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algorithmic framework.

Background: Mixed models have a long and fruitful history in statistics. They are pertinent to genomics problems
because they are highly versatile, accommodating a wide variety of situations within the same theoretical and

Results: Oxpak is a package for versatile statistical genomics, specifically designed for sophisticated quantitative
trait loci and association analyses. Multiple loci, multiple trait, infinitesimal genetic effects, imprinting, epistasis or
sex linked loci can be fitted. The new version (v. 5) allows us, among other new features, to include either
relationship matrices obtained with molecular information or user defined matrices that can be read from an input
file. This feature can be used for genome selection or - more importantly - to correct for population structure in
association studies. In crosses, two parental lines, not necessarily inbred, can be accommodated.

Conclusions: This software aims at simplifying statistical genetic analyses implementing a coherent and unified
approach by mixed models. It provides a tool that can be used in a wide variety of situations with ample genetic
and statistical modeling flexibility. The software, a complete manual and examples are available at http://www.icrea.
cat/Web/OtherSectionViewer.aspx?key=485&titol=Software:Qxpak.

Background
Mixed models (MM) have a long and fruitful history in
statistics, and in statistical genetics in particular. They
are called mixed because both ‘fixed’ and ‘random’
effects are included in the model. Their earliest and
most successful application in genetics, was in BLUP
(best linear unbiased prediction) of genetic merit. Most
of genetic progress in all animal species since the early
1980’s is due to MM [1]. In this application, the genetic
merit of animals is assumed to be a random variable,
normally distributed with variance proportional to the
heritability (h?) of the trait, whereas the environmental -
confounding - effects are typically fitted as fixed effects.
Much more recently, MM have received renewed
attention by the human genetics community because
they are a powerful tool to correct for population struc-
ture [2,3]. These authors actually show that MM per-
form better than competing principal component
analysis approach. Structure is one of the most frequent
causes for false positives in genome wide association
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studied (GWAS), so the relevance of mixed models to
genomics cannot be underestimated. Currently, there is
intense discussion on the ‘hidden heritability’, i.e., the
discrepancy between estimated h* and the proportion of
variance explained by individual loci, the latter being
much smaller usually than the former. Again using MM
technology, Yang et al. [4] have shown that this discre-
pancy can be explained by lack of power and SNP ascer-
tainment bias.

Mixed models are pertinent to genomics problems
because they are highly versatile. They can accommodate
a wide variety of situations within the same theoretical
and algorithmic framework. In the applications to correct
for population structure mentioned above [2,3], a multi-
variate normal random effect with covariance the molecu-
lar relationship matrix is incorporated in the model,
whereas the net effect of the SNP is treated as fixed.
Therefore, classical algorithms can be used and the same
theoretical properties of the estimators are expected.
Further, we anticipate that polymorphism based matrices
to quantify genetic relationship will be a key instrument to
analyze association studies when complete sequence is
available, and MM will continue to be used in this setting.
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Over the last years, we have been implementing mixed
model approaches to deal with genomics problems, and
these have been incorporated in the package Qxpak [5].
Although an array of softwares for QTL analyses are
already implemented, e.g., R/qtl [6], Plink [7], GenABel
[8] or EMMAX [3] or FunMap [9] for functional ana-
lyses, Qxpak is complementary to these or other
packages. Specifically, Qxpak offers a unique flexibility
in statistical modeling. For example, Qxpak accommo-
dates multi-trait models where models can differ from
trait to trait. Each trait can be modeled combining dif-
ferent relationship matrices, including pedigree and
marker based matrices or, importantly, allowing for any
pattern of missing data.

The original software was aimed primarily at dealing
with Quantitative Trait Locus (QTL), that is, linkage ana-
lyses. Here we present a new version (Qxpak.5) that
incorporates important advances with respect to the first
version to adapt to current large-scale genomic datasets.
In addition to improved algorithms, the main addition
are: full implementation of association analyses where
the marker (e.g., SNP) can be treated either as fixed or
random. Also, epistasis and imprinting gene actions are
implemented, as is computing the marker coancestry
matrix to allow for linkage disequilibrium (LD) analyses
in structured populations. Besides, Qxpak.5 allows us to
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include any user-defined covariance and/or dominance
relationship matrix. A complete list of new options is in
the manual available at the website.

Implementation

Qxpak relies on the well known theory of mixed models
as applied to a variety of genomics problems. A general
mixed model is of the type

Ny

y=Xb+Zng+e, (1)
k=0

where y is a vector containing the recorded perfor-
mances, b contains the fixed effects to be estimated, gy
contains the genetic (QTL) effects for any of the N,
QTL affecting the trait. Finally, X and Z are incidence
matrices that relate observations to the parameters in
the b and g vectors, and e is a vector of residuals.

Mixed model theory dictates that the distribution of
random variables, i.e., their means and variances, must
be specified. It is by establishing the distribution of the
genetic effects that MM offers complete flexibility to
adapt to a variety of genomics issues.

The main kind of analyses that Qxpak can perform
are (see also Figure 1, whereas theoretical details are in
the additional file 1):

Figure 1 The main kind of analyses that Qxpak.5 can be used for.
.
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o Linkage analyses in crosses (QTL): The expectation
of g depends on the probability that the locus is identi-
cal by descent to each of the founder breeds. Qxpak can
analyze crosses between several breeds and any design,
e.g., backcross and F,, Fs,... data can be analyzed jointly.
If the lines are assumed inbreed, g is treated as fixed.
Otherwise, the covariance matrix is a weighted average
of probabilities that two individuals are identical by des-
cent (IBD) for alleles originating in each of the founder
breeds [10].

« Polygenic effect: In this case, g ~ N(0, Ac), where
A is the numerator relationship matrix; A quantifies
the probability that two individuals are IBD condi-
tional on pedigree information, i.e., two individuals
whose parents are unknown are taken to be unre-
lated [1].

« Linkage analyses in outbred populations: Here g ~
N(o, Gagz), where G is a covariance matrix which ele-
ments are the probabilities that individuals are IBD
conditional on pedigree and marker information.

o Linkage Disequilibrium (LD): Now g ~ N(Aa, oiz),
where A is an indicator variable that depends on the
genotype at the SNP, 1 and -1 for homozygous, 0
for heterozygous, and aiz is the variance associated
with the locus. In general, though, g is taken as fixed
in LD analyses. Qxpak allows for both options, either
fixed or random.

o Molecular coancestry: It has been known for quite
some time that genome wide association analyses
are prone to false positives, particularly in structured
populations [2,11-13]. Qxpak implements the use of
molecular coancestry matrix, as suggested by several
authors, e.g., [4,14]. Two options are available, either
raw or standardized covariance matrices. In the first
case, G = MM’/n, where M is a m individuals x n
SNPs matrix with values -1, 0 and 1 for genotypes
11, 12 and 22, respectively. Note that MM’ contains
the scaled number of alleles shared between indivi-
duals, averaged over markers. In the standardized
matrix, G* = WD 'W’/n, where W = wy = (my -
)} where y; is the genotypic mean frequency of i-th
SNP (2¢; -1), q; being the frequency of allele 2, and
D is a diagonal matrix with elements 2 g; (1- g;), the
genotype variance. This is the option considered, e.
g., in Yang et al. [4] except that they employ a
slightly different variant for the diagonal elements.

Qxpak allows to combine any number of loci, where
each one can be modeled differently. For instance, a
genome wide LD scan can be carried out by including
also a polygenic effect. Alternatively, a combined link-
age/LD analyses can be implemented [15].
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Complex genetic effects like imprinting, epistasis or
interaction between sex and QTL can be accounted for
in Qxpak. Imprinting means that only either the pater-
nal or the maternal allele is expressed. Although only a
small percentage of genes are known to undergo
imprinting, this phenomenon can be of importance in
some complex traits, e.g., IGF2 gene effect on growth in
pigs [16]. Therefore, it can be worthwhile to allow for
imprinting in QTL or association analyses. Qxpak does
that by modifying how IBD probabilities are computed.
In an LD analysis, Qxpak identifies whether the paternal
or maternal origins can be determined using parents’
genotypes. If the parental status of the alleles cannot be
determined, this genotype does not contribute to total
likelihood. The indicator variable A is fitted according to
the paternal allele for maternal imprinting (and vice
versa). Note that, with imprinting, dominance is not
defined. In the case of epistasis, Qxpak permits some
predetermined options or user defined interactions. It
also allows for epistasis between random QTL effects.

Qxpak is implemented in fortran95 to take advantage
of specialized sparse matrix software [5]. Typically,
input requires a parameter file, a data file containing
phenotypes and any effect that may be included in the
model, a pedigree file and a marker file with genotypes.
The parameter file contains different sections (see com-
plete manual). The main ones are the QTL section,
where genetic effects are defined (Figure 2) and the
TRAIT section, where the models to analyze each phe-
notype are specified. Not all effects present in the data
file need to be included in the model, i.e., the same files
can be used to run a number of different analyses. The
output provides solutions of both fixed and random
effects, residuals if requested, and P-values of the test (e.
g., the QTL). Figure 2 describes the different approaches
to model a QTL in Qxpak.

The program computes, if required, the IBD relation-
ship between individuals given marker and pedigree
information. These coefficients are computed using
MCMC methods; this is the most computationally
expensive step, but files are saved and reused automati-
cally for successive analyses. REML/ML estimates of var-
iance components are obtained via the EM (expectation
maximization). Timing for an example data set is shown
in Table 1.

Results: Application to F2 cross

Here we show by proof of example how Qxpak can be
used to gain insight into the genetic architecture of a
complex trait. We reanalyzed ~ 500 carcass length mea-
surements from an Iberian x Landrace intercross that
comprises F2, F3 and backcross individuals [17]. The
original markers were 11 microsatellites in chromosome
4 that were binarized here such that allele frequencies
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QTL MODELING OPTIONS
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Figure 2 All available QTL modeling options. Each QTL can be modeled differently. In addition, random effects can be modeled as polygenic

effects or following a user defined covariance matrix.
. J

were quite dissimilar in each parental breed, markers
were equally spaced every 5 cM. We considered differ-
ent models that are listed in Table 2. In the first com-
parison we omitted or fit an infinitesimal effect (Models

1 and 2). In Qxpak, an infinitesimal effect is fitted in the
EFFECT section of the parameter file as

EFFECT

u cross 1 pedigree pedigreefile

Table 1 Performance in server with processor Xeon D5060 3.2 GHz (CPU time)

Step Linkage dataset (N = 780, 187 microsats) GWAS dataset (N = 560, 39,209 SNPs)
Computing IBD coefficients 15’ -

QTL scan 1 30

Scan with infinitesimal genetic effect 15’ 3h19
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Table 2 Effect estimates with different models for carcass
length data from an Iberian x Landrace intercross. Fixed
effects include sex, batch and ham weight

Model u (h2) da da da(sex) snp

0 038 - - - -

1 - 096+019 - - -

2 039 097 =019 - - -

3 039 -099+019 -009+ 028 - -

4 038 - - 134 + 023 -
031+ 026

5 041 - - -081 %016

6 0.38 - - -098 + 049 -0.33 % 041
002 + 049

u: infinitesimal genetic effect and associated heritability (h?)
.+ additive qtl effect

qq: dominance qtl effect

da(sex): additive qtl effect nested by sex, males and females
snp: snp additive effect (SNP number 5)

where cross indicates that this is a cross classified
variable (as opposed to a covariate) and 1 is the position
of the variable(the individual); pedigree is a reserved
word specifying the covariance matrix of the random
variable; diagonal or user specified covariance matrices
can be used as well. The comparison between both pro-
files is in Figure 3 in red (no infinitesimal effect) and
black lines (infinitesimal effect). Two interesting remarks
can be made. The first one is that the optimum position
is shifted from 28 ¢cM to 17 ¢cM without and with the
infinitesimal effect, respectively. The second one is that
the model with the infinitesimal effect slightly increases
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power because the QTL is more significant when an
infinitesimal effect is fitted (Table 3). Although the infi-
nitesimal effect in crosses should be interpreted with
care when the genetic architecture in each founder
population is very different, our experience shows that,
whenever possible, introducing an infinitesimal effect
decreases the rate of false positives enormously.

Next we tested whether the QTL behaved additively
or not. To do that, we optionally fitted a dominance
effect. In Qxpak notation,

QTL

gtl add fix a global

gtl dom fix ad global

where global means that the QTL is fitted through-
out all positions. Qxpak allows us to fit an only domi-
nant effect QTL using £ix d word. The resulting P
value profiles are in red (additive) and magenta (additive
and dominant). Clearly, the QTL behaves in an additive
manner g = -0.99 + 0.19 and d = -0.09 + 0.28. However,
the most surprising result, which was not tested in the
original manuscript, is that there is a strong sex x QTL
interaction (model 4). It is clearly observed that the
QTL additive effect affects males only (Table 2 and 3).
This is also observed in the P value profile (the green
line in Figure 3). In Qxpak, the interaction between cov-
ariates and cross classified effects, say sex, is denoted as

QTL

gtl add sex fix a global (sex)

To finish the analyses, we also fitted every SNP sepa-
rately as in an association study (cyan line in Figure 3).
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Table 3 Likelihood ratio tests between alternative
models from Table 2

Test Meaning P-value

1 vs. only QTL additive effect 6 x 107

fixed effects

2vs. 0 QTL additive effect conditional on 3% 107
infinitesimal effect

3vs. 0 QTL additive and dominance effects 2% 10°
conditional on infinitesimal effect

4vs. 0 QTL additive effect nested within sex 3% 10®
conditional on infinitesimal effect

5vs. 0 Raw association signal conditional on 5x 107
infinitesimal effect

6 vs. 4 Association (SNP) signal conditional on 043
linkage (QTL) signal

6Vs. 5 Linkage signal conditional on SNP signal 7 %107

SNP 5 is found to be the most strongly associated with
the trait. A main problem in these kind of analyses is
that linkage and linkage disequilibrium signals are con-
founded, especially when the allele marker frequencies
are different between founder populations, which is a
common observation if these are distant genetically.
To further explore this issue, we fitted a complete
model that includes both the additive QTL and SNP 5
(model 6, table 2) and we tested it against a model
with only linkage (model 4) or only association signals
(model 5). The tests (Table 3) suggest that most of the
signal comes from linkage rather than population dise-
quilibrium because the SNP is not significant once the
QTL is fitted whereas the opposite is not true: the
QTL is significant even after fitting the SNP. There-
fore, one can conclude that there is a locus on SSC4
that affects males only and is related to development.
Note that the same procedure can be used to deter-
mine how many loci are significant: once a first signifi-
cant locus is fitted - be it a SNP or a QTL - it can be
tested whether a new locus is significant conditional
on the first one.

Conclusion

Qxpak.5 provides a flexible tool for genomics analysis
that can be used in a wide variety of situations with
ample genetic and statistical modeling flexibility while
implementing a coherent, unified mixed model
approach. The next step is to deal with complete gen-
ome sequence data for association studies. To that end,
we believe the principles behind the use of the molecu-
lar coancestry matrix in GWAS should be a promising
starting point.

Availability and requirements

Qxpak is free with no restriction on its use; 64 bit linux,
DOS and cygwin executables, manual and examples are
in additional file or at http://www.icrea.cat/Web/
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OtherSectionViewer.aspx?key=485&titol=Software:%
20Qxpak&researcher=255

Additional material

Additional file 1: Binary code with manual and examples. zipped file
containing complete manual, examples and binaries for linux 64 bits,
DOS and cygwin.

List of abbreviations used
GWAS: genome wide association study; IBD: identity by descent; MM: mixed
model; QTL: quantitative trait locus; SNP: single nucleotide polymorphism.
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