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Abstract

Background: The throughput of commercially available sequencers has recently significantly increased. It has
reached the point where measuring the RNA expression by the depth of coverage has become feasible even for
largest genomes. The development of software tools is constantly following the progress of biological hardware. In
particular, as RNA sequencing software can be regarded genome browsers, exon junction tools and statistical tools
operating on counts of reads in predefined regions. The library rnaSeqMap, freely available via Bioconductor, is an
RNA sequencing software which is independent of any biological hardware platform. It is based upon standard
Bioconductor infrastructure for sequencing data and includes several novel features focused on deeper
understanding of coverage expression profiles and discovery of novel transcription regions.

Results: rnaSeqMap is a toolbox for analyses that may be performed with the use of gene annotations or
alternatively, in an unsupervised mode, on any genomic region to find novel or non-standard transcripts. The data
back-end may be a MySQL database or a set of files in standard BAM format. The processing in R can be run on a
machine without any particular hardware requirements, and scales linearly with the number of genomic loci and
number of samples analyzed. The main features of rnaSeqMap include coverage operations, discovering irreducible
regions of high expression, significance search and splicing analyses with nucleotide granularity.

Conclusions: This software may be used for a range of applications related to RNA sequencing by building
customized analysis pipelines. The applicability and precision is expected to increase in parallel with the progress
of the genome coverage in sequencers.

Background
Massive parallel sequencing of short oligo reads has
already found multiple applications in molecular biology.
One of the promising novel ones is RNA sequencing, used
to determine abundance of transcripts in the sample [1] -
which is a more general description of gene expression
profiling. The throughput of commercially available
sequencers has reached the level where the depth of cover-
age is sufficient to measure the differences in RNA expres-
sion for the larger genomes. For example - in a typical run
of ABI SOLID v4, there are 800 million reads (50 bp
each). Assuming that half of these may be mapped to the
known human genes, it gives 20 Gbp of coverage, which
allows for more than 10 times coverage of all the Ensembl

human genes. In practice, the distribution of reads cover-
age over the genes is very skewed.
A recent study [2] also shows good correlation of tran-

scription measurements between RNA sequencing and
microarrays even in the cases with limited number of
replicate samples.
As has already happened with other technologies in

molecular biology, the software development is trying to
catch up with the improvements in the hardware [3]. A
number of recent significant developments in the area of
read mapping software [4] allow the building up of tools
for both managing short reads data and for secondary
analysis adapted to particular biological applications. In
the first group there are ShortReads package [5], Geno-
minator package or several commercial tools.
In the case of RNA sequencing the current approaches

in secondary analysis tools are focused on three cate-
gories: genome browsers for displaying the reads over
the genome [6,7], statistical tools to find significantly
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expressed genes and tools for predicting the transcript
structure with coverage and exon junctions, such as the
Tophat-Cufflinks pipeline [8,9], Scripture [10] or MapS-
plice [11].
The group of statistical software packages introduces

the use of negative binomial distribution [12,13] of
counts within genes to find the significant ones. This has
solid statistical foundations and usually relies on the
databases of annotations to determine the loci where the
reads are counted. However, the microarrays have already
demonstrated that aggregating gene expression values on
the gene level or averaging of the expression of gene frag-
ments, is often very useful but may lead to spurious
results in case of non-typical transcripts [14,15].
Many of the tools may be used in a parallel computing

environment, which enables publicly available cloud
computing (e.g. by EBI services [16] or with Myrna [17]).
However, the assumption of the rnaSeqMap library is the
minimization of the computing resources needed and
platform independence for the secondary analysis.
Although the pipelines created with rnaSeqMap may be
parallelized to multiple cores with standard R or MySQL
mechanisms, they are supposed to run efficiently on a
single, standalone machine. Using the pre-defined anno-
tation of genes, transcripts and exonic regions is not tak-
ing full advantage of the predictive qualities of RNA
sequencing data. The annotations can be assumed to be
the real expression area boundaries, whereas the expres-
sion does not often follow the patterns frozen in the
annotation databases [18].
The new Bioconductor library, rnaSeqMap, tries to

overcome these limitations. This is achieved by describ-
ing the expressed regions not only by counts, but also by
determining the boundaries with nucleotide precision. It
may enable the exploration of RNA sequencing data
using pre-defined annotations, but also complementarily
in a purely exploratory way - by adjusting the findings to
the expressed areas. rnaSeqMap can not only merely use
the annotations, but may also confirm them, modify
them or create novel ones. Managing such a massive
amount of RNA sequencing data is another difficult
issue. The operational memory is too small to keep the
whole datasets, so it is necessary to use special mechan-
isms to select fragments of the data and annotations
from the storage and process them. rnaSeqMap solves
this issue by keeping the sequencing reads and the anno-
tations in the same relational database.
The assumption of rnaSeqMap is to use the existing

tools in the areas where they evolved into useful solu-
tions. Its main goal is to serve as a complementary
“middleware” to create analytical and discovery pipe-
lines. Thus, it relies on pre-processed mapping of the
reads to a reference genome and well known database
of annotations in the back-end and on existing software

for finding significantly expressed genes in the front-
end. rnaSeqMap was designed to be independent of any
sequencing platform, mapping software and statistical
add-ons. By running it with real experimental data it
was shown to be efficient at both tasks. In particular,
the tests and data presented in the paper come from
sequencing with an ABI SOLiD machine and mapping
the colorspace reads using Bioscope.

Implementation
Design paradigms
rnaSeqMap has been designed according to a set of
principles that turned out to be useful and efficient in
exonmap - the Affymetrix exon array analysis software
in Bioconcuctor and its continuation, xmapcore
[15,19,20]. Those paradigms are:

• working with the genome coordinates of expres-
sion areas
• using database back-end for annotations and
mapped reads
• top-down analysis - starting from a global search
and getting into interesting details
• visualization of the genome by fragments
• alternative splicing analysis
• searching for the expression in potentially non-
coding or non-annotated areas

rnaSeqMap uses reads mapped to the genome, charac-
terized by a set of genome coordinates: chromosome,
start, end and strand of the mapping. The option of using
data from unstranded protocols is available. In this paper
all the results are from a protocol with strand informa-
tion. Using such minimal information about reads gives
the opportunity to freely tune parameters such as mis-
matches or multiple targeting in the mapper software.
Scripts that may be found in the installation version of
rnaSeqMap are examples of how the SAM files may be
trimmed to this basic set of attributes.

Back-end modes of feeding the R objects with data
rnaSeqMap supports three modes of getting the read
data: directly from BAM files (binary representation of
sequencer reads), from a table in the MySQL database
(where the data may be processed together with annota-
tions) and from tables in text files.
Reading and processing of BAM files uses current Bio-

conductor infrastructure for processing sequencing
reads: RSamtools, IRanges and GenomicRanges libraries.
In case of the database back-end it is expected to follow
the xmapcore database format, extended by tables for
sequencing reads, junction reads and samples, with
appropriate stored procedures included in the SQL
scripts attached to the rnaSeqMap package.
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Data processing
In rnaSeqMap the global part of the analysis finds geno-
mic and intergenic regions and then processes the cov-
erage function (number of reads mapped per nucleotide)
iteratively for subsequent regions. This approach allows
the analyses to use a limited amount of operational
memory, with nucleotide-level granularity of the
findings.
The regions found as a result of the analyses and their

qualities (coverage, fold change, splicing index) may be
visualized using their genome coordinates - also in the
areas not annotated previously to any gene or exon.
Figure 1 presents the technical schema of the proces-

sing in the rnaSeqMap. Data generated by a sequencer
are mapped to the genome annotated in the xmapcore
database. The reads can be extracted from BAM files
with samtools or from SAM files by an AWK script.
Then the reads are imported into the MySQL seq_read
table, while the bio_sample table includes the experimen-
tal setup and details of the samples. Stored procedures
are used to uniformly query the extended xmapcore data-
base and provide the data into rnaSeqMap wrappers in
the R environment. The wrappers are used for building
and processing objects of the classes SeqRead and
NucleotideDistr. From the NulcleotideDistr object it is
possible to generate distributions, summaries, visualiza-
tions or further input for higher-level statistical libraries.

Technologies
rnaSeqMap may use MySQL database as a back-end,
because Ensembl and, derived from it xmapcore, use
this format. From version 5.1 onwards, MySQL engine
has the partitioning mechanism which is used to parti-
tion reads in the seq_read table into sub-tables by

chromosome - which speeds up searches by an order of
magnitude in the case of larger genomes with multiple
chromosomes.
The library has been written in R (version 2.11 or

higher) and makes use, among other things, the follow-
ing Bioconductor libraries: IRanges during the proces-
sing, supporting input object creation for edgeR [13]
and DESeq [12]. The critical algorithms for processing
nucleotide distributions were written in C for perfor-
mance reasons.

Distinctive features of rnaSeqMap
Many of the functionalities presented above are novel
not only in Bioconductor. Some combinations of fea-
tures are also currently unique. Such issues as the appli-
cation of the same database for annotation and reads,
platform and mapping independence or genome visuali-
zations have been described above. Here we describe
some other features in detail.
Region mining algorithm
The algorithm for finding genomic regions with the
mean coverage above a defined level μ is an adaptation
of Aumann and Lindell algorithm for mining quantita-
tive association rules [21]. This algorithm uses two slid-
ing windows that run across the genome, adding the
coverage value of a nucleotide in every step and joining
the windows under specific conditions. This results in a
property of the discovered regions called irreducibility.
Biological meaning and utility of the algorithm is dis-
cussed in the further sections.
Classes SeqReads and NucleotideDistr
To encapsulate the sequencing data in a given region,
rnaSeqMap has two classes. SeqReads keeps the raw
read data and may be filled in from a database or

Figure 1 Schema of data processing. The flow of RNA sequencing data processing in the xmapcore database and the rnaSeqMap library.
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directly from a file. From an object of the class Seq-
Reads, an object of NucleotideDistr (an S4 class) is con-
structed. In the data slot, it holds the distribution of the
coverage function for all the nucleotides in the studied
region. Then the NucleotideDistr object may be a sub-
ject to various transformations of the coverage.
Building blocks for analysis pipelines
The building blocks of the analytic infrastructure in rna-
SeqMap may be grouped in the following categories:

• database access procedures, which are in fact wrap-
pers for MySQL stored procedures - similarly as in
xmapcore
• classes for encapsulating the sequencing reads and
distributions
• functions for normalization of the coverage distri-
butions (eg. lowess [22]), summarizing them, calcu-
lating fold change and splicing index on the
nucleotide level
• Aumann-Lindell two-sliding-window algorithm
implementation
• functions for finding genomic and intergenic
regions in given fragments of chromosomes - to iter-
ate the searches over them
• connectors to statistical libraries - DESeq and edgeR
• visualization - genome plots and histograms

Those building blocks may be used to construct pro-
cessing pipelines that iterate over fragments of chromo-
some, genes or intergenic spaces (see Figure 2).

Nucleotide-level splicing index
The idea of the splicing index comes from the paper
[23] and in rnaSeqMap was adapted to the sequencing
data defined for every nucleotide, where the coverage
may differ by many orders of magnitude. The nulcleo-
tide-level splicing index is defined as follows:

SI(n) =

⎧⎪⎪⎨
⎪⎪⎩

0, if
1, if

−1, if
log2(

E1n
G1n

· E2n
G2n

)

(E1n = 0 ∧ E2n = 0)
(E1n = 0 ∧ E2n = 0)
(E1n = 0 ∧ E2n = 0)
in all other cases

∨ ( E1n
G1n

· E2n
G2n

> 2)
∨ ( E1n

G1n
· E2n

G2n
< 0.5)

where E1n and E2n are the coverage values for a given
nucleotide, while G1n and G2n are the counts of reads in
the region or gene.
Such an approach enables visualization of the splicing

index on a genome plot and exploring its significant
regions using the Aumann-Lindell algorithm. The exam-
ple of the splicing index plot is presented on the Figure 3.
Discovery mode
The genome regions and their analysis may be categor-
ized in the following way:

• gene regions, with boundaries defined according to
annotations, searched for expression within the
limits
• extended gene regions - to check possible expres-
sion up- or downstream from a gene and extend its
boundaries
• intergenic regions - searched with the Aumann-
Lindell algorithm for novel expression places

Figure 2 An example of rnaSeqMap analysis pipeline. The figure depicts data containers (circles) and processes (squares) that form the
processing flow of the analysis. It iterates over chromosomes. The chromosomes are dissected into gene regions and intergenic spaces. The
read counts in genes and significant novel regions of expression are then made available to the statistical analysis packages.
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The analysis by the two latter categories may lead to
discovery of novel expression regions on the genome,
which may be verified with databases of ESTs and
other genomic sources of evidence. This type of analy-
sis is independent from the genomic annotation
scheme.
Providing input data to the statistical packages
Significance analysis packages for RNA sequencing such
as DESeq or edgeR require the count data in defined

regions (most often in genes) as an input, then they
perform analysis using binomial distributions. rnaSeq-
Map may generate such tables from the reads data in
the database, the regions may be defined as gene
boundaries or just regions that happen to be found sig-
nificantly expressed in the discovery mode. In this way
RNA sequencing can perform significance analysis that
goes beyond microarray-style predefined regions
checking.

Figure 3 An example of splicing index plot. Two coverage functions on the same genome region transformed into a splicing index. The first
plot presents the distribution in two samples, the second, the calculated splicing index. The third plot includes the irreducible regions of
expression for both coverage functions.
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Results and Discussion
To evaluate the predictive performance of the software
on a real sequencing dataset, we randomly selected a
single strand of a human chromosome (ch 15, forward)
and searched for expressed regions in 6 samples. It
turned out to have 1330 genes. The number of irreduci-
ble regions of expression in genes is summarized in the
Table 1. Traces of expression of coverage higher than 5
are found in ca 70% of genes, while consistent expres-
sion over 6 samples with irreducible regions can be
found in ca 10% of genes.
A particular point which may be the subject of wet-lab

verification is whether the irreducible regions found by
the Aumann-Lindell algorithm are indeed exons. The
algorithm normally needs tuning with the parameters μ
(threshold for the coverage level) and minsup, which is
here the length of a region. They have to be set according
to the overall coverage in the experiment and knowledge
of biological factors - such as expected exon length and
the characteristics of the concentration-coverage curve.
Some of this tuning may be automated by multiple runs
of the algorithm across the regions with different para-
meters. In rnaSeqMap, the function regionBasedCoverage
() is an example of such a procedure. It searches for irre-
ducible regions for several values of μ and sets the cover-
age value to the maximal of them. The resulting coverage
function with discrete values may be more ‘human read-
able’ and this also removes peaks of over-amplified reads
and less significant local minima.
The issue of time and memory efficiency of the ana-

lyses is also important. rnaSeqMap avoids memory over-
loads by providing the tools to slice the genome
coverage into manageable fragments, still big enough to
represent even longest genes measured in many samples
- and encapsulating them into objects with well-defined
analytical methods. The database MySQL back-end is an
engine that may be run on a single standard computer
and contain a database from a complete RNA sequen-
cing experiment, in the case of BAM files the limitation
is the disc capacity.
Time of analysis is comparable to other operations in

sequencing, such as preparing the libraries or mapping the
reads to the reference genome. The result of a scalability
tests is depicted in Additional files 1 and 2 and shows that

the processing time scales linearly with the number of
genomic loci and number of processed biological samples.
For example, for 5 BAM files of 1.5 Gb (25 M reads) each,
the processing time was less than a second per gene on a
standalone machine. The proof of linear complexity of the
region mining algorithm can be found in [21]

Properties and tuning the region mining algorithm
The definition of an irreducible rule in [21] follows the
intuitive understanding of the expressed region in rna-
SeqMap: the coverage may fall below μ in a fragment of
an exon due to some artifacts (GC content etc), but the
region itself may still have a consistent expression repre-
sentation and clearly marked boundaries (see Figure 4).
According to the definition in [21], an irreducible

region is one that may be split anywhere into two sub-
regions with the mean value of the analyzed variable
(here: coverage) remaining above the predefined μ level
in both. In addition, it may be proven that irreducible
regions always start and end with a value above μ [24].
Thus the Aumann-Lindell algorithm is expected to pre-
cisely find expressed regions which may be understood
as exons in the biological meaning.
The advantages of searching for novel expression

regions with Aumann-Lindell algorithms are depicted in
the Figure 5 and can be summarized as follows:

• Skipping small, local drops of the coverage value,
as the coverage in the region may drop locally, not
violating its irreducibility
• Not overestimating the artefactual peaks, because
the window algorithm does not consider them for
the whole region. If the peaks are separate ones they
do not fulfill the minimum support (width)
condition
• Defining the boundaries of the region only for
expression which is high enough, as they have to
start with at least μ value

To tune the outcome of the algorithm several strate-
gies may be used. Simple ones rely on a single μ level,
that may be understood as a ‘detection threshold’ for
the expression - often 5 is used as a threshord value for
coverage. More sophisticated strategies choose μ as a

Table 1 The number of genes containing irreducible regions in at least × out of 6 samples on the forward strand of
human chromosome 15.

no min support condition support > read length

X X

μ 1 2 3 4 5 6 μ 1 2 3 4 5 6

5 915 821 750 685 619 514 5 513 349 266 220 189 134

10 776 629 537 445 363 268 10 270 190 148 126 102 81

15 527 381 289 218 162 122 15 150 103 85 75 63 55
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given fraction of local minima or maxima of coverage,
or apply a search with several levels μ of iteratively and
choosing the highest as a value of coverage (regionBa-
sedCoverage function).
Region mining with Aumann-Lindell rules is based

upon the magnitude and irreducibility of the coverage
function, while Cuffinks [9] relies mainly on exon junc-
tions mapping. As a result the susceptibility to different
types of artifacts have been observed, although the two

approaches often agree in the case of well pronounced
exon expression (see Additional files 3 and 4).
The lowess algorithm (locally weighted scatterplot

smoothing) [22], widely used for adjusting the bias of
microarrays, is used in rnaSeqMap to minimize the influ-
ence of artifacts (peaks, non-expressed small gaps) of the
coverage. Applying lowess is recommended before region
mining to stabilize the outcome. The effect of lowess and
region mining together is shown on Additional files 5 and
6. Using lowess smoothing as a preprocessing step may
possibly influence the precision of the region boundaries.

Conclusions
Overall, the analyses performed by rnaSeqMap belong
more to data mining than to statistics - as the library
does searches for interesting local phenomena, without
pre-assumptions, starting from a global overview and
dissecting it into significant slices of expressed transcrip-
tome. Such an approach is necessary, knowing that the
existing annotations are just an approximated and con-
stantly evolving snapshot of the real biological phenom-
ena of transcription and alternative splicing. Although it
is not a classic data mining (i.e. OLAP style), the novel
features of rnaSeqMap make it different from classic
genome browser and statistical tools using curated gen-
ome annotation, and is complementary to them.
The analyses performed with rnaSeq map will become

gradually more precise, with the increased coverage of
the RNA sequencing. This is expected, because this par-
ticular technology is currently a cutting-edge of biomo-
lecular techniques. Thus, the applicability and utility of
such an exploratory approach is expected to grow.
According to [25] the RNA sequencing data are over-
dispersed. There are also still a number of artifacts com-
ing most likely from sample preparation and amplifica-
tion protocols, and the closer look at the data with
rnaSeqMap confirms this point of view.

Availability and Requirements
• Project name: rnaSeqMap
• Project home page: http://www.bioconductor.org/
packages/release/bioc/html/rnaSeqMap.html
• Operating systems: Windows, MacOS, Unix
• Programming language: R, C, SQL
• Other requirements: R v2.12 or higher, Bioconduc-
tor libraries v2.8 or higher, MySQL v5.1 or higher in
case of using the database
• License: GPL-2

The rnaSeqMap library is available in Bioconductor from
version 2.7. The MySQL database and processing may be
run on any standard operating system platform. Hardware
requirements do not go beyond standard desktop compu-
ters, however the amount of RAM memory limits the size

Figure 5 Irreducible regions. An example of irreducible regions
found on simple numeric data. a) shows a part of the region,
where the local coverage falls below μ, b) points out that region
constraints can be used to skip the local peaks. Minsup stands here
for minmal region width.

Figure 4 Irreducible regions of coverage found by Aumann-
Lindell algorithm. The coverage function on the genomic region
(upper plot) analysed with the Aumann-Lindell algorithm finds two
irreducible regions of expression (lower plot). In the first region, the
coverage happens occasionally to drop below μ = 11, but it keeps
the property of irreducibility.
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of the processed objects so the size of genome fragments
analyzed, and the speed of the hard drive are the main lim-
iting factors for database operations and input BAM files.

Additional material

Additional file 1: Scalability of processing experiment. Execution
time (in seconds) of the basic operations creating SeqReads and
NucleotideDistibution object, processing the coverage) for 1 to 2000
random genes and 1 to 5 BAM les, 1.5 GB (25.1 M reads) each, system
time. The time is linearly scaling with the number of genes and files.

Additional file 2: Scalability of processing experiment. Execution
time (in seconds) of the basic operations creating SeqReads and
NucleotideDistibution object, processing the coverage) for 1 to 2000
random genes and 1 to 5 BAM les, 1.5 GB (25.1 M reads) each, elapsed
time. The time is linearly scaling with the number of genes and files.

Additional file 3: An example of Cufflinks-rnaSeq comparison.
Example of comparison of regions found by Cufflinks (Tophat mapping)
and rnaSeqMap (Bioscope mapping)

Additional file 4: An example of Cufflinks-rnaSeq comparison.
Example of comparison of regions found by Cu inks (Tophat mapping)
and rnaSeqMap (Bioscope mapping)

Additional file 5: An example of coverage plot smoothed by lowess.
An example of lowess use to smoothen artifacts of sequencing coverage.
The original RNA-seq coverage (upper section), after lowess with f = 0.1
(middle section) and after region mining (lower section).

Additional file 6: An example of coverage plot smoothed by lowess.
An example of lowess use to smoothen artifacts of sequencing coverage.
The original RNA-seq coverage (upper section), after lowess with f = 0.1
(middle section) and after region mining (lower section).
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