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Abstract

Background: The search for cluster structure in microarray datasets is a base problem for the so-called “-omic
sciences”. A difficult problem in clustering is how to handle data with a manifold structure, i.e. data that is not
shaped in the form of compact clouds of points, forming arbitrary shapes or paths embedded in a high-
dimensional space, as could be the case of some gene expression datasets.

Results: In this work we introduce the Penalized k-Nearest-Neighbor-Graph (PKNNG) based metric, a new tool for
evaluating distances in such cases. The new metric can be used in combination with most clustering algorithms.
The PKNNG metric is based on a two-step procedure: first it constructs the k-Nearest-Neighbor-Graph of the
dataset of interest using a low k-value and then it adds edges with a highly penalized weight for connecting the
subgraphs produced by the first step. We discuss several possible schemes for connecting the different sub-graphs

as well as penalization functions. We show clustering results on several public gene expression datasets and
simulated artificial problems to evaluate the behavior of the new metric.

Conclusions: In all cases the PKNNG metric shows promising clustering results. The use of the PKNNG metric can
improve the performance of commonly used pairwise-distance based clustering methods, to the level of more
advanced algorithms. A great advantage of the new procedure is that researchers do not need to learn a new
method, they can simply compute distances with the PKNNG metric and then, for example, use hierarchical
clustering to produce an accurate and highly interpretable dendrogram of their high-dimensional data.

Background

The introduction of microarrays and other high-
throughput technologies over the last years has changed
fundamentally the biological and biomedical research.
DNA microarrays, in particular, allow the simultaneous
monitoring of thousands of genes on different experi-
mental conditions or time points. Several problems can
be faced with this technology. For example, it can be
used for the identification of differentially expressed
genes [1], which could highlight possible gene targets
for more detailed molecular studies or drug treatments.
Another application is to assign samples to known
classes (class prediction) [2], using genetic profiles to
improve, for example, the diagnosis of cancer patients.
Both are supervised applications, in which all samples
belong to a previously known class. It is very common,
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also, to use microarray data for (non-supervised)
exploratory analysis. A common application is to use a
clustering algorithm to group the different genes. As
stated by Richards et al. [3], clustering in this way can
help summarizing datasets, reducing from thousands of
genes to a small number of clusters. It can also help
find systemic effects, as looking for small changes in
expression levels across many genes in a cluster could
be a better strategy for finding the causes of complex,
polygenic disorders than looking for large changes in
single genes [4]. Clustering genes can be seen as a “clas-
sical” clustering problem, with thousands of examples
(genes) measured over a small number of variables (tis-
sues, experimental conditions, etc.). The other common
non-supervised analysis is to cluster the samples (tis-
sues/diseases/patients). The goal in this second situation
is to find groups of samples sharing similar gene expres-
sion patterns. Seminal works in this area are Golub
et al. [2] and Alizadeh et al. [5], both aimed at the dis-
covery of new cancer subtypes. However, clustering
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samples is very different to clustering genes. In this case
the analysis is made over so-called “wide datasets”, with
a few samples measured over thousands of features
(genes). Dealing with high dimensional spaces is a
known challenge for clustering procedures, as they
usually fail to handle manifold-structured data, i.e. data
that form low-dimensional, arbitrary shapes or paths
through a high-dimensional space.

Clustering is a key component of pattern analysis
methods, aiming at finding hidden structures in a set of
data. Informally, the objective is to organize the samples
in a way that “similar” objects are grouped together. It is
a very active field of research [6-9], with applications
that cover diverse problems, from image segmentation
in computer vision [10] to characterizing customer
groups based on purchasing patterns [11] and, as men-
tioned, the analysis of microarray expression data [12].

The problem of finding clusters in a dataset can be
divided into three stages: i) measuring the similarity of
the objects under analysis, ii) grouping the objects
according to these similarities, and iii) evaluating the
“goodness” of the clustering solution. The last stage has
received little attention until recent years, when a grow-
ing interest in the problem can be noticed [13-15]. The
second stage (finding clusters efficiently given a set of
similarities between objects) has been widely studied in
the literature [16] and several clustering algorithms have
been introduced. They are usually divided into hierarch-
ical and partitional methods [17]. Hierarchical clustering
(HC) algorithms find successive clusters using previously
defined ones, in an agglomerative ("bottom-up”) or divi-
sive ("top-down”) way [18]. The result of this process is
a binary tree, called a dendrogram [19]. HC has been
extensively applied to microarray data [2,5,20-22]. De
Souto et al. [12] noted that more than 90% of published
clustering applications to microarray data use HC. Parti-
tional clustering algorithms find all the clusters simulta-
neously as a division of the data and do not impose a
hierarchical structure. One of the most widely used
approaches is the K-Means [23] algorithm (or its related
version PAM [24]) that, starting from k (usually ran-
dom) clusters, searches iteratively for a locally optimal
solution of the clustering problem. Partitional methods
have also been successfully applied to microarray data
[25-28]. Recently, Frey and Dueck [8] proposed the
innovative and computationally efficient Affinity Propa-
gation (AP) algorithm. According to this method, each
data point is viewed as a node in a network. Nodes
exchange messages until a set of cluster-centers emerges
as a solution. The algorithm shares characteristics with
both hierarchical and partitioning methods. To the best
of our knowledge, the work of Michele Leone and
Weigt [29] is the only published application of AP to
microarray data.
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Several clustering methods targeted to microarray data
have been proposed [30-36], but, as discussed by De
Souto et al. [12], most researchers still rely on the tradi-
tional HC method with Pearson’s correlation or Eucli-
dean metric, mostly because of its ease of use and
availability. According to this, instead of developing new
algorithms appropriate for high-dimensional microarray
problems, we propose here to obtain better solutions
going back to stage one of clustering, i.e., by finding bet-
ter ways to measure similarities between data-points.
These improved distances can be used by any base clus-
tering method to produce better clustering results. In
some sense, our view shares the spirit of kernel methods
[37], looking for solutions to new problems by using
appropriate new metrics together with well-known pat-
tern analysis algorithms.

In the last years, several methods for characterizing
the non-linear manifold where a high-dimensional data-
set may lie were developed, like ISOMAP [38], Locally
Linear Embedding [39] or Laplacian Eigenmaps [40].
Basically, they all look for local neighborhood relations
that can be used to produce low dimensional projections
of the data at hand. In this paper we discuss a new
strategy to evaluate similarities in manifold spaces that
easily extends the application of any clustering algo-
rithm to these cases. Following ISOMAP, we first create
the k-nearest-neighbor-graph (knn-graph) of the data,
using a low k-value. If the graph is disconnected, which
is expected in clustering problems, we add a number of
edges (following different strategies that will be dis-
cussed later) in order to create a connected graph. The
key point of our method is that the added edges have a
highly penalized length. We then apply an appropriate
algorithm to measure inter-point distances along the
connected graph and use these measures as (dis)similari-
ties. We call the method the PKNNG metric (for Pena-
lized K-Nearest-Neighbor-Graph based metric). The
PKNNG metric can be applied to any base measure of
similarity (Euclidean, Pearson’s correlation, Manhattan,
etc.) and the resulting distances can be clustered with
any of the usual methods (HC or K-means, for
example).

There are some methods proposed in the recent
literature that can handle arbitrary manifolds. In an
early attempt to use manifold projection in clustering,
Polito and Perona [41] showed how, in theory, LLE can
naturally produce clusters. An interesting method (Path
based clustering) based on graph theory was developed
by Fisher and Buhmann in a series of papers [42-44].
They start by assuming that, if two points belong to the
same cluster, there should be a path between them,
going over other points in the same cluster, such that
all distances in that path are small. They consider then
that the length of a given path can be defined as the
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maximum distance between two points in the path. Fol-
lowing, they define the distance between two points as
the minimum length among all the paths that connect
the two points. We call this metric the Path Based
Metric (PBM). The idea of measuring distances based
on “neighbor of a neighbor” relations is the same we
use. The main differences are that we use a k-nearest-
neighbor graph, we consider all the edges in the path
when we measure distances and we give a less extreme
value to the maximum edge. PBM and the PKNNG
metrics are basically heuristics, based on simple notions.
There are also principled methods to find good metrics
[45], learning the metric actively from the data and
from examples of similar and dissimilar points provided
by the final user. In principle the method can learn
non-linear metrics, but it is not designed for data lying
in manifolds. The well-known Single Linkage Hierarchi-
cal clustering [18] is efficient and has been widely used.
This method is equivalent to finding the Minimum
Spanning Tree (MST) of the dataset, and thus can also
be considered as based on graphs.

Several more general but very efficient clustering
methods have been introduced in the last years. We
selected three of them to compare with our proposal of
using a simple clustering method as PAM or HC with
the new PKNNG metric. The Spectral Clustering algo-
rithm [6,46] has recently received increasing attention
and is considered to be effective for arbitrary manifolds
using an appropriate kernel. The Evidence Accumula-
tion Clustering algorithm (EAC) method of Fred and
Jain [47] is based on the innovative idea of producing
several different clustering solutions and extracting from
them the information to produce the final clustering.
The main idea is that if a pair of points is usually clus-
tered together, under different conditions, then they
could be assigned to the same cluster with high confi-
dence. Recently, Kim et al. [48] have presented the
Multi-K clustering methods, which is based on the same
general idea of ensemble clustering.

In the next Section we show results using some artifi-
cial problems in high-dimensional spaces and discuss
the application of the PKNNG metric to microarray
datasets. Later, in the Methods Section, we explain in
more detail the method and introduce and evaluate, in
controlled experiments with other artificial datasets, the
different schemes we use to connect the subgraphs and
the diverse penalization functions considered in this
work.

Results and Discussion

Evaluation on artificial datasets

In a first series of experiments we used artificial datasets
to evaluate the behavior of the new metric in controlled
situations, in which we change the difficulty of the
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clustering problem by setting, for example, the dimen-
sionality of the input space or the distance between the
clusters. In this and all other experiments in this work
we consider that we know in advance the right number
of clusters for each dataset (we discussed in the Intro-
duction that we do not analyze the problem of finding
the number of clusters in this work).

Experimental settings

We evaluated the proposed metric using five synthetic
noisy datasets that simulate microarray samples:

A-1 The first dataset is taken from Kim et al. [48]. It is
a 3 clusters problem in a 300 genes space, where each
cluster has 50 samples. As explained by the authors, the
300 genes are divided into ten groups or blocks, each
one with 30 genes. In each block for a given cluster all
the 30 dimensional samples were commonly drawn
from a Normal distribution N(o3g, I39), where a3 is a
30-dimensional vector with all components equal to «,
which is randomly chosen from {-0.5, 0, 0.5} in each
block and I3 is the identity matrix in a 30 dimensional
space. As explained by Kim et al., this dataset represents
gene sets with co-expression patterns that are com-
monly up or down regulated under specific experimental
conditions.

A-2 The previous dataset is a simple clustering pro-
blem, where all the clusters are well separated spheres.
In this second artificial problem we start to consider
the more complicated case of elongated clusters. This is
a two clusters problem in a 100 genes space, where
each cluster has 25 samples drawn from a Normal dis-
tribution. Each cluster has an elongated shape in the
100 dimensional space, where the principal direction
(taken at random) explains 10% of the total standard
deviation in the problem, and all the other dimensions
have a similar deviation (the remaining 90% of the total
standard deviation divided equally among the 99 direc-
tions). The principal axes of both clusters are parallel,
separated by one and half times the deviation in the
principal direction. This dataset simulates a problem in
which all genes are highly correlated, but have a shift in
their expression level for the two experimental
conditions.

A-3 This is also a two clusters problem, generated as in
A-2, where the centers of each cluster are in the same
position as in A-2 (but separated by two times the
deviation in the principal direction), but each of the two
clusters has a different random direction for its principal
axis. This dataset simulates a problem in which all genes
are still correlated, but the correlation matrix is different
for each experimental condition, which leads to a better
separation when using correlation as base metric.

A-4 This is the three clusters version of problem A-3,
where each of the three clusters has a different random
direction for its principal axis. The separation among
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neighbor clusters is equal to the deviation in the princi-
pal direction.

A-5 This last dataset is similar to problem A-4, three
elongated clusters with different correlation matrices
and the same separation, but this time there are 200
genes that express differentially for the three conditions,
and there are also 200 noisy genes (sampled from a cen-
tered Normal distribution with the same deviation used
in all non-principal directions).

We considered two base metrics to evaluate similari-
ties: Euclidean and Pearson’s correlation. We evaluated
distances with the PKNNG metric using 5 neighbors,
MinSpan connection and exponential penalization. We
first verified on reduced experiments with the artificial
problems that the choice of the number of neighbors is
not critical to the final clustering results. In the Meth-
ods Sections we discuss in particular the low depen-
dence of the results with the connection and
penalization methods, using other three artificial
problems.

For comparison with the PKNNG metric we also used
the PBM and RBF metrics. The PBM is a graph-based
metric that we already described in the Introduction. It
has no free parameters. The RBF or Gaussian metric is
based on the RBF inner product (x, z) = exp(||x - z||)*/c),
using the property of a kernel vector space that relates
kernel to distance, ||x - z||* = (x, &) + (z, 2) - 2(x, 2). This
metric has a free parameter, o, that acts as a global scale
for the solution. We used two different procedures to set
the value of 0. In the first case we set o to the median
of the base distance (Euclidean or correlation) among all
pairs of points in the dataset. This follows the default
strategy for model selection under the RBF kernel in the
Kernlab R package [49]. We call this metric RBF-mean.
As a second strategy, we used the procedure suggested
by Ng et al [46] and implemented in the spectral cluster-
ing method in the same R package. In this case the cri-
terion is to select the o that gives the minimum within-
cluster sum of square distances in the projected space
for the spectral clustering method. We call this metric
the RBF-min.

In all the experiments in this Subsection we use two
of the most well-known clustering methods: Hierarchical
clustering (HC) with average linkage and PAM, an
appropriate version of K-means. For each evaluation we
applied the following procedure: First we created a reali-
zation of the dataset. Then we measured distances in
the dataset using the base, PBM, PKNNG, RBF-mean
and RBF-min metric and applied HC and PAM to all
distances. We evaluated the goodness of the solutions
using the corrected Rand (cRand) index [50], also
known as Adjusted Rand index (ARI), comparing the
assigned cluster with the true label. For each dataset
under study we produced 100 evaluations following this
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procedure and analyzed the corresponding distributions
of cRand values.

Results

Figure 1 shows the results of the analysis of the depen-
dence of PKNNG with &, the number of neighbors
considered in the graph, over the five artificial datasets
using two different base metrics (Euclidean and Pear-
son’s correlation) and two clustering methods (PAM
and HC-average). For all the figures in this Section,
the results are shown as boxplots of the distribution of
cRand values corresponding to 100 experiments. For
each distribution, the bottom and top of the box show
the lower and upper quartiles, respectively, and the
whiskers represent the lowest or highest datum still
within 1.5 IQR of the corresponding quartile. Is is
clear from the figure that the results are almost inde-
pendent of k. In only 3 out of the 20 cases there is
some dependence on k, all of them using the HC-aver-
age method. Figures 2, 3, 4 and 5 show the results of
the comparison of the five metrics. In Figure 2 we use
PAM clustering with distances based on the Euclidean
metric. It is clear that in all cases the clustering results
with the new PKNNG metric are clearly superior to
those obtained with the plain Euclidean metric. Also,
PBM shows a very poor performance, always similar to
a random clustering. The PBM metric was designed to
work in cases in which there are clear separations
among the clusters, which is not the case in our artifi-
cial problems when using the euclidean base metric.
When the clusters are not completely separated, PBM’s
base idea that only the longest edge counts for mea-
suring distances in the graph leads to wrong results.
PKNNG also usually gives a high weight to long edges
in the graph, because in most cases they are the pena-
lized ones, but it also considers the contribution of all
other edges in the path connecting two points. In this
sense, our metric can be viewed as a softened version
of PBM. Both versions of the RBF metric show equiva-
lent results, always similar to the base Euclidean metric
in this case. Finally, all five datasets seem to be equally
difficult using these settings.

In Figure 3 we show the results using the same base
metric but with the HC clustering method. The results
are very different this time, which highlights the impor-
tance of evaluating metrics with diverse clustering meth-
ods. For all metrics but the new PKNNG, HC tends to
create one very small cluster in all problems (in fact, we
had to force HC to discard clusters with less than 4
datapoints to obtain the non-random results in the
figure). The PBM metric show the same poor results as
with PAM. In the A-1 dataset the results are similar to
PAM (Figure 2), but in the other four cases there is a
big drop on performance for all metrics but the new
PKNNG.
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We also applied all methods using as base metric the
Pearson’s correlation. There are clear differences com-
paring with the Euclidean base metric. In Figure 4 we
show the results for the PAM clustering method. RBF-
min shows a very poor performance in this case, due to

a bad automatic selection of the o parameter. PBM, on
the other side, is better suited for this setup, in which
the clusters are more separated. In fact, PBM produces
the best results for the A-5 dataset. Overall, PKNNG is
still the best method but the differences are lower in
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this case. All methods show bad results for the A-2
dataset. This is simply due to the fact that, as the two
clusters are colinear, there is no separation between
them using Pearson’s correlation. This is a clear limit
for the class of metrics that we consider in this work,
which are improvements of a given base metric and
work by enhancing the separation among certain data-
points. The clusters in problems A-3, A-4 and A-5,
which are elongated but no colinear, can be more easily
separated by Pearson’s correlation. The results with HC
clustering, Figure 5 are qualitatively similar, but there
are some differences in performance, in particular for
the PBM metric in this case, which again shows the
importance of evaluating metrics with diverse clustering
methods.

Overall, considering the complete results on our artifi-
cial problems, PKNNG seems to be the more stable and
efficient metric of the five compared in this work. It is
interesting to note that the PKNNG metric produce
accurate results both for elongated manifolds (A-2 to
A-5) and for typical compact cloud data (A-1).

Evaluation on gene expression datasets

In this second series of experiments we discuss the use
of the PKNNG metric on real gene expression datasets.
Experimental settings

We included eight publicly available gene expression
datasets in this analysis. Their main characteristics are
summarized in Table 1. In the first seven datasets the

objective is to cluster the different samples based on the
information provided by the expression levels of a sub-
set of genes. In these seven cases the samples have
known classes corresponding to different tissues/pheno-
types, measured by laboratory analysis (golden rule). In
five of these datasets (ALB, LEU, BCLP, CNS and CGM)
we used the reduced versions of Monti et al. [15]. In
particular, for the CGM dataset we performed a second
gene selection reducing the number of input genes to
1000, as in all the other datasets, considering the genes
with the highest standard deviation. For the ALI dataset
we used the version provided by De Souto et al. [12]
and for the THY dataset we used the original version.

Table 1 Gene Expression datasets

Dataset n Classes p
AML-ALL [2] (ALB) 38 3(11-8-19) 999
Alizadeh [5] (ALI) 62 3 (42-9-11) 1000

Leukemia [57] (LEU) 248 6 (43-27-15-79-20-64) 985
Novartis Tissue [58] (BCLP) 103 4 (26-26-28-23) 1000
CNS Tumors [59] (CNS) 48 5 (10-8-10-10-4) 1000
Normal Tissue [60] (CGM) 90 13 (5-9-7-11-6-7-6-5-12-10- 1000
4-53)
Thyroid tumor GEO [GSE3467] 18 2 (9-9) 1000
(THY)
Yeast [20] (Y) 208 4 (41-121-35-11) 79

Details on the eight gene expression datasets used in this work. We show the
number of samples (n), variables (p) and the distribution of samples among
the different classes.
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In both cases we selected the subset of 1000 genes with
the highest standard deviation. The last dataset (Y) is
the only case in which the objective is to find four func-
tional classes of genes based on information about dif-
ferent experimental conditions. In this case we used as
input the original version of the dataset [20] and as
golden rule the 4 functional classes selected by BenHur
et al. [13] (one of the classes is in fact the union of two
different functional classes). We included this dataset in
our experimentation because it shows an intermediate
gene clustering situation, with a fairly balanced exam-
ples/variables ratio (n ~ p) and a few functional classes.
Overall, we selected datasets with diverse difficulties,
regarding the number of classes, the balance among
them and the examples/variables (n/p) ratio. Following
Monti et al. [15], we normalized all datasets by row to
mean zero and standard deviation one (for each sample
we normalize genes for the first seven datasets and
experimental conditions for the last one).

We used the same experimental settings as with the
artificial datasets. The only difference is in the sampling
procedure. In this case, for each evaluation we took a
sample with 95% of the examples in the dataset. Then
we measured distances in the sample using all the
metrics and applied the clustering method (HC or
PAM) to all distances. For each dataset under evaluation
we produced 100 evaluations following this procedure.
Again, we evaluated the goodness of the clustering solu-
tions using the cRand index, but this time comparing
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the assigned clusters with the original biological classes
(golden rule). We also verified that there in no strong
dependence on the value of k. We show the correspond-
ing results in the additional file 1: Other evaluations.
We also applied three state-of-the-art clustering algo-
rithms, described in the Introduction, to all eight gene
expression datasets: i) The spectral clustering method
with the RBF-min metric, ii) The EAC method with
average linkage in its second step and iii) the recently
introduced Multi-K clustering method. We also consid-
ered a fourth clustering method in this comparison,
Model-Based Clustering (MBC) [51], which showed
good results in gene-expression problems [52]. For this
method we used a covariance structure consisting of a
constant diagonal matrix for each cluster, but allowing a
different constant for each cluster, which is the most
complex structure that the method could use given the
low number of samples in our gene expression datasets.
In all cases we used the same protocol described in the
previous paragraph for sampling and evaluation (in fact
we used exactly the same 100 samples with 95% of the
examples each one).
Results
In Figure 6 we show a comparison of the five metrics
using the PAM clustering algorithm and the Euclidean
base metric on the eight gene expression datasets
considered in this work. PKNNG shows the more con-
sistent behavior. In seven out of the eight datasets it is
equivalent or superior to the other metrics. PBM and
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Figure 6 Results on gene expression datasets: Comparison with other metrics using PAM and the Euclidean base metric. Evaluation of
the PKNNG metric on eight gene expression datasets. For each dataset we show the results of the PAM clustering method using different
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RBF results are much more problem-dependent. In
Figure 7 we show the same experiment but using HC as
clustering method. The differences in favor of PKNNG
are clearer in this case. The combination of HC and the
PKNNG metric shows the biggest improvements in
accuracy over HC-Plain, in particular for the ALB, ALI,
LEU and THY datasets. Smaller improvements can be
observed for the CNS, BCLP and Y datasets. On the two
figures it is notorious that in several cases PBM or RBF
show results that are lower than the base metric. In
Figures 8 and 9 we show the corresponding experiments
using Pearson’s correlation as base metric. Apart from
the PBM metric, which always shows a bad perfor-
mance, the remaining four metrics show a more stable
result with this base metric. PKNNG show only small
improvements over the plain metric in this case. When
using the PAM method, PKNNG is the only metric that
finds the correct solution for the ALB dataset. It also
shows interesting results for the LEU and Y datasets.
The ALI dataset with these settings is the only case in
all our experiments in which another metric (RBF-min)
clearly outperforms PKNNG.

In Figures 10 and 11 we show the comparison of our
proposal (to use the PKNNG metric plus a simple clus-
tering method like HC or PAM) with four state-of-the-
art clustering algorithms for the Euclidean and Pearson’s
correlation base metrics. In this case we also included
other version of HC, the complete linkage method. For
the Euclidean base metric, Figure 10 in six out of the
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eight datasets one of our proposals shows the best
results (or equivalent to the best method) in extracting
the biological information related to the original classes/
tissues. Only for the ALB and LEU datasets some other
method clearly outperforms our proposal. The same
analysis is valid when using correlation as base metric
(Figure 11). The EAC and Multi-K methods outper-
forms all other methods in the ALI and LEU datasets
and Spectral clustering shows a good result in the CNS
dataset. Making a global evaluation, considering all data-
sets and base metrics, there are no clear winners or
losers, all the methods are competitive in some situa-
tions. As we stated before, we are comparing efficient
methods in these experiments and, in consequence,
which one works better is highly dependent on the data-
set and the base metric.

For completeness, in the Additional file 2: Evaluation
with different number of clusters we show the results of
changing the number of selected clusters in the gene
expression datasets with all metrics and clustering meth-
ods. Those figures show that in almost all cases cRand
results (for all the metrics and methods discussed in this
work) have a simple dependence with the number of
cluster, showing a peak at the right place for each pro-
blem and a smooth decay after that point. Of course,
the results in those figures cannot be used to select the
right number of clusters for each dataset, as the cRand
measures are based in a previous knowledge of the
golden rules.
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Figure 7 Results on gene expression datasets: Comparison with other metrics using HC (Av) and the Euclidean base metric. Evaluation
of the PKNNG metric on eight gene expression datasets. For each dataset we show the results of the HC clustering method (Average Linkage)
using different metrics: plain Euclidean, PKNNG, PBM, RBF-mean and RBF-min.
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Figure 8 Results on gene expression datasets: Comparison with other metrics using PAM and the Correlation base metric. Evaluation
of the PKNNG metric on eight gene expression datasets. For each dataset we show the results of the PAM clustering method using different
metrics: plain Correlation, PKNNG, PBM, RBF-mean and RBF-min.

Conclusions

In this work we have discussed the Penalized k-Nearest-
Neighbor-Graph based metric and have shown that it is
a useful tool for clustering arbitrary manifolds. The
PKNNG metric is based on a two-step method: first it

constructs the k-Nearest-Neighbor-Graph of the dataset
using a low k-value (from 3 to 7), and then it uses pena-
lized weights for connecting the sub-graphs produced by
the first step. In the Methods section we clearly show
that the key factor in the good performance of the
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Figure 9 Results on gene expression datasets: Comparison with other metrics using HC (Av) and the Correlation base metric.
Evaluation of the PKNNG metric on eight gene expression datasets. For each dataset we show the results of the HC clustering method (Average
Linkage) using different metrics: plain Correlation, PKNNG, PBM, RBF-mean and RBF-min.
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Evaluation of the PKNNG metric on eight gene expression datasets using the base Euclidean metric. For each dataset we compare our proposal
(the PKNNG metric plus PAM or HC) with other four methods: Model-Based Clustering (MBC), Spectral clustering (Spectral), Evidence

accumulation with average linkage (EAC-av) and the Multi-K method.
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PKNNG metric is the use of highly penalized weights at
the second step.

We evaluated our proposal using five artificial datasets
with different difficulties (that simulate gene expression
problems) and eight public gene expression datasets.
We showed first that our new metric is superior to
other graph-based metric previously introduced and to
the base metrics (Euclidean and Pearson’s correlation)
in all cases under analysis. In second term we showed
that our proposal produced an equivalent performance
to other state-of-the-art clustering methods on all the
wide gene expression datasets evaluated in this work.

The use of the PKNNG metric can improve the per-
formance of commonly used pairwise-distance based
clustering methods, to the level of more advanced algo-
rithms. A great advantage of the new procedure is that
researchers do not need to learn a new method, they
can simply compute distances with the PKNNG metric
and then, for example, use hierarchical clustering to
produce an accurate and highly interpretable dendro-
gram of their high-dimensional data.

Methods: The PKNNG metric

The evaluation of similarities with the PKNNG metric is
a two-step process. First we search the original dataset
space for locally dense (connected) structures using the
knn-graph. In the ideal case the process should end
with a connected subgraph corresponding to each clus-
ter but in the real case, when working with finite noisy
samples, there are usually too many separated struc-
tures, typically more than one for each real cluster. In
the second step we add penalized edges to the graph in
order to fully connect it, and use an appropriate algo-
rithm to measure distances in the (now) connected
graph.

First step: knn-graphs

Among the several algorithms for discovering low
dimensional manifolds recently introduced, ISOMAP
has strong theoretical properties and is also easy to
understand. We follow the main ISOMAP idea to search
for locally connected structures. As explained by Tenen-
baum, de Silva and Langford [38], in a curved manifold
the geodesic distance between neighboring points can
be approximated by the Euclidean input space distance.
For distant points, in contrast, geodesic distances are
better approximated as a path of short segments con-
necting neighboring points. To this end, we construct
the knn-graph of the data, i.e. the graph with one vertex
per observed example, arcs between each vertex and its
k nearest neighbors, and with weights equal to the
Euclidean distance between them. As we look for dense
subgraphs, at the end of the process we eliminate all the
outliers from the graphs. We consider that an arc is an
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outlier if it is not reciprocal (i.e. one of the vertex is not
a k-nn of the other) and the length of the arc is an out-
lier of its own distribution (i.e. if its length is larger than
the 3rd quartile plus 1.5 times the inter-quartile distance
of the distribution of the lengths of all the edges in the
graph). As isolated points usually produce not reciprocal
connections in k-connected-graphs, with this definition
we are basically deleting long connections from these
kind of points. In Figure 12 we show a toy example of
this process. Panel (a) shows the original data with the
corresponding knn-graph. The isolated point at the bot-
tom left corner is an outlier, and the edge connecting it
with the nearest sub-graph has been eliminated. In

(a) %
B

v

(e)

Figure 12 Connection schemes. A toy dataset illustrating the
different connection schemes evaluated in this work. a) The original
data with the knn-graph. Note the disconnected outlier at the
bottom-right. b) The MinSpan scheme. ¢) The AllSubGraphs scheme.
Note that all MinSpan added edges are included. d) The AllEdges
scheme. e) The Medoids scheme. See text for details on each
method.
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general, the use of a low number of neighbors (3 to 7 in
all our cases, as in the original work [38]) produces
graphs that can follow the curved structure of any data
without adding “shortcuts” between geodesically distant
points (a known issue with ISOMAP [53]), but usually
paying the price of producing disconnected components
[53], which we connect in the next step.

Second step: connecting subgraphs

As stated previously, when working with real data the
first step will usually generate separated structures, typi-
cally more than one for each real cluster. In the ideal
case, each sub raph should correspond to a unique clus-
ter and we could leave them disconnected and interpret
those distances as equal to infinite, as done for example
by Brito et al. [54]. In the real case, however, some sub-
graphs correspond to the same cluster or two cluster
could lie in the same subgraph. Therefore, we need to
evaluate also geodesic distances between points lying in
different sub-graphs. With that purpose, we add to the
graph a number of edges in order to fully connect it.
Connection schemes

Which edges to add in order to connect the graph is an
interesting problem by itself. We evaluated in this work
four different schemes that cover most of the simple
possibilities:

MinSpan In this first scheme we add to the graph the
minimum number of edges, each of them of minimum
length (the minimum spanning set), which fully connect
the graph. On panel (b) of Figure 12 we show the result
of this connection strategy on our toy example.
AllSubGraphs Here we connect each sub-graph to
all other sub-graphs using minimum length edges. Fig-
ure 12 panel (c), shows this strategy on the toy example.
AllEdges In this simple scheme we add to the graph all
remaining edges (of course, with a penalized weight).
On panel (d) of Figure 12 we show the corresponding
graph.

Medoids In this last strategy we first find the medoid of
each sub-graph, and then add edges connecting each
medoid to all remaining medoids. Figure 12 panel (e),
shows this strategy applied to our toy example.

The idea behind MinSpan is to add the shortest avail-
able edges trying to follow as much as possible the
structure of the manifold. MinSpan basically produces
one-dimensional structures. We showed in a previous
work [55] that this effect can introduce some instability
for distant points, but it does not affect the performance
of clustering. AllSubGraphs is an extension of MinSpan
and AllEdges can be viewed as an extension of AllSub-
Graphs. At each step of this chain we add more edges,
which increases the connectivity of the graph, reducing
the potential instability of MinSpan. On the other hand,
by adding edges we increase the probability of
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introducing “shortcuts” in the manifold, which can
reduce the overall performance of the method. The
Medoids scheme is basically introduced to have a differ-
ent scheme to compare with. As it does not include the
minimum spanning set, it is always forced to use other
paths in the graph and, consequently, it is not expected
to be able to follow a curved manifold. Neighboring
points belonging to different sub-graphs can be comple-
tely separated by this connection scheme.

Once we have a connected graph, we can compute
geodesic distances between all points as minimum-
length paths in the graph using computationally efficient
algorithms like Floyd or Dijkstra [56]. This is the most
time consuming stage in the computation of the metric,
with a complexity of O(n*logn), where # is the number
of points in the dataset. It is interesting to note that the
number of dimensions in the problem only enters in the
initial computation of the distance among all points,
which is a mandatory step for any clustering method.
The burden that we are adding is only related to the
number of points in the datasets, and is lower than the
complexity of most hierarchical methods. Furthermore,
in this work we analyze gene expression datasets, for
which 7 is usually a low number.

In order to compare these four connection schemes in
controlled situations we used three artificial datasets
with different characteristics:

Two-moons The first dataset corresponds to points uni-
formly sampled from two arcs of circumference (two
clusters), with Gaussian noise of a fixed amplitude
added to the radial direction.

Three-spirals The second artificial dataset was gener-
ated by sampling uniformly from three equally separated
spirals, with added Gaussian noise proportional to the
radial distance. The result is a three clusters problem,
each one of them having a non-uniform density, which
can confuse some algorithms.

Three-rings On this problem the central cluster corre-
sponds to a uniform sampling of a circle, which is sur-
rounded by two rings, also sampled uniformly but with
constant Gaussian noise added to the radial component.
We split both middle- and outer-rings in halves (adding
a small gap), to create a more difficult five clusters pro-
blem. This third dataset has clusters with different (but
uniform) densities.

Similar datasets were used by other author with the
same goal [46-48]. All datasets were generated in a
(2-dimensional) plane. For each one of them we used
three different noise levels. An example of the artificial
clustering problems is shown in Figure 13. In order to
evaluate the performance of the PKNNG metric at
handling low-dimensional manifolds in high-dimensional
spaces, we embedded our three datasets in 2D, 3D and
10D spaces, generating the following four settings:
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levels, respectively.

Figure 13 Artificial datasets. Samples of the artificial datasets used in this work. From top to bottom, rows correspond to the Two-moons
(2 clusters), Three-spirals (3 clusters) and Three-rings (5 clusters) datasets. From left to right, columns correspond to low, medium and high noise

2D 1In this first case we kept the three datasets in the
original 2D space.

3D To start increasing the difficulty of the clustering
problems, we coiled the original plane to form a swiss-
roll, producing a non-linear embedding of the original
clusters into a 3D space. In Figure 14 we show an exam-
ple of the resulting problem.

3D-noise In this third setting we added Gaussian noise
to the previous 3D embedding in order to drift the
points away from the surface of the swiss-roll.
10d-noise As a last and more difficult setting, we took
the 3D coiled data and added 7 extra dimensions to the
problem. We then applied a random rotation in the 10D
space, and finally added Gaussian noise in all 10
dimensions.

In all cases we measured base similarities with the
Euclidean metric. For these artificial datasets the quality
of the solutions was evaluated in terms of the clustering
accuracy, i.e. the percentage of the dataset assigned to
the right cluster. For each case under evaluation (dataset

-2

Figure 14 Swiss-roll embedding. Example of the embedding of
our 2D artificial clustering problems in a 3D swiss-roll.
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+ noise level + embedding) we produced 100 different
realizations of the dataset and computed the mean clus-
tering accuracy.

We used only two of these embeddings (3D-noise and
10d) to compare the four connection schemes here (we
show the results of the four embeddings in the addi-
tional file 3: Full Figures). In Figure 15 we show the cor-
responding results using the PAM clustering algorithm
and the exponential penalization (discussed in the next
Subsection). We repeated the full experiment using the
HC clustering algorithm, finding completely equivalent
results (data not shown). At each panel we also include
the results of using the standard Euclidean metric as a
baseline reference.

The qualitative results are similar in all the situations
under analysis. It is clear from the figure that three con-
nection schemes (MinSpan, AllSubGraphs and AllEdges)
have very similar performances, clearly superior to the
baseline methodology. The Medoids scheme, as
expected, does not show a real improvement over the
plain Euclidean metric. Comparing the three efficient
schemes, MinSpan seems to be slightly superior to All-
SubGraphs and AllEdges. Based in these results we
selected the Minspan connection scheme in the general
evaluation with real and artificial datasets (Results and
Discussion Section).

Weighting schemes The key point of the PKNNG
metric is that we penalize the weight of these new

connecting edges. The logic behind penalizing is simple:
the edges added by the different connection schemes lie
on very low density sections of the space and going
through those regions when measuring distances is
opposite to the basic idea that the graph connects high
density regions. Then, we penalize the added edges in
order to clearly differentiate paths that need to go
through low density regions from those who only use
high density regions.

We found that a very effective penalization is the use
of an exponential factor of the form:

w=d e¥", (1)

where w is the graph weight corresponding to the
added edge, d is the Euclidean distance between the
points being connected by that edge and y is the mean
edge weight in the original graph. Using this metric we
can connect sub-graphs corresponding to the same clus-
ter with a relatively small cost, because connections in
the same order of magnitude of y will get a low penali-
zation. On the other hand, edges connecting distant
sub-graphs will be strongly penalized. In the additional
file 4: Evaluation of Penalization Functions we show
results of experiments with several penalization func-
tions, including linear (w = ad, with oc € R"), power
w=d (d//,t)k, with ke N ¥) and other exponential func-
tions, and different definitions of y. Those results show
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that the functional form of the penalization is not criti-
cal to the method, given that it highly penalizes long
edges.

Figure 16 shows an experiment performed to assess
the real influence of the penalization on the PKNNG
metric. In this case we included in the comparison two
connection schemes, namely MinSpan and AllEdges,
under two different settings: i) in the (normal) exponen-
tially penalized version (as used in all previous experi-
ments), and ii) in a “plain” version in which we
eliminated the penalization and used for the added con-
necting edges the standard Euclidean distance. Both set-
tings used exactly the same graphs, the only difference
being the high penalization of some weights in the first
case. It is easy to see that the “plain” version of AllEdges
is simply the standard Euclidean metric, our baseline in
all experiments. For completeness, we also include in
this case the results obtained measuring similarities with
the knn-graph with the minimum k-value that produces
a fully connected graph (we call this method min-k-
connected-graph). In Figure 16 we show the results
obtained with the PAM clustering algorithm applied to
the five settings described in this paragraph for the 10D
embedding (in the additional file 3: Full Figures we
show the complete figure with the four different embed-
dings). Analyzing the figure, the two methods that use
“plain”, non-fully-connected Euclidean graphs (the Min-
Span-Plain and the min-k-connected-graph) show in
most cases a better performance than the standard
Euclidean metric, but, more importantly, the two pena-
lized metrics are in all cases clearly superior to the cor-
responding “plain” methods. These results suggest that
the key factor of our new metric is the high penalization
of the added edges.

Finally, at this point we can consider the problem of
outlier datapoints. After the First Step, our method left
all outlier datapoints disconnected to any subgraph. If
we apply the Second Step as it was described in
the last paragraphs, we will end with penalized

connections to outlier datapoints. In this case, most
clustering algorithms will create individual clusters for
each outlier. The advantage of this solution is that out-
liers are clearly identified, but, on the other hand, the
number of clusters is artificially increased. Most
researchers prefer another treatment for outliers, to
add them to the nearest cluster. This can be easily
done with our metric, by taking into account the num-
ber of datapoints in a subgraph before penalizing a
connection. If the edge connects to a single datapoint,
we just add an edge with no penalization. As clustering
method usually separate clusters by the penalized
edges, in most cases outliers will be assigned to the
nearest cluster. We used this setting in all the experi-
ments in this work.

Availability

An R implementation of the PKNNG metric can
be download from http://www.cifasis-conicet.gov.ar/
granitto/nng_0.0.1.tgz or requested to the contact
author. All dataset in this work can also be requested to
the contact author.

Additional material

Additional file 1: Other evaluations. Evaluation of: i) dependence on k
for public gene expression datasets and ii) the use of HC-complete
linkage with our five metrics.

Additional file 2: Evaluation with different number of clusters.
Evaluation of the effect of changing the number of selected clusters in
the gene expression datasets with all metrics and clustering methods.
Additional file 3: Full Figures. Complete versions of Figure 15 and 16,
including the four embeddings discussed in the Methods section.

Additional file 4: Evaluation of Penalization Functions. Discussion
and evaluation of other penalization functions.
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