicit relations. Sense prediction for explicit
connectives in the open-domain PDTB has been
shown to be an easy task, with most connectives being
unambiguous [44,52]. As a result, the connectives
themselves serve as highly reliable predictors of their
sense.
In this section, we describe our preliminary experi-

ments for classifying the senses of explicit connectives
in BioDRB. Similar to prior work with the PDTB, one of
our goals here is to establish a baseline for this task by
using just the (case-insensitive) connective text string as
the predictive feature. We also carried out the same
experiments with the PDTB data, in order to compare
the results across the two domains, as well as to explore
how well a classifier trained on the open-domain PDTB
data generalizes to the domain-specific data of the
BioDRB (described in the next section). For all experi-
ments, we used SLIPPER [95], a learning system that
generates rulesets based on confidence-rated boosting.

To effectively compare BioDRB and PDTB, we need to
group the BioDRB sense types into the 4 generalized
classes in the PDTB (Table 2), and perform 4-way clas-
sification for these generalized senses. The main reason
for designing the comparative study at the class-level
instead of the type-level is that sense annotation in the
PDTB follows a “ flexible” approach, wherein annotators
are allowed to back-o to the most general class-level in
the hierarchical classification. As a result, many connec-
tives in PDTB are labeled with only class-level senses,
which makes their comparison difficult with the type-
level senses in BioDRB.
Since explicit connectives can have up to two senses

(see Table 4), we allowed for three scenarios. In the first
scenario, only the first sense of a connective was consid-
ered, yielding a total of 2636 sense instances. In the sec-
ond scenario, only the second sense was considered.
There are 195 such instances (7.4%) in the BioDRB.
Selecting the second sense also yielded a total of 2636
sense instances. Finally, in the third scenario, we allowed
for both senses to be selected, so that the data set con-
sists of new sense instances for the 195 multiple-sense
connectives. This yielded a total of 2831 (2636+195)
sense instances. Our hypothesis was that the third sce-
nario increases sense ambiguity in the data, and that the
classifier performance should therefore decrease.
For the PDTB experiments, we used the same data set

used in other previous work, and considered the same
three scenarios described above for connectives with
two senses. Of the 18459 explicit connectives in PDTB,
999 (5.4%) appear with two senses.
In all cases, we carried out ten-fold cross-validation.

For BioDRB, the majority class was the “Contingency”
sense, giving a baseline of 35%, averaging across all
three scenarios. Average baseline for PDTB was 33%,
with “Expansion” as the majority class. Results are
reported in Table 8, showing that the overall classifica-
tion performance is very similar across the two corpora.
(Note that other previous work with the PDTB has been
done for the third both sense scenario [44,52], where a
higher accuracy of 93% is reported. However, Pitler et
al. used a Naive Bayes classifier in their experiments,
and we expect that such a classifier on the BioDRB data
would perform at similar levels.) Thus, explicit sense
prediction can be done very reliably in the biomedical
domain as well, using the connective as the only predic-
tive variable. Also, the fact that the performance
degrades when both senses of a multi-sense connective
are considered confirms our hypothesis that this sce-
nario increases ambiguity in the data. However, it is
interesting to find that in both corpora, the performance
is lowest when only the second sense is considered. It is
possible that the second senses that were provided by
annotators are often weak interpretations of the

Table 6 Annotation fields in the BioDRB data
representation

Field Num. Description

0 Relation type (Explicit, Implicit, AltLex, NoRel)

1 (Sets of) Span o sets for connective (when explicit)

7 Connective string “inserted” for Implicit relation

8 Sense1 of Explicit Connective (or Implicit Connective)

9 Sense2 of Explicit Connective (or Implicit Connective)

14 (Sets of) Span o sets for Arg1

20 (Sets of) Span o sets for Arg2

Table 7 Annotation representation

Explicit|9171..9174|||||||Temporal.PrecedencejConjunction|||||9137..9170||||||
9175..9244||||||

Explicit|21670..21678;21729..21737|||||||Conjunction||||||21679..21727||||||
21738..21829||||||

Explicit|10101..10105||||||||Temporal.Precedence||||||9932..10088||||||
10090..10100;10106..10209||||||

Implicit||||||||as a resultjCause.Result||||||3418..3655||||||3657..3714||||||

AltLex|25183..25199||||||||ReinforcementjCause.Claim||||||24621..25181||||||
25183..25444|||||||
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discourse relation, and that the first sense is the stron-
ger, preferred, interpretation.
In all remaining experiments here, we use the data

from the first sense scenario, for which the classifier per-
forms best. Macro average F1 score for both corpora
was 0.91.
To examine how the classifier performs on each of the

different classes, we computed the class-wise precision,
recall and F1 score. The results in Table 9 show that
the worst scores are precision for “Contingency” (0.82)
and recall for “Temporal” (0.75). Interestingly, a similar
experiment with the PDTB (results shown in Table 10)
shows the same two senses with the worst scores, but
here, it is recall for “Contingency” (0.71) and precision
for “Temporal” (0.88). This suggests that there might be
some differences in the semantic usage of connectives
across the two domains.
Next, we considered whether the size of the BioDRB

corpus is sufficient for sense detection. Given that the
accuracy of the BioDRB classi er is at the same level as
that trained on the more than 8 times larger PDTB, this
suggests that the BioDRB corpus size may be sufficient
for this task. We tested our conjecture by partitioning
the data into a training set (2360 instances) and test set
(276 instances), and incrementally increasing the size of
the training examples, in order to see if the classifier
performance stabilizes as the training size reaches the
maximum, n = 2360. We used 8 increments (236 exam-
ples in each increment), using the same test set of 276
examples with each incremented training set. The
results show that the peformance of the classifier
improves up to n = 1888, achieving an accuracy of
90.6%, but further increments up to n = 2360 do not
significantly improve the performance. We therefore
conclude that the size of the BioDRB corpus is sufficient
for the task of explicit connective sense identification.

Furthermore, these results are consistent with our
related work on connective identification in BioDRB
[45], where we show that the performance of the classi-
fier becomes stable when the training size reaches over
5000 words.
Finally, since the BioDRB sense classification was

designed to provide more refined and, therefore, more
informative sense distinctions, we performed classifica-
tion with the 15 type-level senses for explicit connec-
tives. (Note that the 16th sense, “Background”, does not
appear for explicit connectives.)
The majority class (the “Purpose” sense) baseline

accuracy for the type-level senses was 23.5%. Again, we
performed a ten-fold cross-validation on the full data set
of 2636 connectives, considering only the first sense of
the connective where multiple senses were provided.
Not surprisingly, the accuracy of the classifier for more
refined classification is lower, at 69.2%, although still
significantly higher than the baseline. The macro aver-
age F1 score was 0.28, mainly because many senses are
too sparse for rules to be learned reliably. Examination
of class-wise scores shows that rules were reliably
learned for three senses - “Temporal” (F1 score 0.94),
“Conjunction” (F1 score 0.97), “Cause” (F1 score 0.81) -
all of which have more than 300 instances each in the
corpus (see Table 4). While these results suggest that
we may need more annotated training data for reliable
refined sense classification, our immediate goal is to
first explore the use of richer features for the classifier.
We conjecture that for more refined sense classification,
the connective is not sufficient as the sole predictive
variable.

Lessons to be Learned from a New Domain
A natural question that arises in the context of our
work is whether it is necessary to develop an indepen-
dently annotated biomedical corpus of discourse rela-
tions, instead of using tools that have already been
developed for the open domain. In this section, we pre-
sent two studies showing that developing an indepen-
dent domain-specific corpus is indeed beneficial. Our
conclusions are consistent with sublanguage theories
[96-98] for technical domains such as the biomedical
domain.

Table 8 Ten-fold cross validation accuracies for explicit
connective sense classification in BioDRB and PDTB.

First Sense Second Sense Both Senses

BioDRB 90.9% 83.6% 85.6%

PDTB 90.1% 84.1% 85.6%

Columns represent three scenarios for selecting from multiple senses
provided for connectives.

Table 9 Explicit sense classification in BioDRB: Class-wise
Precision, Recall and F1.

Class Precision Recall F1

Comparison 0.983 0.868 0.922

Contingency 0.819 0.992 0.897

Expansion 0.923 0.9 0.911

Temporal 1.0 0.754 0.860

Macro average F1 score is 0.91.

Table 10 Explicit sense classification in PDTB: Class-wise
Precision, Recall and F1.

Class Precision Recall F1

Comparison 0.948 0.993 0.970

Contingency 1.0 0.706 0.828

Expansion 0.907 0.978 0.941

Temporal 0.883 0.889 0.886

Macro average F1 score is 0.91.
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First, as demontrated in the previous section, although
BioDRB and PDTB sense classifiers perform at very
similar levels of accuracy, there are class-wise differences
in performance which suggest differences in the seman-
tic usage of connectives across the two domains. To
explore this further, we trained the classifier on the
PDTB data and tested it on BioDRB. The accuracy of
this cross-domain classifier was 54.5% and the macro
average F1 score was 0.57. Class-wise precision, recall
and F1 scores reported in Table 11 show that “Compari-
son” is the only sense with scores comparable to the
within-domain classifier (see Table 9), with all other
senses performing much worse. These results indicate
that a sense classifier trained on the open-domain
PDTB data does not generalize well to the biomedical
domain, and that there is a significant advantage to
developing an independent biomedical annotated corpus
of discourse relations. Our findings here are consistent
with our related work on identifying connectives in
BioDRB [45], which shows that a connective identifica-
tion classifier trained on PDTB does not perform well
on BioDRB even with domain adaptation techniques
(instance weighting, instance pruning, and feature
augmentation), compared to a classifier trained on the
BioDRB alone.
Second, given that texts from the biomedical literature

are typically segmented into the rhetorical categories of
Introduction, Methods, Results and Discussion (IMRAD)
[99-102], we explored whether discourse relations within
each of these segments exhibit regular patterns.
We examined all relation types (i.e, explicit, implicit,

and Altlex) when they appeared in the clearly indicated
IMRAD segments. Relations in other sections were
ignored. For example, some articles did not have the
conventional IMRAD structure at all, and were therefore
ignored completely in our calculations. Further, sections
such as Conclusions, Authors’ Contributions, and Figures
and Table Captions were ignored. Finally, in some
cases, differently named sections were treated as the
same. For example, Background sections were counted
together with Introduction, and Materials and Methods
were counted together with sections named Methods. In
this way, we extracted the sense distribution for a total

of 3953 explicit, implicit and AltLex relations for
IMRAD segments, shown in Table 12.
It is revealing to see that the Methods segments con-

tain “Temporal” relations more frequently than the
other segments, since these segments describe the var-
ious steps of experiments that have been conducted.
The segments from Methods also have negligible “Con-
cession” relations, suggesting that these sections lack
reasoning or argumentation. Indeed, “Contrast” and
“Concession” relations are found more frequently in the
Results and Discussion segments, where comparisons are
made with related work, and arguments are made about
the presented work. Also frequent in the Discussion sec-
tion are “Causal”, “Instantiation”, and “Reinforcement”
relations, since authors give justifications, reasons, and,
in general, reinforcing arguments for their experiments
and conclusions. There is a high proportion of “Circum-
stance” relations in the Results section, where outcomes
of experiments are presented. “Background” relations
are, curiously, not more frequent in the Abstract and
Introduction sections, as one would expect, but rather in
the Result and Discussion section. Overall, these senses
show several useful patterns in the distribution of senses
across the different IMRAD segments, suggesting that
biomedical literature contains a highly domain-specific
distribution of relations that can benefit text-mining
applications. In future work, we plan to explore the fea-
sibility of using the IMRAD segment type as a feature
for classifying the senses of explicit connectives.

Conclusion
We have developed the Biomedical Discourse Relation
Bank (BioDRB), which contains discourse-level annota-
tions of explicit and implicit discourse relations and
their abstract object arguments, and the senses of dis-
course relations. Starting with the Penn Discourse Tree-
bank (PDTB) as the underlying discourse annotation
framework because of its theory-neutral and lexically
grounded approach, we have successfully adapted the
PDTB annotation guidelines for the biomedical dis-
course annotation, while introducing some features spe-
cific to, and necessary for, the biomedical domain. We
have also carried out experiments on sense detection of
explicit connectives. Our results show that using the
connective as the only feature for the classification cre-
ates a very high baseline for the task, as in the open
domain. At the same time, there are significant differ-
ences in the semantic usage of connectives across the
two domains, since a sense classifier trained on the
PDTB data does not generalize to the BioDRB. Together
with similar results that we have obtained in our related
work on identifying explicit connectives, we conclude
that it is beneficial to take a “sublanguage” approach for
discourse processing of biomedical literature, and

Table 11 Cross-domain sense classification: Class-wise
Precision, Recall and F1.

Class Precision Recall F1

Comparison 0.983 0.897 0.938

Contingency 0.643 0.732 0.131

Expansion 0.347 0.938 0.507

Temporal 0.863 0.585 0.697

Macro average F1 score is 0.57.
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develop an independent biomedical corpus of discourse
annotations. Finally, we have also found that while the
size of the BioDRB corpus is sufficient for coarse-sense
classification, more training data might be needed for
more refined sense classification, although future
research should first explore the use of richer features.
One such additional feature may be the IMRAD seg-
ments of these articles, which show some useful patterns
of sense distributions.
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