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Abstract

strong LD with SNPs in proximity.

Background: Using microarray and sequencing platforms, a large number of copy number variations (CNVs) have
been identified in humans. In practice, because our human genome is a diploid, these platforms are limited to or
more accurate for detecting total copy numbers rather than chromosome-specific copy numbers at each of the
two homologous chromosomes. Nevertheless, the analysis of linkage disequilibrium (LD) between CNVs and SNPs
indicates that distinct copy numbers often sit on their own background haplotypes.

Results: We propose new computational models for inferring chromosome-specific copy numbers by
distinguishing background haplotypes of each copy number. The formulated problems are shown to be NP-hard
and approximation/heuristic algorithms are developed. Simulation indicates that our method is accurate and
outperforms the existing approach. By testing the program in 60 parent-offspring trios, the inferred chromosome-
specific copy numbers are highly consistent with the law of Mendelian inheritance. The distributions of copy
numbers at chromosomal level are provided for 270 individuals in three HapMap panels.

Conclusions: The estimation of chromosome-specific copy numbers using microarray or sequencing platforms was
often confounded by a number of factors. This study showed that the integration of background haplotypes is
able to improve the accuracies of copy number estimation at chromosome level, especially for the CNVs having

Background
Genetic variations exist in many forms in the human
genome. Large structural variations such as deletions
and duplications are quite common in the human popu-
lations, which encompass more base pairs than single
nucleotide polymorphisms (SNPs). Among various types
of structural variations, copy number variations (CNVs)
often occupy regulatory regions of genes and greatly
influence phenotypic traits and disease susceptibility [1].
CNV is defined as a DNA segment with length more
than 1 kb and observed with various numbers of copies
in the population. A number of CNVs have been known
to highly associate with several complex diseases such as
HIV infection, autoimmunity, autism, Parkinson’s, Alz-
heimer’s and Crohn’s disease [2-6].

The advance of high-throughput array platforms and
sequencing technologies enables fast and cost-effective
scan of CNVs in genome-wide scale [7]. Using array
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Comparative Genomic Hybridization (aCGH) and next-
generation sequencing, a large number of CNVs have
been identified in human and other primates [8-12]. In
practice, because our human genome is a diploid, most
sequencing platforms often report total copy numbers of
one individual instead of chromosome-specific copy
numbers presented on each of the two homologous
chromosomes. For example, suppose there are two
diplotype configurations at one CNV locus: 1/1 repre-
sents one copy at each of the two chromosomes, and 0/
2 indicates a deletion at one chromosome and a duplica-
tion at the other. The total copy numbers of these con-
figurations are both experimentally obtained as two,
although the underlying mechanisms generating these
two configurations are different. Nevertheless, determi-
nation of chromosome-specific copy numbers is impor-
tant in the analysis of population genetics and disease
association studies. For instance, the power of detecting
positive selection and accuracy of measuring Linkage
Disequilibrium (LD) between SNPs and CNVs can be
improved through direct use of chromosome-specific
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copy numbers [13-15]. Moreover, identification of the
chromosome-specific copy numbers can even shed light
on the age of each CNV [1].

Recently, an expectation maximization (EM) algorithm
was developed to estimate frequencies of chromosome-
specific copy numbers under the assumption of Hardy-
Weinberg equilibrium (HWE) [16]. In reality, the
observed allele frequencies do not completely satisfy
HWE, because each copy number allele may be sampled
more or less in different sequencing projects. In a few
occasions, HWE may be even deviated due to direc-
tional selection, assortative mating, or migration [17].
Using B allele frequencies (BAF) and log R ratios (LLR)
provided by SNP array platforms, a hidden Markov
model (HMM) was designed for inferring chromosome-
specific copy numbers within a parent-offspring family
[18]. In addition, information of allelic-specific copies at
each SNP locus (e.g., AAABB) have been also used to
indirectly infer chromosome-specific copy numbers [19].
However, BAF, LLR and allelic-specific copies are not
always available in each sequencing platform. For exam-
ple, in next-generation sequencing (e.g., SOLid and Illu-
mina), SNPs and CNVs called at these platforms (e.g.,
Bioscope and SAMTools) do not provide such informa-
tion. Moreover, the accuracy of allelic-specific copies is
often decreased for higher copies and is worse than that
of total copy numbers due to cross-hybridization
[20,21]. Although traditional haplotype phasing pro-
grams (e.g., fastPHASE) may be used for inferring copy
number by encoding bi-allelic CNVs into SNP geno-
types, this approach is inadequate to infer multi-allelic
CNVs [13,19].

To date, the analysis of LD structure in human gen-
ome indicated that many CNVs have strong LD with
SNPs in proximity, probably owing to uneven distribu-
tion of recombination hot/cold spots or genetic hitch-
hiking [22-25]. Moreover, a number of CNVs have been
shown to be taggable using alleles at flanking SNPs [3].
The LD structure between CNVs and SNPs implies dif-
ferent chromosome-specific copy numbers often sit at
their own background haplotypes, which can be viewed
as fingerprints of each copy number. As a consequence,
chromosome-specific copy numbers of each individual
are inferable by careful analysis of background haplo-
types around each CNV. In recent years, several large-
scale sequencing projects have constructed complete
haplotype and CNV databases across major human
populations (e.g., HapMap [26]). Integration of these
databases may gain insight into the distribution of chro-
mosome-specific copy numbers in human populations.

In this study, we develop new computational models
and combinatorial algorithms for inferring chromo-
some-specific copy numbers by distinguishing back-
ground haplotypes of each copy number. Two
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optimization problems are formulated, shown to be NP-
hard, and solved by approximation or heuristic algo-
rithms. Simulation indicates our method is very accurate
and is able to outperform existing approach. By testing
the program separately for each individual within 60
parent-offspring trios, the inferred chromosome-specific
copy numbers are highly consistent with the law of
Mendelian inheritance. The distribution of chromo-
some-specific copy numbers across three human popu-
lations indicate that one copy is the major allele as
expected, and zero copy (deletion) alleles are much fre-
quent than high copy (duplication) alleles.

Methods
The haplotypes of 270 individuals are downloaded from
the Phase II of international HapMap project [26]. For
the input of unphased genotypes, the haplotypes were
inferred via the PHASE [27] program, which was used
by the HapMap project. For high-throughput sequen-
cing data, a number of haplotype assembly tools can
also be used to infer the haplotypes [28]. The total copy
numbers of 1,319 CNVs typing on the same individuals
are retrieved from [9]. We extract SNPs within each
CNV as well as SNPs at flanking regions in our study.
We compared the SNP distance (i.e. number of SNPs)
with the physical distance (e.g., 5 kb) for capturing the
extent of LD and found that the LD is more sensitive to
physical distance. The simulation results indicated that
the accuracy of our algorithm is highest when including
SNPs within one-fold extension of the physical size of
each CNV (Additional file 1, Figure S1). Therefore, the
released program will automatically checks the coordi-
nates of CNVs and SNPs and captures SNPs within the
one-fold extension regions into consideration.

Given a set of haplotype pairs and the total copy num-
ber for each individual (Figure 1), the chromosome-spe-
cific copy number of each haplotype is determined by

Input Output
| Total  Haplotype |  Chromosome-specific
l‘ copy number pairs i copy number |
C:G G 1
Individual 1 2
T:iT CiG G 1
T: T CiG G 1
Individual 2 3
TiA CciCc C 5
N C AlA TIG G 0
Individual 3 2 c Tia clc c 5
CNV Region
Figure 1 Input and output examples. An example of input and
|_output of our program.

J




Huang and Wu BMC Bioinformatics 2011, 12:194
http://www.biomedcentral.com/1471-2105/12/194

first solving a variant of Max-k-Cut problem, which
aims to divide background haplotypes into k clusters.
Then, a variant of Constraint Satisfaction Problem
(CSP) is solved to assign chromosome-specific copy
number to each cluster. Finally, these two procedures
are repeated for all possible k in order to determine the
best solution.

Haplotypes Clustering via Solving Constrained Max-k-Cut

Problem

Through analysis of LD between SNPs and CNVs, the
copy numbers on a CNV are shown to have strong LD
with alleles at flanking SNPs [13,23,24]. The LD struc-
ture implies different chromosome-specific copy num-
bers tend to sit at their own background haplotypes. We
first group haplotypes spanning across each CNV into k
clusters (for all possible k) based on their pairwise ham-
ming distance and total copy numbers. Note that odd
total copy number implies the underlying two chromo-
some-specific numbers should be different (e.g., 3 = 0 +
3 or 1 + 2). Haplotypes clustered into the same set may
represent haplotype background for the same chromo-
some-specific copy number. The input total copy num-
bers and haplotypes are formulated into a weighted
graph described as following (see Figure 2):

(1) Each haplotype is transformed into a vertex.

(2) The weight of edge between two vertices is the
hamming distance between two haplotypes. Note
that the same haplotype from different individuals
are formulated as multiple vertices with zero
distance.

(3) For the haplotype pair with odd total copy num-
ber (e.g., H; and H,), the edge between them is
called hard edge.

(4) For the other haplotype pairs, the edges between
them are called soft edges.

Given the above weighted graph with hard and soft
edges, these haplotypes are grouped into k clusters by
solving a variant of Max-k-Cut problem (called

e R
Total
copy number Haplotype
H ATTCG
Individual 1 3 H AAAT C
H CTACG
Individual 2 2

Ho CAATC

Figure 2 Formulation of CNVs/haplotypes into a weighted

graph. Formulation of CNVs/haplotypes into a weighted graph with

hard and soft edges. The dotted line denotes the hard edge,
|_because the total copy of H! and H, is an odd number.
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constrained Max-k-Cut). A formal definition of the con-
strained Max-k-Cut problem is given below.

Problem: Constrained Max-k-Cut

Given an undirected weighted graph G = (V; E) in which
some edges in E are hard and the others are soft, the
constrained Max-k-Cut problem aims to find a partition
of vertices in V into k sets (X;, X5, ..., X;) such that the
total weight of soft edges across different sets (called
cut) is maximized, requiring all hard edges must be on
the cut.

The original Max-k-Cut is known to be NP-hard
[29,30], which is a special case of this problem when all
edges are soft. Therefore, the problem of constrained
Max-k-Cut is also NP-hard. In order to efficiently solve
the constrained Max-k-Cut problem, we develop a
greedy approximation algorithm which explores larger
solution space by randomizing non-deterministic steps.
The core procedure of this algorithm is given below
(Additional file 2, Figure S2).

Algorithm for Constrained Max-k-Cut

(1) Randomly pick k different vertices as initial ele-
ments for each k set (X7, Xo, ..., Xp).

(2) Without violating the constraint of hard edge,
randomly pick a remaining vertex and assign it into
the set which maximizes the total weight of soft
edges across different sets. This step is repeated
until all vertices are assigned.

Note that the above procedure involves non-determi-
nistic parts in both steps (i.e., initial k vertices and the
order of picking the next vertex). Therefore, this proce-
dure is repeated ten times to explore larger solution
space by trying different initial k vertices in step 1 and
different order in step 2. The best solution among all
trials is outputted as the final solution. The number of
repeated iterations is usually a tradeoff between accu-
racy and efficiency. Nevertheless, we found that the ran-
domized approaches on top of the greedy framework
requires only few iterations (Additional file 3, Figure
S3). Thus, the implemented can run fast in practice.
The following theorem implies that the solution found
by this algorithm is quite close to the optimal solution.

Theorem 1. The algorithm for constrained Max-k-Cut
is a (k - 2)/(k - 1)-approximation algorithm for k > 2.

Proof. Without loss of generality, let the order of pick-
ing vertices be vy, vy, ..., v,. Let W denote the total
weight of all edges in G and

i—1

Wi = Zweight(vi, V)

m=1
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i=1

Let X; be the j-th set of partitioned vertices and

In; = Z weight(vi, vy )
IIWGXJ'

Cutj; = Z weight(v;, v)
v X

where 1 <m<i-1,1<j<k.Then
Inij +Clltij =W;

Suppose Cut;; > Cutyy > ... = Cuty and v; cannot be
put into set X; due to the hard-edge constraint. Then v;
can be put into set X, by the algorithm instead, because
the hard edge only appears between haplotype pairs of
the same individual. The relation between Cut;; and W;
can be computed as following:

k k
(k—1)Cutjp > Z Cutjj = Z (Wi — Iny)
j=2 j=2

k k
>wi= Yy
j=2

j=2
= (k—1)W; — Cut;
Therefore,

Cut;;

Cutp > W; — b1

Let C denote the solution from the greedy algorithm
and C* be the optimal solution, then

! " Cut;;
C>> Cutp > Y (Wi— 1)
i=1 i=1

Sy G
e L
i=1 i=1

1 n
=VV—k_1;;Cmn

1 n
zw—k_lgwi

1
W
k-2
k-1
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Since W > C¥%,

k—2

> C*
“ k-1

C

Copy Number Assignment via Solving Constraint
Satisfaction Problem

After clustering haplotypes into k sets (X3, Xa, ..., Xi), we
then assign k different integers to each set, which corre-
spond to k distinct chromosome-specific copy numbers.
For each individual, summation of chromosome-specific
copy numbers of each haplotype pair should be equal to
his/her total copy number. which can be written as the
following constraint:

Copy(Hi1) + Copy(Hi) = Total(i), 1)

where Copy(H;;) and Copy(H;,) are chromosome-spe-
cific copy numbers for the i-th individual, and Total(i)
is his/her total copy number. For the example shown in
Figure 3(A), Copy(Hs)+Copy(Hg) = 2 for individual 3.
Note that because all haplotypes have been clustered
into the same or different sets, eq (1) can be rewritten
into the following constraint using their set variables X

X, + Xp = Total(i), (2)

where X, and X, denote the sets of these two haplo-
types after clustering (e.g., X; + X3 = 2 for individual 3).

(A)
Total
copy numbers Haplotypes
HI ATAT
Individual 1 1 . X1l HI ATAT
M TCCT H3 ATAT
H3 ATAT H5 ATAT
Individual 2 1
ndividual He ACCA clustering H7 ATAT
H5 ATAT > X2[ 44 acca
Individual 3 2
H6 TCCT
T ATAT x3| H2 TCCT
Individual 4 2 H6 TCCT
H8 TCCT H8 TCCT
(B)
Copy(H1) + Copy(H2) = 1 X1+X3=1 1:X1+X3=1
Copy(H3) + Copy(H4) = 1 X1+X2=1
Py (H3) + Copy ) 1:X1+X2=1
Copy(H5) + Copy(H6) =2 X1+X3=2
2:X1+X3=2
Copy(H7) + Copy(HS8) =2 X1 +X3=2
X1=0 1:X1+ X3 =1 (Unsatisfied)
—> X2=1 —p 1: X1+ X2 = 1 (Satisfied)
X3=2 2: X1+ X3 =2 (Satisfied)
Figure 3 Haplotype clustering and copy number assignment.
Examples of (A) haplotype clustering and (B) Assignment of
chromosome-specific copy number.
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For each individual, a set of constraints with two vari-
ables similar to eq (2) can be generated by repeating the
above formulation (see Figure 3(B)). By assigning dis-
tinct integer numbers to these set variables X;, chromo-
some-specific copy number of each haplotype can then
be determined. Theoretically, all constraints should be
satisfied after the assignment, but practically, not all
constraints can be satisfied, because some ambiguous
haplotypes may not be the true background of the copy
number. In order to satisfy as many constraints as possi-
ble, chromosome-specific copy numbers are assigned to
each set X; by solving a variant of the constraint satis-
faction problem (termed Unique Max-2-CSP). Given a
set of two-variable constraints over n variables (X,
Xy,..., X,,), the Unique Max-2-CSP problem asks for k
unique (distinct) integers assigned to each variable
which satisfied maximum number of constraints.

Problem: Unique Max-2-CSP
Given a set of variables X = {X;, X,, ..., X,,}, a set of
finite integer domains D = {0, 1, ..., d}, where d = n - 1,

and a set of two-variable constraints C = {C;, C,, ..., C,,}
with the following form:
C:Xi+X;=T, foralll<l<m, (3)

where T is a non-negative integer. The Unique Max-
2-CSP asks for an assignment of # distinct integers in D
to Xy, X, ..., X, that maximizes the total number of
satisfied constraints in C.

We first prove a problem called binary Max-2-CSP is
NP-hard, in which the integer domain D is restricted to
{0, 1}, and values assigned to different variables in X are
allowed to be identical (e.g., X; = X5 = 1).

Then, the unique Max-2-CSP problem is shown to be
NP-hard by reduction from binary Max-2-CSP. The
details of these proofs can be found in Additional file 4,
Supplementary Material.

Theorem 2. Unique Max-2-CSP is NP-hard.

In order to solve unique Max-2-CSP more efficiently,
we developed a greedy heuristic algorithm which also
explores larger solution space by randomizing non-
deterministic steps. Let n be the number of individuals
and c¢,,,, be the maximum possible copy number.

Algorithm for Unique Max-2-CSP
For 1 <i<mn 0<c¢ < ¢y do step (1) to step (3) (see
Figure 4).

(1) Initially set X; = c.

(2) Randomly pick a constraint {N: X, + X;, = T'} in
which only X, (or X,) is assigned, where N is the
number of the constraint. If X, (or X, ) = D, and
there are m types of constraints with X, + X, as
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1
1:X1+X3=1 |
: For1<i<nand0<c¢<2
1:X1+X2=1 |
: Solution Table
2:X1+X3=2 !
l .
Satisfied
1
* Fori=landc=0 : number XL X2 | X3
1
| 3 0 1 2
Step (1) |
. ! 1 1 -1 0
Initially set X1 =0 :
Step (2) ! 2 2|y
1
Pick X1 +X3=1 ! 1 1 0 1
v i 3 o1 |2
1:X1+X3=1 |
| 0 0 2 1
2:X1+X3=2 1
1
2 2 1 0
v :
Set X3=2 : 1 0 1 1
1
Pick X1 +X2=1 | 3 0 1 2
v i
1
Set X2 =1
< : ‘ Step (4)
Step (3) :
l
. 1 .
Satisfied xi | x2 | x3 | Satisfied X1 | x2 | x3
number 1 number
1
3 0 1|2 ! 3 0 1|2

Figure 4 The algorithm of assigning chromosome-specific copy
number. An example of the algorithm for assigning copy number
|_by solving unique Max-2-CSP.

following: {N; : X, + X;, = T; }, where 1 < j < m, and
N; is maximum in Nj, assign X,, (or X, ) = T; - D.
Repeat this step until there is no constraint in which
only one variable is assigned.

(3) Compute the number of satisfied constraints with
respect to X; = c.

Ideally, once the value of the initial variable X; is
assigned (e.g., X; = 0), the values of other associated
variables can be indirectly determined (e.g., X; + Xp = 1
or X; + X3 = 2). However, there could be some conflict-
ing constraints existed (e.g., X» + X3 = 3). Therefore, the
possible values of all variables X; are dependent on the
order of assignment (e.g., X; = 0 first, X, = 1 second,
then ...). In reality, there are more variables and the
dependency/conflict relations are more complicated.
Consequently, we repeat the above procedure ten times
to explore different orders of assignments by randomly
prioritizing distinct constraints to be satisfied in differ-
ent rounds. The best solution among all iterations is
recorded into the corresponding row in the solution
table. Note that some variables may have no assignment
due to conflicts with previously assigned variables and
hence are recorded as -1.

After the above procedure is iterated over possible
initial values of all variables, a solution table will be
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created. Each row stands for one assignment corre-
sponding to the initial value of some variable. Note that
although each row represents a set of possible assign-
ment, the assignment may not satisfy all variables due
to the lack of dependency with other variables (e.g., X4
may not be reachable from X;). Therefore, we do step
(4) iteratively using a greedy approach.

(4) Select a row which is not chosen in the solution
table with maximum number of satisfied constraints.
Repeat this row selection until no further constraints
can be satisfied. Note that the variables assigned in
one iteration cannot violate the assignment in pre-
vious iteration.

Finally, the union of assignments selected by this
greedy algorithm is outputted as the solution.

Iteration and Adjustment

The previous two procedures (haplotype clustering and
copy number assignment) are repeated for all possible
numbers of clusters k, because the best setting of k can
not be known in advance. We try all possible k from
two to maximum possible number. For example, if a
CNV have total copy number 2, 3, 4 in populations, the
maximum possible k is 5 since all possible chromo-
some-specific copy numbers range from 0 to 4. We
choose the best k with maximum number of satisfied
constraints in unique Max-2-CSP. In practice, the con-
straints of some individuals may be still unsatisfied after
these iterations, because the ambiguous haplotypes,
which are not the true background of underlying copy
number, may confuse the haplotype clustering. Conse-
quently, we adjust the clustering results for these

X1+X3=1 : Unsatisfied —> Copy(H1) + Copy(H2) = 1
x|l x | x3 X1+X2=1 : Satisfied
» X1+X3=2 : Satisfied
0o 1|2
X1+X3=2 : Satisfied
XI=0|"HI ATAT XI=0|"HI ATAT X1=0| H2 TCCT
H3 ATAT H3 ATAT H3 ATAT
H5 ATAT HS ATAT H5 ATAT
H7 ATAT H7 ATAT H7 ATAT
- ) X2=1 OR  x>—1
X2=1| H4 ACCA H2 TCCT HI ATAT
H4 ACCA H4 ACCA
X3=2|'H2 TCCT
H6 TCCT X3=2[ H6 TCCT X3=2[ H6 TCCT
HS TCCT H§ TCCT H§ TCCT

CUT =52 CUT=42

Figure 5 Adjustment for the individuals with unsatisfied
constraints. An example of adjusting clustering result for the
individuals with unsatisfied constraint. The first constraint is
unsatisfied for X1 = 0, X2 = 1 and X3 = 2. Adjust the clustering
result by putting H1 in X1 and putting H2 in X2 for satisfying the

_ first constraint and maximizing the cut size.
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unsatisfied individuals using the following randomized
approach (see Figure 5 for an example):

(1) Randomly pick an individual with haplotypes vio-
lating the constraint and enumerate all possible
assignments for these two haplotypes such that the
constraint can be satisfied.

(2) For each possible assignment, evaluate the new
cut value in the Max-k-Cut problem and choose the
assignment with maximum cut among all
possibilities.

(4) Repeat step (1) and step (2) for the remaining
unsatisfied individuals until all of them are satisfied.

Because the order of individuals processed is non-
deterministic, we also repeat above procedure ten times
and output the best solution among them.

Simulation

The simulation of LD and HWE generated two series of
copy numbers and SNP genotypes from 16 individuals.
The haplotype phases are inferred via PHASE [27]. The
first series of data sets simulate diplotype configurations
completely match HWE (P = 1.0, Chi-square). The
flanking SNPs are simulated starting from perfect LD
(average r* = 1.0). Subsequently, the remaining data sets
of lower LD are constructed by flipping SNP alleles at
random. The second set of experiments simulated an
imperfect HWE data sets by adding/deleting some copy
number alleles from the HWE data sets, which aims to
slightly deviate from the expected HWE frequency (P =
0.98). The remaining data sets of LD decay are gener-
ated in a similar way.

The simulation using copy number on X Chromo-
somes is also adopted. Because there is only one X chro-
mosome in each male, the total copy number obtained
on X chromosome directly represents the chromosome-
specific copy number [9]. We use CNVs and haplotypes
in X chromosomes of males from the HapMap project
during simulation. The total copy numbers at one CNV
is simulated by randomly pairing two copy numbers on
two different X chromosomes.

In order to compare the accuracy of our algorithm
and CNVphaser [1,16], which outputs posterior prob-
abilities of each copy number, we parsed the output files
of CNVPhaser and picked up the diplotype configura-
tion with highest probability for each individual. The
accuracy of inferred copy number configurations is
defined as following:

CCOTTBC[

Accuracy =

total
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where Cgy,rec; is the number of correctly inferred copy
number configurations and C,,,,; is the total number of
configurations.

Results

The proposed algorithms have been implemented as a
program called CSCNPhaser, which is available at
http://www.cs.ccu.edu.tw/~ythuang/Tool/ CSCNPhaser/.
We retrieved haplotypes of 270 individuals from Phase
II of the International HapMap Project [26]. These indi-
viduals include 30 trios from the Utah, USA region
(CEU); 30 trios from the Yoruba in Ibadan, Nigeria
(YRI); 45 unrelated Japanese individuals from Tokyo,
Japan (JPT); and 45 unrelated Han Chinese individuals
from Beijing, China (CHB). In addition, total copy num-
bers at 1,319 CNVs typing on the same 270 individuals
are downloaded from [9]. We consider haplotypes
within the CNV as well as haplotypes at flanking
regions, whereas the best length of extended haplotypes
is determined by simulation (see Method).

Simulation on LD Decay and HWE

We compared the CNVPhaser [1,16] and our program
CSCNPhaser over two series of data sets with respect to
different LD and HWE (see Method). Although the
copy numbers in both experiments almost match the
ideal HWE, the slight deviation from HWE is shown by
the P values using the Chi-square test. The first set of
experiments simulated complete HWE, in which the
copy alleles in all data sets completely follow the
expected frequency (P = 1.0). The flanking SNP alleles
are randomly flipped to decay the LD. Figure 6(A) plots
the accuracies of CSCNPhaser and CNVPhaser at differ-
ent degrees of LD under complete HWE. Because
CSCNPhaser is designed based on the LD of back-
ground haplotypes, the accuracy is decreasing as the
background haplotypes are less LD-informative. Unex-
pectedly, we found the accuracy of CNVPhaser also
deteriorates as LD decays. This is because CNVPhaser
estimated the combined frequencies of the entire haplo-
type and copy number to match HWE, which implicitly
captured LD in a light way. CSCNPhaser outperforms
CNVPhaser as the background haplotypes are more LD-
informative, and both accuracies are worse as haplotypes
are less informative.

The second set of experiments simulated an imperfect
HWE data sets by adding/deleting a few copy number
alleles to slightly deviate from the expected HWE fre-
quency (P = 0.98). Note that the entire allele frequency
spectrum is still close to that of HWE. Figure 6(B) plots
the accuracies of CSCNPhaser and CNVPhaser at differ-
ent degrees of LD. In high LD, both programs can still
achieve high accuracies.
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(a) =6=—CNVPhaser =f=CSCNPhaser

Accuracy

1 092 085 079 072 069 066 0.59 0.49

Average r?

==©==CNVPhaser ==f==CSCNPhaser

(b)

Accuracy

1 092 085 079 072 069 066 0.59 0.49
Average r?

Figure 6 Accuracies of inferred chromosome-specific copy
number. (A) The average accuracy of CNVphaser and CSCNPhaser
under complete HWE and various LD. (B) The average accuracies of

CNVphaser and CSCNPhaser under near HWE and various LD.

Although the major trends are similar to previous
experiments, CNVPhaser is slightly worse than previous
experiment compared with our method, implying it is
more sensitive to HWE deviation.

Consistency with Mendelian Inheritance

The developed program is further applied on 1,292
CNVs on autosomal chromosomes typing over 270 Hap-
Map individuals from [9]. We discarded CNVs with less
than 10 SNPs, because they are less informative about
LD. There are 969 CNVs used in following experiments.
The copy numbers observed among normal individuals
should be overwhelmingly inherited from their parents.
By running our program separately for each individual
within 60 parent-offspring trios (CEU and YRI panels),
correctness of our method can be justified by checking
the Mendelian consistent rate of inferred chromosome-
specific copy numbers within trios [9]. More than 97
percent of CNVs have Mendelian consistent rate larger
than 0.9 (see Figure 7). These results indicate that
majority of copy numbers inferred by our method is


http://www.cs.ccu.edu.tw/~ythuang/Tool/CSCNPhaser/
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under expectation from the law of Mendelian inheri-
tance. The remaining few CNVs might imply novel dele-
tions/duplications or translocation-mediated CNVs
(31,32].

Distributions of Copy Number Configurations in Human
Populations

The chromosome-specific copy numbers of 270 indivi-
duals in CEU, YRI, and CHB+JBP HapMap panels are
inferred by our program in order to investigate the dis-
tributions of haplopid and diploid configurations in
human populations. Figure 8(A) plots the haploid distri-
bution of chromosome-specific copy numbers inferred
by our program. Our results indicate that one copy on
each chromosome is the major allele in the population
as expected. Zero copy (deletion) is the second frequent
allele compared with two copies (duplication). Frequen-
cies of higher chromosome-specific copy numbers are
relatively lower. This is not unexpected because multiple
duplication events at the same CNV locus are relatively
less common.

In the distribution of diploid configurations (Figure 8
(B)), 1/1 configurations are the most frequent form as
expected. We observed 0/2 configurations (deletion
+duplication) is the second frequent one. This phenom-
enon may be explained by the fact that 1/1 and 0/2 con-
figurations contribute equally to gene copy balance in
humans. In order to assess the miscalled rates of 1/1
into 0/2 configurations, we conducted a series of simula-
tion experiments of only 1/1 diplotype configurations
(i.e., no CNV). Because 1/1 configuration is miscalled to
0/2 by CSCNPhaser only when the background
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Figure 8 Distributions of chromosome-specific copy numbers
and diploid copy number configurations. Distributions of
chromosome-specific copy numbers and diploid copy number
configurations. (A) Distribution of chromosome-specific copy
numbers in three HapMap panels. (B) Distribution of diploid

configurations in three HapMap panels.

haplotypes are not LD-informative, we investigated the
miscalled rates of data sets starting from LD-informative
haplotypes down to low-LD ones. Specifically, the haplo-
types are one-by-one replaced with non-informative
haplotypes. Figure 9 plots the miscalled rates with
respect to the percentage of replaced haplotypes. When
the majority of haplotypes are LD-informative (>60%),
the miscalled rate is low (~0.06). As more haplotypes
are replaced with non-informative ones, the miscalled
rate goes up as expected.
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Figure 9 The miscalled rates of 1/1 configurations to 0/2
configurations. The miscalled rates of 1/1 configurations to 0/2
configurations with respect to the percentage of non-informative
haplotypes.
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On the other hand, 0/1 and 0/0 configurations (hemi-
zygous and homozygous deletions) are more frequent
than the remaining duplication forms, probably due to
the low frequencies of high-copy alleles. Although these
distributions are consistent across three HapMap panels,
these results could be still biased due to low-LD back-
ground of recurrent or translocation-mediated CNVs.
Therefore, these distributions are for reference only,
which require experimental validations before further
interpretation.

Capability and Efficiency

Although the maximum copy number in the population
is still not clear, it is worth of interest to know the cap-
ability and efficiency of both programs for processing
data sets with large copy numbers. Figure 10 plots the
average running time of CNVPhase and CSCNPhaser
over a range of maximum copy numbers. Both programs
are able to accept input of up to 60 copies. The differ-
ences are the running time and memory usage.
CNVPhaser requires longer time (>1 min) and more
memory (>1GB) for >50 copy numbers, whereas
CSCNPhaser is very fast (within seconds) and does not
consume much memory.

Discussion

Strength and Weakness of LD-based Inference
CNVPhaser was developed by estimating allele frequen-
cies using HWE, while our CSCNPhaser investigated the
haplotype background of each copy number. Although
not explicitly stated, we observed CNVPhaser implicitly
capture background haplotypes in a light way, because
the frequencies are estimated over the entire copy num-
ber/haplotype combinations. Therefore, its accuracy also
decreases as LD decays. For CNVs having high LD with
flanking SNPs, our program performs better than
CNVPhaser. In low LD regions with only 1/1 configura-
tions, we observed that CSCNPhaser may miscall them

=©==CNVPhaser ==f==CSCNPhaser

160 ~
140
120
100
80
60
40
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Running Time (Sec)
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Maximum Copy Number

Figure 10 Comparison of capacity and efficiency. The running
time of CNVPhaser and CSCNPhaser for processing data sets with
different maximum copy numbers.
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as 0/2 configurations. On the other hand, in data sets
with mixed configurations (i.e., 1/1 and 0/2), we
observed that the miscalled rate is lower, because these
data sets contain haplotypes LD-informative of 0/2 con-
figuration, which are used for better distinguishing 1/1
from 0/2 configurations in our algorithm. Most com-
mon, diallelic CNVs have been found to have strong LD
with flanking SNPs, and most low-frequency CNVs even
segregated on specific haplotype background [9]. There-
fore, we anticipate it is useful to look at the haplotype
background for inferring copy number of most CNVs.

It should be noted that the LD-based approach is not
suitable for recurrent CNVs or translocation-mediated
CNVs, in which their background haplotypes are less
informative of the copy number. In fact, our simulation
on X-chromosome CNVs found two possible recurrent
CNVs with lower accuracies compared with other ordin-
ary CNVs (Tables 1 and 2). Nevertheless, the CNVPha-
ser and our program can work in a hybrid way to
overcome the limitation. The LD of SNPs across the
CNV can be computed first. If the LD is low (i.e., recur-
rent CNVs), it might be a clue for not looking into the
haplotypes for copy number inference. That is, we can
run the CNVPhaser but exclude SNP genotypes for pure
HWE frequency estimation. As for other CNVs with
LD-information haplotypes, our program can be used to
achieve higher accuracies. With the release of next gen-
eration sequencing platforms, SNPs and CNVs are often
collectively called in each sequencing project. And the
accuracies of inferring these CNVs can be improved by
further looking into the LD background of each copy
number.

Strategies for Solving Constrained Max-k-Cut

The original Max-k-Cut problem can be solved by a
randomized algorithm which randomly partition all ver-
tices into k sets. In addition, it can be also solved by a
deterministic greedy algorithm which iteratively assigns
one vertex into the set that maximizes the cut size. In

fact, both algorithms return a good approximate solu-
. s k—1 . .
tion within a factor of . of the optimal solution, and

the semidefinite-programming (SDP) relaxation can
achieve a better approximation bound [30]. Therefore, it
is natural to consider the three strategies for solving the

Table 1 Accuracies on X chromosome Simulation

CNV IDs Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

16 CNVs 0788272 0828395  0.869445 0917284  0.953704
CNV2621 0585185 0618519 0611111 0666667 0685185
CNV2682 0314815 0222222 0359259 0292593 0285185

The average accuracies of 16 ordinary CNVs compared with those of two
recurrent CNVs.
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Table 2 Copy numbers of the 18 CNVs on X
chromosomes

CNVid Copy Number CNVid Copy Number
2593 0,1 2654 0,1
2603 0,1 2659 0,1
2604 0,1 2675 01
2619 0,1 2678 0,1
2621 0,1,2 2682 1,2,3
2627 0,1 2694 0,1
2636 1.2 2704 01
2639 12 2706 0,1
2648 0,1 2707 12

The copy numbers at 18 CNVs on X chromosomes in males. Two possible
recurrent CNVs are highlighted.

constrained version. Although not presented in this
paper, the random partition method was ever considered
but later withdrawn due to the bad accuracies in all
experiments. It is because the random partition method
simply guess the solution, which can’t work in practice
although the approximation ratio is theoretically good.
The SDP strategy is theoretically sound but the running
time is slow in our previous study [33], and the SDP
implementation is complex so that the program is often
not easily portable to all platforms. On the other hand,
the greedy algorithm (with randomization enhancement)
can achieve high accuracies and run very fast in all
experiments. As a consequence, the greedy solution is
taken in order to perform genome-wide experiments
with high accuracies and within reasonable period of
time.

Integration of Greedy and Randomized Approaches
Theoretically, the two optimization problems (Max-k-
Cut and Max-2-CSP) can be both solved by a determi-
nistic greedy approach or a pure randomized approach
(e.g., random partition for the k-cut problem). The
greedy approach is simple and fast. However, the solu-
tion found is often only theoretically sound but not
comparable with other heuristic methods in practice.
This is due to the fact that the ordinary greedy approach
tends to find local optimum solution instead of global
optimum solution. On the other hand, the pure rando-
mized (blind-search) approaches do not have the ten-
dency of finding local optimum solution but requires
numerous iterations for finding a good solution. There-
fore, when solving both algorithms, we used the greedy
algorithm as a framework and randomized the non-
deterministic steps for searching better solutions. The
results showed that the iterations required of this hybrid
approach are far less than those of pure randomized
approaches, while obtaining better solutions than an
ordinary greedy algorithm.
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Conclusion

In this study, we developed new computational models
and combinatorial algorithms for inferring chromo-
some-specific copy numbers by distinguishing their hap-
lotype background. Simulation showed that our method
is accurate and outperformed existing method as the
background haplotypes are LD-informative of the copy
numbers. The inferred copy numbers are consistent
with Mendelian inheritance for 97% of CNVs within
parent-offspring trios. The inference of copy numbers in
microarray and sequencing platforms are often con-
founded by a number of different factors. This study
showed that integration of haplotypes into copy number
estimation is able to improve the accuracies, especially
for those CNVs having strong LD with SNPs.

Additional material

Additional file 1: Supplementary Figure S1. Simulation of extended
regions to the left or right of a CNV. The results indicate accuracy is
highest when the extension is equal to the size of CNV.

Additional file 2: Supplementary Figure S2. An example of the
algorithm for solving the constrained Max-k-Cut problem.

Additional file 3: Supplementary Figure S3. The average accuracies of
CSCNPhaser with respect to different iterations used.

Additional file 4: Supplementary Material. Other Methods and proofs
of theorems in this paper.
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