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Abstract

Background: Graphical models of network associations are useful for both visualizing and integrating multiple
types of association data. Identifying modules, or groups of functionally related gene products, is an important
challenge in analyzing biological networks. However, existing tools to identify modules are insufficient when
applied to dense networks of experimentally derived interaction data. To address this problem, we have developed
an agglomerative clustering method that is able to identify highly modular sets of gene products within highly
interconnected molecular interaction networks.

Results: MINE outperforms MCODE, CFinder, NEMO, SPICi, and MCL in identifying non-exclusive, high modularity
clusters when applied to the C. elegans protein-protein interaction network. The algorithm generally achieves
superior geometric accuracy and modularity for annotated functional categories. In comparison with the most
closely related algorithm, MCODE, the top clusters identified by MINE are consistently of higher density and MINE
is less likely to designate overlapping modules as a single unit. MINE offers a high level of granularity with a small
number of adjustable parameters, enabling users to fine-tune cluster results for input networks with differing
topological properties.

Conclusions: MINE was created in response to the challenge of discovering high quality modules of gene
products within highly interconnected biological networks. The algorithm allows a high degree of flexibility and
user-customisation of results with few adjustable parameters. MINE outperforms several popular clustering
algorithms in identifying modules with high modularity and obtains good overall recall and precision of functional
annotations in protein-protein interaction networks from both S. cerevisiae and C. elegans.

Background
Many types of molecular and functional associations,
such as protein-protein or genetic interactions, can be
usefully combined and represented as networks using
graphical models. Understanding how molecular com-
plexes and groups of functionally related gene products,
or “modules”, are organized within molecular interaction
networks - both physically and in terms of functional
dependencies - can lead to a better understanding of
how cellular and developmental processes are coordi-
nated. Because gene products within complexes or mod-
ules are expected to physically interact more frequently
and to show stronger functional dependencies with each
other than with other molecules in their environment,
they are expected to share many more linkages in any
network representation of functional associations.

Topological analysis of network graphs can identify den-
sely interconnected regions, which often correspond to
functionally related groups of genes or proteins that can
be identified as molecular complexes and modules, and
can also reveal how different modules may be function-
ally linked.
Several algorithmic approaches have been developed

to identify densely interconnected groups of vertices
(also called nodes; here, genes/proteins) within a graph
(here, biological interaction network). These can be
broadly classified as agglomerative methods that grow
clusters nucleated from densely interconnected regions
(e.g. MCODE [1], CFinder [2], NeMo [3], SPICi [4]), or
divisive methods that partition graphs into regions of
differing connectivity (e.g. MCL [5]). Some general fea-
tures differ between these approaches: for example, divi-
sive methods usually attempt to assign all nodes in a
graph into some cluster, while agglomerative methods
do not; some methods assign nodes exclusively to a sin-
gle cluster, while others allow membership of a single

* Correspondence: kcg1@nyu.edu
Center for Genomics and Systems Biology, Department of Biology, New York
University, 1009 Silver Center, 100 Washington Square East, New York, NY
10003, USA

Rhrissorrakrai and Gunsalus BMC Bioinformatics 2011, 12:192
http://www.biomedcentral.com/1471-2105/12/192

© 2011 Rhrissorrakrai and Gunsalus; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:kcg1@nyu.edu
http://creativecommons.org/licenses/by/2.0


node in multiple clusters. We describe these five meth-
ods briefly below. MCODE is a popular clustering
method that uses vertex weighting (a form of the clus-
tering coefficient [6]) to grow clusters from a starting
vertex of high local weight by iteratively adding neigh-
boring vertices with similar weights. Cluster boundaries
can be adjusted using options to trim vertices linked by
a single edge (’haircut’) or to draw in additional neigh-
boring vertices (’fluff’). These options can allow nodes
to remain unassigned or to be included in multiple clus-
ters – both likely scenarios in vivo, where the precise
composition of functional modules and pathways may
vary in different biological contexts. CFinder is a clique-
finding algorithm that identifies fully connected sub-
graphs of different minimum clique size, and then
merges cliques based upon their percentage of shared
members, so that each node typically assumes member-
ship in an entire hierarchy of clusters of differing sizes.
CFinder results vary widely with each increment of
minimum clique size (an adjustable parameter). NeMo
identifies frequent dense subgraphs in input networks
based on SPLAT [7] and CODENSE [8], which look for
recurrence of dense subgraphs and coherent edge recur-
rence across subgraphs, respectively. NeMo is designed
for dense, large-scale networks because it uses coherent
edge frequencies, which can lose statistical power in
sparse networks with few edges. MCL is a Markov Clus-
tering method that is based on a flow simulation (essen-
tially a random walk) that partitions a graph into areas
of high and low flow. Nodes are grouped together as
complexes when edges that link them have similar
‘flow’, or probability of edge use based on path. SPICi is
a computationally efficient, local network-clustering
algorithm that emphasizes optimizing cluster density.
SPICi seeds clusters with nodes according to their
weighted degree and accounts for local density around
the growing cluster with each iteration. SPICi is
promoted for its speed and ability to process large
networks.
We applied all of these methods to molecular interac-

tion networks from Sacchromyces cerevisiae (yeast) and
Caenorhabditis elegans (worm) and compared their per-
formance with respect to the modularity, density, and
size of clusters, as well as the total number of clusters
identified and their ability to group genes with similar
functional annotations. To be as fair as possible in all
comparisons and tests, we used the final clustering out-
put from each implementation exactly as it was provided
to the user. For the yeast networks we achieved some
success using all of these methods, but we found them
not as well suited for the worm interactome: the clusters
identified were highly variable in quality, and adjustable
parameters could not accommodate the higher intercon-
nectivity of the worm network to produce consistently

sensible results. We found the yeast network to have
slightly higher density overall than the worm network
(2.58e-3 for FYI vs. 9.19e-4 for WI8), while its character-
istic path length (the average shortest path between all
pairs of nodes) was nearly double that of for worm (9.24
vs. 5.16). This indicates that nodes in the worm molecu-
lar interaction network are more highly interconnected,
and consequently would be expected to manifest less
modularity, or separation of distinct clusters from the
rest of the network. As a result, the methods described
above were unable to identify consistently high quality
clusters. For example, different algorithms variously
tended to recover low-density, stringy clusters
(MCODE), produce many small subnetworks that were
subsets of larger modules (CFinder), lacked suitable
parameter adjustability (CFinder, NeMo), partitioned the
network exhaustively leaving no unassigned nodes
(MCL), or tended to generate numerous small, exclusive
(non-overlapping) clusters (SPICi).
Here we describe Module Identification in Networks

(MINE), an alternative method we have developed that
can effectively identify functional modules in the C. ele-
gans molecular interaction networks. MINE at once
robustly identifies highly interconnected clusters that
are biologically coherent, has the flexibility to handle
many different types of networks, and contains a small
number of adjustable parameters that can be optimized
for different network topologies - all within a simple
graphical user interface. MINE is an agglomerative clus-
tering algorithm very similar to MCODE, but it uses a
modified vertex weighting strategy and can factor in a
measure of network modularity, both of which help to
define module boundaries by avoiding the inclusion of
spurious neighboring nodes within growing clusters. We
have evaluated MINE as applied to interactomes from
yeast and worm, and we show that it performs favorably
with respect to modularity and density in comparison
with other current methodologies.

Results
Overview of algorithm and design considerations
The clustering approach used by MINE is summarized
in Figure 1 and Additional File 1 Figure S1. MINE first
assigns weights to all nodes in a graph according to
their edge degree and local neighborhood density. It
then performs an iterative, agglomerative cluster finding
procedure, in which clusters are seeded from nodes in
order of their descending weight. With each iteration,
the seed node is grouped together with neighboring
nodes of similar weight and any neighbor nodes that
improve the modularity score. After a cluster is deli-
neated, it is compared to previously identified clusters
and merged if there is significant overlap. This proce-
dure is then repeated, starting with the next most highly
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weighted node, until all nodes have been inspected as a
seed.
In developing MINE we reasoned that the algorithm

should not attempt to force all vertices into a cluster, as
it may not be feasible to assign every gene/protein to a
physical complex or module in a real-world example -
this may either reflect the underlying biological reality,
or may occur because available network data is sparse
and incomplete. We thus opted for an agglomerative
clustering approach, and focused on three specific fac-
tors that are important for biologically and topologically
meaningful cluster identification: neighborhood edge
density calculation, optimization for modularity, and
treatment of overlapping clusters. We discuss these
three issues and their influence on performance
separately.
Neighborhood edge density
To build clusters, MINE uses a strategy similar to that
of MCODE, which we had found to return good results
in yeast (but which did not provide the flexibility we
sought for C. elegans). The primary differences lie in the
method that MINE uses to calculate how vertices are
weighted and the inclusion of a local modularity score
at each step. To retain information about the precise
local neighborhood of a vertex (all directly connected
vertices, i.e. all connected vertices of depth 1), we assign
the vertex (v) a weight (vw) that is the product of its
own clustering coefficient, i.e. its density (d), and the
number of edges (k) of the most highly connected node
in the local neighborhood of v, inclusive of v (kmax):

vw = kmax ∗ d

This weighting scheme improves the scores of densely
grouped genes that are linked to a highly connected

node, or ‘hub’. The topological effect of this scoring
scheme is to place higher weight on vertices connected
to hubs, which have been shown to be important for
robustness in biological interaction networks and tend
to occur within functional modules [9].
Modularity
We include an additional parameter that takes into
account a modularity score, which represents the level
of connectivity within a group of nodes relative to the
group’s connections to the rest of the network. Modu-
larity is defined as the ratio of the number of edges
between nodes in a cluster (in-degree, Ein) to the num-
ber of edges between members of the cluster and any
neighbors not designated as members of the cluster
(out-degree, Eout):

Cmod = Ein/Eout

A high modularity score will indicate that a cluster is
very isolated from the rest of the network. Thus in
expanding a cluster, not only is the weight of a vertex
considered, but also whether its inclusion will improve
the modularity score. Thus, nodes that satisfy the vertex
weight threshold but which decrease the modularity
score by more than ΔCmod are not added; conversely,
nodes that improve the modularity score of the cluster
by at least ΔCmod are added, even if they do not satisfy
the vertex weight threshold. Finally, all clusters undergo
an iterative culling procedure that removes nodes if this
will increase the score of the remaining cluster by at
least ΔCmod. ΔCmod is implemented as the user-specified
parameter msp (modularity score percentage).
Overlapping clusters
One of the attractive features of CFinder is its ability to
recover overlapping clusters, which is compatible with

Assign node weights
by local edge density 

Grow complex
 from highest weighted

node according to
weight and modularity

Repeat for next
most highly weighted
node until all visited

Post-processing
Trim single edges

Optimize modularity
Merge overlapping 

complexes

Input network

Figure 1 Conceptual Overview of MINE Procedure.
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the idea that complexes in a biological system are not
necessarily static; all or part of a complex may be acti-
vated at a specific time or location, and component
parts may even be included in multiple complexes. Clus-
ters identified algorithmically should reflect this prop-
erty, and thus we designed MINE so that it can return
both exclusive and non-exclusive clusters, and can
merge together clusters that appear to overlap above a
user-defined threshold (with the default set at 50%
shared nodes). Among all the algorithms we compared,
CFinder is the only other method that is able to cluster
while permitting overlaps; however in contrast to CFin-
der, MINE has been designed to avoid returning both
the parent and child clusters (clusters that are primarily
a subset of a larger ‘parent’ cluster) where it would be
more appropriate to combine them.

Performance Evaluation
MINE was tested using protein-protein interaction data
from S. cerevisiae and C. elegans and compared with the
performance of five other algorithms. The yeast S. cerevi-
siae is a classic model organism for which a great deal is
known about protein complexes, and thus presents an
ideal opportunity to test a new network clustering algo-
rithm. We used as our test networks all yeast two-hybrid
data from BioGRID [10] and the ‘Filtered Yeast Interac-
tome’ (FYI) [9], which represents very high confidence
protein-protein interactions. For annotated complexes,
we used MIPS [11] and GO-SLIM Macromolecular Com-
plex annotations [12] as gold standards against which to
measure complex identification within these networks.
Clusters identified by MINE were then compared with
annotated complexes contained in the yeast networks.
For C. elegans, we used protein-protein interaction net-
works based on WI8 [13], as well as all physical interac-
tions from both MINT [14] and IntAct [15]. In contrast
to yeast, C. elegans is a biologically more complex organ-
ism for which, despite its well-studied genetic and devel-
opmental networks, there is no well-annotated database
of protein complexes. We used C. elegans Gene Ontology
(GO) annotations for Biological Process, Cellular Com-
ponent, and Molecular Function to provide a comparable
validation set. Only GO terms with at least 3 and at most
100 members were considered to avoid categories that
are too general or too specific. MINE was tested over a
broad range of parameters for vertex weight percentage
vwp (0 - 100%) and modularity score percentage msp (0 -
100%). Four of the five tested algorithms (CFinder, MCL,
SPICi and MCODE) also include adjustable parameters
and were evaluated across a wide spectrum of their set-
tings. The performance of all algorithms was then
assessed in terms of recall and precision, modularity, and
geometric accuracy of identified clusters with respect to
annotated complexes.

Recall and Precision
For both measures, all annotated complexes (according
to MIPS or GO terms) were matched to predicted clus-
ters with the most significant overlap as measured by
the hypergeometric test (p-value ≤ 0.05). Recall is
defined as the number of true positives (TP) over the
sum of all true positives and false negatives (FN): Recall
= TP/(TP+FN). Precision was calculated for the same
cluster, and is defined as the number of true positives
divided by the sum of true positives and false positives
(FP): Precision = TP/(TP+FP). In both measures, true
positives are defined as gene products that are anno-
tated as members of a protein complex by either GO or
MIPS.
In yeast, MINE was consistently among the top per-

forming algorithms with respect to both recall and pre-
cision for capturing MIPS and GO complexes in both
networks (Additional File 1 Figures S2A-D). When
examining the higher density C. elegans interactome,
MINE generally achieved a balance of recall and preci-
sion slightly higher than MCODE and CFinder when
considering GO Molecular Function, Biological Process
and Cellular Component (Additional File 1 Figures S2E-
M). While MCL and SPICi can reach a higher precision
and recall, they typically do so at the expense of produ-
cing many more (Additional File 1 Figures S3C-E) and/
or generally smaller (Figure 2A and Additional File 1
Tables S1, S2) clusters than any of the other algorithms.
Average precision and recall are inflated in these cases
by the higher contribution of very small clusters, which
necessarily have a lower bound on the proportion of
potential false negatives and false positives when at least
one node is a true positive (a requirement for inclusion
in the composite score). Though there are parameter
settings at which SPICi can perform better than other
methods on the C. elegans protein interaction network,
like most of the algorithms tested it does so with the
constraint of identifying only exclusive clusters.
Modularity
We evaluated global cluster modularity using a measure
defined in [16]. The global modularity score is calcu-
lated from a composite of the local modularity scores
across all clusters and accounts for edges inside each
cluster, edges connecting each cluster to the rest of the
network, and the total number of edges in the network.
The composite score provides a clear assessment of
each algorithm’s ability to delineate clusters that are
well separated from the rest of the network.
When evaluated over a range of parameters, we find that

MINE produces clusters with good separation from the
rest of the network, and also produces more clusters of
higher modularity than other methods, for both the yeast
and worm interactomes (Additional File 1 Figure S3). In
the yeast networks, MINE consistently outperforms other
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methods, with the exception of a single setting for CFinder
and NeMo in the FYI network (Additional File 1 Figures
S3A-B). For worm, only a single setting of CFinder achieve
comparable modularity and total number of clusters iden-
tified by MINE (Additional File 1 Figures S3C-E); SPICi
can produce higher overall composite modularity, but
there is an insignificant difference between the distribution
of modularity scores for SPICi and MINE (Figure 2A,
Additional File 1 Table S2 and data not shown). Other
algorithms also tend to produce a much greater variation
in the total number of clusters identified across their para-
meter settings, while still producing clusters of lower mod-
ularity; this is particularly striking for MCL (Additional
File 1 Figure S3).
Geometric Accuracy
Geometric accuracy simultaneously reports on the recall
and precision of clustering performance, and is defined
as the geometric mean of these two measures. This sin-
gle score provides an effective measure for evaluating
performance against annotation sets. Using the mean
geometric accuracy of all clusters at different parameter
settings, MINE consistently performs better than most
other methods over a range of parameters, with a typical
geometric accuracy of ~70% in yeast and ~22% in
worms (Figure 3). Results from MCODE, MCL, SPICi
and CFinder vary in geometric accuracy over a much

wider range. When plotted against the composite modu-
larity (Figure 3 and Additional File 1 Figure S4), MINE
performs favorably with respect to topological separa-
tion from the network and the ability to identify high-
quality clusters of varying sizes that capture commonly
recognized biological modules.

Discussion
For both yeast and worm interactomes, MINE surpasses
other methods in recovering clusters that are well sepa-
rated from the rest of the network, while achieving good
recall of annotated complexes (Figure 3 and Additional
File 1 Figure S4). Of the algorithms that do not allow
cluster overlap, SPICi appears to have better perfor-
mance with respect to mean geometric accuracy and
composite modularity; it even is slightly higher than
MINE with respect to these measures. However, MINE
maintains comparable performance while allowing
nodes to be shared between clusters, a feature that
SPICi lacks. We consider this to be of high biological
relevance in a multicellular organism like C. elegans, in
which different functional modules are reused in differ-
ent spatiotemporal contexts where their precise molecu-
lar composition may vary. Additionally, MINE results
are robust to a variety of parameter settings and consis-
tently identify high quality clusters with respect to the

Figure 2 Modularity vs. Cluster Size and Geometric Accuracy at Optimal Settings. for each algorithm, we selected the setting with the
optimal balance of modularity and average geometric accuracy for the C. elegans interactome from WI8 based on GO Cellular Component
annotations. The boxplot, below, represents the global modularity of the clusters (x-axis) vs. A) the distribution of cluster sizes (y-axis) and B) the
distribution of the geometric accuracy (y-axis). The circle indicates the median value; thick lines indicate upper and lower quartiles; whiskers
indicate 1.5 times the inter-quartile range (IQR). The total number of clusters identified by each algorithm is indicated in parentheses in the key.
A) The plot shows that MINE produces clusters of varying sizes while maintaining a higher overall modularity. B) The plot shows that MINE
produces clusters with a much higher overall modularity and a similar range of geometric accuracy as other algorithms without producing an
artificially large number of clusters.
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defined measures. This is in contrast to other methods,
for which the user must test over a broad range of para-
meters to find the optimal setting. Thus, MINE offers a
simpler tool for the end user to identify high quality
clusters without the need for extensive optimization
irrespective of any a priori knowledge of the network.
MINE does show excellent performance when all six
algorithms are compared at settings that provide an
optimal balance between modularity, geometric accu-
racy, and cluster number in C. elegans WI8 (for GO
Cellular Component, Figure 2B and Additional File 1
Table S1; the same is true for other GO categories, data
not shown). Here again MINE is one of the top perfor-
mers; its slightly lower modularity with respect to SPICi
is the result of its cluster overlap feature. Moreover, if
methods are compared at settings optimized solely for
geometric accuracy (again, for GO Cellular Component),
MINE remains one of the top performers with respect
to modularity, geometric accuracy, mean cluster density
and mean cluster size (Additional File 1 Table S2). This
performance advantage is illustrated graphically in
Figure 4, where the top fourteen clusters from MINE
and MCODE (the most closely related algorithm to
MINE) are displayed from an analysis of the C. elegans
protein-protein interactome, using optimal parameters
with respect to geometric accuracy and modularity for
both algorithms. Clusters identified by MINE are more
highly interconnected and less prone to comprise

multiple distinct clusters of nodes that have been gath-
ered together and reported as a single module; MCODE
clusters progressively lose cohesiveness as cluster scores
decrease.
We also note that MINE specifically filters for clusters

that are of size 1 or 2, as those are too small to be con-
sidered valid groups of genes (in contrast to some other
methods). This size criterion also accounts for some of
the differences in coverage (i.e. total number of nodes
clustered) between MINE and other methods. By elimi-
nating clusters of size 1 and 2, many genes remain iso-
lated, consistent with the biological intuition that not
every gene can be clearly associated with a functional
module in any particular dataset.
MINE performs very competitively with existing meth-

ods and offers a small number of tuneable parameters,
rendering this method highly adaptable for different
input networks. With an emphasis on graph-based clus-
tering and modularity, MINE behaves well on both
spare, modular networks and large, dense networks. In
contrast to MCL, CFinder, SPICi and MCODE, the
results produced by MINE do not change dramatically
with small parameter adjustments, thereby offering the
user both the ability to quickly discover high quality
clusters and fine-grained control over the final set of
clusters. This is likely because the evaluation of modu-
larity for each vertex addition acts as a buffer that pre-
vents large changes in cluster results. We found that
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Figure 3 Geometric Accuracy vs. Modularity of Predicted Complexes. Plot of geometric accuracy against global modularity across a range
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on different algorithms. A) S. cerevisiae FYI network, evaluated using MIPS complexes. B). C. elegans interactome network from WI8, evaluated
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MINE also outperformed most other methods when
additional noise was introduced to test networks (data
not shown). Across all methods, the geometric accuracy
obtained for the worm interactome was significantly
lower than for the yeast network. This is likely because
the C. elegans interactome, although densely intercon-
nected, still has relatively low coverage and is missing
many known interactions [13]. Combined with the low
coverage of GO annotations for the worm genome, the
likelihood of recovering all components annotated with
a given GO category is reduced relative to the compara-
tively well-annotated yeast genome.

Conclusions
MINE is a highly tuneable graph-clustering algorithm
whose strengths for the identification of molecular
complexes are more pronounced in dense, highly

interconnected networks, such as the C. elegans pro-
tein-protein interaction network. MINE uses a small
number of adjustable parameters that enable it to iden-
tify high quality clusters that share common functional
annotations. MINE is implemented both as a Cytos-
cape plug-in and a Perl script. The Cytoscape plug-in
provides a simple graphical user interface (GUI),
whereas the Perl version allows automated batch pro-
cessing and offers several extensions to the core MINE
package, which include: edge weighting, requiring ver-
tex weights above background distribution for inclu-
sion in a cluster, identification of vertices that act as
linkers between clusters (non-clustered nodes that con-
nect two non-overlapping clusters), and the ability to
utilize expression or localization data to generate sub-
networks for condition-specific cluster identification.
These additional features position MINE as a

Figure 4 Comparison of Top MINE and MODE Cluster Results. Representative examples of cluster results from MCODE and MINE for the C.
elegans interactome from WI8, showing the 14 highest-scoring clusters from each algorithm. For each method, parameters were chosen to
provide the optimal balance between modularity and highest geometric accuracy for GO Cellular Component. Cluster size (n), local modularity
(m), and density (d) are provided below each cluster. A) MCODE (vwp = 0.30; haircut = true). B) MINE (vwp = 0.90; mod = 0.30; trim = true).
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particularly versatile tool for identifying the composi-
tion of functional modules within molecular networks.

Methods
Scoring
MINE receives as input any number of interaction files.
The network is treated as an undirected, unweighted
graph. All vertices V in the graph G = (V, E) are then
weighted based upon their local neighborhood N, defined
as the set all vertices connected directly to v (at a depth
of 1); we call the set N inclusive of v itself {N∪v}, which
we denote simply as N∪v. The vertex weight (vw) is the
product of the maximal number of edges connected to
any single node in N∪v (kmax) and the density of N∪v (d):
vw = kmax * d. Density is calculated as d = 2 eN∪v/(VN∪v *
(VN∪v - 1)), where VN∪v is the number of vertices in N∪v
(i.e. v and its direct neighbors) and eN∪v is the number of
edges in N∪v. A cluster (C) is then established by iterat-
ing through each vertex in order of highest to lowest
weight and adding neighbors if either of two criteria are
satisfied: A) the neighbor vertex weight is above a mini-
mum threshold (as determined by the user-defined vertex
weight percentage (vwp) of the seed vertex) and does not
decrease the cluster modularity score (by an amount
equal to or greater than the user-defined modularity
score percentage (msp)); B) the modularity score for the
cluster is improved by msp. Cluster modularity (Cmod) is
defined as the ratio of edges between nodes of a cluster
(Ein) and edges between cluster members and non-mem-
bers (Eout): Cmod= Ein/Eout. The process is continued
exhaustively until no further vertices can be added, and is
then repeated over all vertices in order of descending vw.
Clusters are next evaluated for improvements of modu-
larity scores if members are removed. They may option-
ally be refined further by removing all vertices with k = 1
(if the flag Trim is set). By default, clusters are non-exclu-
sive (i.e. members are allowed to participate in several
clusters), and clusters that overlap by > 50% are merged.
A cluster is scored (Cs) as the product of its density
(d) and the number of members in the cluster (VC): Cs =
d * VC.

Algorithm
1. Vertex Weighting

procedure Vertex-Weighting
input: graph: G = (V,E)
for all v in G

N = set of immediate neighbors of v (depth =
1)
kmax = maximum number of edges from any
one vertex in set N∪v
d = density of N∪v
vw = weight = kmax * d

end for

end procedure

2. Cluster Prediction
procedure Cluster-Prediction

input: graph: G = (V,E); vertex weight: vw; vertex
weight percentage: vwp; modularity score percen-
tage: msp; merge percentage: mp

for v Î Vw (from high ® low weight)
push (tocheck, v )
while tocheck not empty
n = pop(tocheck)
push (visited, n)
N = set of immediate neighbors of n

(depth = 1)
if ( n == v )
vs = v

else
vs = source vertex in cluster that pushed

vertex n onto toCheck
if vw of n ≥ (vw of vs)(1 - vwp) then
if modularity-score(C∪n) > modularity-

score(C) - modularity-score(C)*msp then
add n to cluster C
push(tocheck, {N\{C∪visited}})

else if modularity-score(C∪n) > modular-
ity-score(C) + modularity-score(C)*msp

add n to cluster C
push(tocheck, {N\{C∪visited}})

end if
end while
if trim == true then call: Trim (C)
for v Î VC

if modularity-score({C \v}) > modularity-
score(C) + modularity-score(C)*msp then

remove v from C
end for
if percent overlap C with existing cluster ≥

mp
Merge(C) with existing cluster

Cscore = density(C) * sizeof(C)
end for

end procedure
procedure Trim

input: cluster: C
for all v in C

if k of v < 2 then remove v from C
end for

end procedure
procedure modularity-score

input: cluster: C
in = number of edges exclusively between mem-
bers of C
out = number of edges exclusively between
members and non-members of C
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score = in/out
end procedure

Recall and Precision
Recall and Precision were calculated for each cluster
with respect to all annotated complexes in the valida-
tion set (MIPS or GO ontology), and the complex
showing the most significant overlap with the cluster
was selected as the representative annotation for per-
formance evaluations among different algorithms. For
each annotated complex, true positives (TP) are
defined as members of the annotated complex that are
found in the cluster; false positives (FP) are defined as
cluster members that are not part of the annotated
complex; false negatives (FN) are defined as annotated
complex members that are not part of the cluster.
Recall is calculated as TP/(TP + FN). Precision is cal-
culated as TP/(TP + FP). To arrive at an aggregate sta-
tistic, the mean recall and precision across all
annotated complexes were calculated using the highest
scoring cluster for each annotated complex. Signifi-
cance was calculated using a hypergeometric test (p-
value ≤ 0.05).

Modularity
Global modularity was calculated according to [16] and
[17]. This measure provides a composite modularity
score across all clusters and is defined as:

Modularity =
∑
c∈C

[
Ecln

Etotal
−

(
2Ecln + EcOut

2Etotal

)2
]

where, for each cluster c in the set of all clusters C,
EcIn, EcOut and Etotal represent the number of edges
within the cluster, the number of edges leading out of
the cluster, and the total edges in the network, respec-
tively. We note that while the global modularity score
only considers clusters that are contained within the
main graph component, in practice this does not signifi-
cantly affect the results because few or no clusters in
the networks we consider are isolated from the main
component. Local modularity for each cluster is defined
as: Cmod = EcIn/EcOut. The MINE algorithm uses only
local modularity in predicting individual clusters, while
the global modularity score serves as an aggregate statis-
tic on the cumulative output.

Geometric Accuracy
Geometric accuracy is defined as √(R * P), where R is
Recall and P is Precision. This measures how well an
algorithm is able to strictly identify a training set of
complexes from the validation set without drawing in
too many extraneous nodes.

Algorithm Comparison
MINE was tested over a range 30 settings of vwp (0.1 -
1) and msp (0.1 - 1) with trim single edges = True. The
MCODE Cytoscape plug-in was run with haircut =
True and depth = 2 over 21 settings of of vwp (from 0
to 1). NeMo was executed with its Cytoscape plug-in
and offers no adjustable parameters. CFinder was down-
loaded from http://angel.elte.hu/cfinder/ and tested with
8 k clique sizes ranging from 3 to 10. MCL was exe-
cuted as the R package mclR (distributed by http://
micans.org/mcl/) with 20 granularity settings ranging
from 1.2 to 5.0. SPICi was downloaded from http://
compbio.cs.princeton.edu/spici/ as a C++ distribution
and tested for 20 density settings from 0.1 to 1.0.

Datasets
For the network analysis, we used the following protein-
protein interaction maps: for yeast, the Filtered Yeast
Interactome FYI [9] and BioGRID yeast two-hybrid data
[10]; for C. elegans, three datasets were used: 1) physical
interactions from MINT [14], 2) physical interactions
from IntAct [15], 3) a combined network of WI8
(Worm Interactome version 8) [13], supplemented with
interologs (inferred interactions between orthologous
proteins as identified by InParanoid from D. melanoga-
ster, S. cerevisiae, and H. sapiens) [18], and a domain-
based interaction map of proteins involved in embryo-
genesis [19]. We also evaluated the performance of
MINE using WI8 only and obtained essentially the same
results (data not shown).
Several training sets were used for validation: yeast

MIPS annotated complexes (http://mips.gsf.de/genre/
proj/genre), GO Macromolecular Complexes for S. cere-
visiae and GO categories [12] for C. elegans. 127 MIPS
complexes and 175 GO Macromolecular Complexes are
present in the FYI map. 98 MIPS complexes and 209
GO Macromolecular Complexes are present in the yeast
two-hybrid from BioGRID map and these were used for
all validation in yeast. For validation in C. elegans, GO
annotations from all three ontologies, Biological Process,
Cellular Component and Molecular Function, were
used. We considered only GO terms with at least 3 and
at most 100 annotated members.

Implementation and availability
MINE is available as a Cytoscape plug-in (compatible
with versions of Cytoscape 2.4 and up) from the Cytos-
cape website (http://www.cytoscape.org) and can be
installed and updated through the built-in plugin man-
ager; it has also been provided as Additional File 2 and
should be placed in the plugin folder of one’s local
Cytoscape installation. Finally a Perl implementation,
which offers several extensions to the core MINE algo-
rithm, is available from the authors upon request.
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Additional material

Additional file 1: Supplementary Figures 1-4 and Supplementary
Table 1 in PDF format.

Additional file 2: MINE Cytoscape plugin.
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