
A scan statistic to extract causal gene clusters
from case-control genome-wide rare CNV data
Nishiyama et al.

Nishiyama et al. BMC Bioinformatics 2011, 12:205
http://www.biomedcentral.com/1471-2105/12/205 (26 May 2011)



METHODOLOGY ARTICLE Open Access

A scan statistic to extract causal gene clusters
from case-control genome-wide rare CNV data
Takeshi Nishiyama1,2*, Kunihiko Takahashi3, Toshiro Tango3,4, Dalila Pinto5, Stephen W Scherer5, Satoshi Takami6

and Hirohisa Kishino6

Abstract

Background: Several statistical tests have been developed for analyzing genome-wide association data by
incorporating gene pathway information in terms of gene sets. Using these methods, hundreds of gene sets are
typically tested, and the tested gene sets often overlap. This overlapping greatly increases the probability of
generating false positives, and the results obtained are difficult to interpret, particularly when many gene sets show
statistical significance.

Results: We propose a flexible statistical framework to circumvent these problems. Inspired by spatial scan statistics
for detecting clustering of disease occurrence in the field of epidemiology, we developed a scan statistic to extract
disease-associated gene clusters from a whole gene pathway. Extracting one or a few significant gene clusters
from a global pathway limits the overall false positive probability, which results in increased statistical power, and
facilitates the interpretation of test results. In the present study, we applied our method to genome-wide
association data for rare copy-number variations, which have been strongly implicated in common diseases.
Application of our method to a simulated dataset demonstrated the high accuracy of this method in detecting
disease-associated gene clusters in a whole gene pathway.

Conclusions: The scan statistic approach proposed here shows a high level of accuracy in detecting gene clusters
in a whole gene pathway. This study has provided a sound statistical framework for analyzing genome-wide rare
CNV data by incorporating topological information on the gene pathway.

Background
In recent years, it has become evident that structural
genetic variants, most of which appear to be in the form
of copy-number variants [also called copy-number varia-
tions (CNVs)], can cause various common diseases,
most notably neurodevelopmental diseases [1-12].
Although common CNVs typable on current commer-
cially available platforms are unlikely to play major roles
in the pathogenesis of common diseases [13], rare CNVs
are suggested to be involved in susceptibility to common
diseases, either individually or collectively [14].
Recently, rare variants, including rare CNVs, have

received much attention in the context of “missing her-
itability,” which indicates that common variants identi-
fied to date typically explain only a small fraction of the

overall heritability [15]. However, statistical methods to
analyze rare variants, including rare CNVs, are under
development [16-22]. In this study, we report a statisti-
cal method for case-control data of genome-wide rare
CNVs.
Because any given CNV has an extremely low popula-

tion frequency, the statistical power to detect an indivi-
dual rare CNV associated with a disease is limited. This
fact motivates analytical approaches that test the com-
bined effect of multiple rare CNVs. The simplest version
of such analyses compares the frequencies of rare CNVs
per individual or the frequencies of genes affected by
rare CNVs per individual between cases and controls
[4,5,10,12]. This analysis, termed CNV burden analysis,
does not identify the genes that cause an apparent asso-
ciation. Therefore, to identify causal genes from multiple
rare CNVs, methods termed gene set analyses that com-
pare the proportion of genes affected by rare CNVs in
an a priori defined gene set (e.g., a gene set in the same
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biological pathway) between cases and controls, are used
[5,8,10,12]. In these methods, typically, hundreds of gene
sets are tested, and the tested gene sets are often found
to overlap (i.e., the same genes in multiple gene sets).
Consequently, the statistical power of such tests
decreases after adjustment for multiple testing, and the
results obtained are difficult to interpret, particularly
when many gene sets show statistical significance.
Gene set analyses do not use the topological features

of functional gene pathways, such as those defined by
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
[23] or MSigDB [24]. Genes causing any one disease can
be reasonably assumed to be functionally related and
therefore closer to each other in a pathway compared to
noncausal genes [25].
Based on this highly probable assumption, we propose

a cluster detection test to detect disease-associated gene
sub-pathways from a whole pathway using case-control
rare CNV data. For this cluster detection test, we used a
scan statistic framework, first presented by Naus [26],
which has been applied in many different fields includ-
ing epidemiological studies for detecting disease cluster-
ing [27-29]. To apply a scan statistic framework to the
context of rare CNVs, we employed methods for asso-
ciation testing with rare nucleotide variants [16-18,20].
Use of the proposed method has been illustrated with a
real dataset in which our approach completely avoids
multiple testing and the difficulties in interpreting over-
lapping gene sets derived from typical gene set analyses.
We also evaluated the performance of the proposed
methodology in a simulation study, which assumes that
any one gene disrupted by CNV in a causal gene sub-
pathway (a gene cluster) may lead to a common disease.

Results
Application to an empirical dataset
We applied the proposed test to a published case-con-
trol rare CNV study of autism spectrum disorder (ASD)
[12]. The original paper details the dataset information.
In brief, genome-wide scans for CNVs greater than 30
kb were performed on genomic DNA from 1275 ASD
cases and 1981 controls using Illumina Infinium 1 M
single arrays. Considering rare CNVs that were present
in less than 1% of the sample, 5478 CNVs present in
996 cases and 1287 controls of European ancestry were
included in this study after stringent quality-control cri-
teria were consistently applied between cases and
controls.
Using the gene pathway defined by Pathway Com-

mons [30], we could identify a statistically significant
gene cluster only for deletions (p-value = 0.025) but not
for all CNVs (p-value = 0.055). Note that a deletion was
defined as the loss of one copy (heterozygous deletion)
or two copies (homozygous deletion). Because only

deletions were significantly enriched in gene sets in
cases over controls in the original paper [12], we first
analyzed all CNVs and, subsequently, analyzed the copy-
number losses (deletions) in this analysis. The detected
gene cluster includes 776 genes within a radius of two,
which is centered on the ACAT1 gene (Additional file
1, Additional file 2).
To interpret this gene cluster, we examined the over-

lapping proportion between this gene cluster and prede-
fined gene sets. For this purpose, we used all 3272
curated gene sets in the Broad Institute’s MSigDB ver
3.0 [24]. Table 1 and Figure 1 list the gene sets overlap-
ping with the detected gene cluster at a proportion of
more than 50%. In Table 1, three gene sets (the 4th,
13th, and 19th gene sets from the top) are specific to a
particular disease, e.g., malignant glioma or liver cancer
and are not useful for interpreting the biological func-
tion of the detected gene cluster. Eight of the 18
remaining gene sets (the 1st, 2nd, 3rd, 6th, 8th, 9th,
15th, and 18th gene sets from the top) are ubiquitin-
related. The relationship between ubiquitin and ASD
has been postulated and recognized [31,32]. The ubiqui-
tin-proteasome system operates in pre- and postsynaptic
compartments and regulates synaptic attributes, includ-
ing neurotransmitter release, synaptic vesicle recycling
in presynaptic terminals, and dynamic changes in den-
dritic spines and in postsynaptic density [33]. We noted
that UBE3A, PARK2, RFWD2, and FBXO40 of the ubi-
quitin gene family were significantly enriched in ASD
cases according to case-control CNV analyses [9]. These
results suggest that our approach correctly extracted a
potential disease susceptibility gene cluster for ASD.
Finally, we compared our proposed method with Fish-

er’s exact test on a 2 × 2 table with rows corresponding
to the inside and outside of a predefined gene set, and
columns corresponding to cases and controls (Table
three b). These are not strict comparisons, because the
nature of these hypotheses are different. Our proposed
method pertains to the null hypothesis of no gene clus-
ter being associated with a disease in a gene pathway,
versus the Fisher’s exact test, which pertains to the null
hypothesis of no association between a disease and a
predefined gene set. However, the general goal is to
select gene sets with biological relevance. Results of the
Fisher’s exact test for deletions are given in Table 2
where we used the Holm’s method and the Benjamini-
Hochberg false discovery rate (FDR) method to correct
for testing all 3272 gene sets. Table 2 illustrates that all
nominal associations disappeared after adjusting multi-
ple testing by the Holm’s method, with all tests having
p-values of more than 0.05. Using a relatively relaxed
threshold of 0.2 FDR (q-value), the top seven gene sets
appeared significantly associated with ASD. These seven
gene sets are not among the gene sets overlapping with
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Table 1 Gene Sets Overlapping with the Detected Gene Cluster at a Proportion of ≥50%

Gene Set Name Overlap Proportion Gene Set Size

BIOCARTA_PROTEASOME_PATHWAY 0.63 19

REACTOME_SCF_BETA_TRCP_MEDIATED_DEGRADATION_OF_EMI1 0.58 48

REACTOME_P53_INDEPENDENT_DNA_DAMAGE_RESPONSE 0.58 43

NGO_MALIGNANT_GLIOMA_1P_LOH 0.57 7

REACTOME_CYCLIN_E_ASSOCIATED_EVENTS_DURING_G1_S_TRANSITION 0.57 58

REACTOME_SIGNALING_BY_WNT 0.57 58

REACTOME_CYTOSOLIC_TRNA_AMINOACYLATION 0.57 23

REACTOME_SCF_SKP2_MEDIATED_DEGRADATION_OF_P27_P21 0.56 52

REACTOME_VIF_MEDIATED_DEGRADATION_OF_APOBEC3G 0.55 47

BIOCARTA_SRCRPTP_PATHWAY 0.55 11

BIOCARTA_SET_PATHWAY 0.55 11

REACTOME_STABILIZATION_OF_P53 0.54 46

IIZUKA_LIVER_CANCER_PROGRESSION_L0_L1_DN 0.54 13

REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE 0.53 47

KEGG_PROTEASOME 0.52 48

REACTOME_ORC1_REMOVAL_FROM_CHROMATIN 0.51 63

GILMORE_CORE_NFKB_PATHWAY 0.50 10

FIRESTEIN_CTNNB1_PATHWAY_AND_PROLIFERATION 0.50 8

KUROKAWA_LIVER_CANCER_EARLY_RECURRENCE_DN 0.50 6

BIOCARTA_CDMAC_PATHWAY 0.50 16

REACTOME_SHC_MEDIATED_SIGNALLING 0.50 12

This table lists the gene sets with an overlapping proportion ≥50% for the gene cluster detected by the proposed test. For this analysis, we used all 3272 curated
gene sets in MsigDB (ver 3.0) [24].

Figure 1 Mutually Overlapping Gene Sets Listed in Table 1. Colored nodes represent genes in a gene set, and the name of the gene set
(gs1-21) represents the ranking in Table 1. Fourteen genes (PSMA1-7/PSMB1-7), which are shown on the right side of the figure, are shared by
11 gene sets (gs1, gs2, gs3, gs5, gs6, gs8, gs9, gs12, gs14, gs15, and gs16). Similarly, three genes (PSMD5, PSMD9, and PSMD10) are shared by
nine gene sets (gs2, gs3, gs5, gs6, gs8, gs9, gs12, gs14, and gs16), and the remaining gene (UBB) is shared by eight gene sets (gs2, gs3, gs5, gs6,
gs8, gs9, gs12, and gs16).
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the detected gene cluster (Table 1). It should be noted
that the gene sets in Table 1 were selected based on an
overlap with the detected gene cluster, while the gene
sets in Table 2 were selected based on an association
with ASD. Therefore, to compare these two methods, a
direct comparison between the detected gene cluster
and the gene sets in Table 2 would be preferable. For
this comparison, Table 2 also illustrates some overlap,
though a relatively small one, with the detected gene
cluster. This is presumably because these gene sets are
not strongly associated with ASD.

Type I error rate and power
Subsequently, we conducted a simulation study to assess
the type I error rate and power of the proposed
approach. First, we estimated the standard statistical
power, which is the probability that the null hypothesis
is rejected at a significance level of a = 0.05, without
considering the overlap between the detected and real
clusters. Permutations of case-control status were used
to obtain the critical values of scan statistics. For a =
0.05, this value is defined as the 50th highest scan statis-
tic when 999 permutated replicates are used. The esti-
mated power then equals the proportion of 1000
simulated datasets that have a scan statistic higher than
the critical value obtained from the permutated

replicates. For the simulated datasets generated at a
cluster risk ratio (CRR) of 1.0, the proportion defined
above is, in turn, the type I error rate (Figure 2). An
empirical type I error rate of 0.054, which is close to the
nominal level, was achieved.
To evaluate the performance of the scan statistic for

cluster detection, the standard power was derived in the
same manner as that for usual hypothesis tests. How-
ever, it should be noted that the standard statistical
power reflects the “power to reject the null hypothesis
for whatever reasons,” while the probability of both
rejecting the null hypothesis and accurately identifying
the true gene cluster is a different matter altogether.
Therefore, for this purpose, we used the joint power,
which can be defined as the probability of accurately
detecting the true cluster under an alternative hypoth-
esis [28,29].

StandardPower = P(H0 is rejected|H1)

Joint Power = P(H0 is rejected & the true gene clusteris detected|H1)

The joint power is more suitable for evaluating the
accuracy of scan statistics for detecting clusters than the
standard power, but the joint power is too stringent to
measure the accuracy of cluster detection. For example,
even if the gene cluster detected by this test is slightly
larger (or smaller) than the true gene cluster, the gene

Table 2 The 20 Most Significant Gene Sets from the ASD Dataset for Deletions

Gene Set Name nominal p-
value

FDR q-
value

Holm’s p-
value

Overlap
proportion

NIKOLSKY_BREAST_CANCER_8Q23_Q24_AMPLICON 1.876E-05 0.061 0.061 0.051

PEREZ_TP53_TARGETS 9.768E-05 0.078 0.319 0.019

REACTOME_RNA_POLYMERASE_I_III_AND_MITOCHONDRIAL_TRANSCRIPTION 1.026E-04 0.078 0.336 0.092

ONKEN_UVEAL_MELANOMA_UP 1.065E-04 0.078 0.348 0.098

BROWNE_HCMV_INFECTION_24HR_DN 1.187E-04 0.078 0.388 0.065

REACTOME_RNA_POLYMERASE_I_PROMOTER_CLEARANCE 1.490E-04 0.081 0.487 0.098

BLALOCK_ALZHEIMERS_DISEASE_INCIPIENT_UP 1.937E-04 0.091 0.633 0.052

STARK_HYPPOCAMPUS_22Q11_DELETION_DN 0.001 0.218 1.000 0.115

KEGG_GAP_JUNCTION 0.001 0.218 1.000 0.133

DAIRKEE_TERT_TARGETS_UP 0.001 0.218 1.000 0.111

BLALOCK_ALZHEIMERS_DISEASE_UP 0.001 0.229 1.000 0.062

RODWELL_AGING_KIDNEY_UP 0.001 0.229 1.000 0.067

WALLACE_PROSTATE_CANCER_RACE_UP 0.001 0.268 1.000 0.035

AMUNDSON_RESPONSE_TO_ARSENITE 0.001 0.284 1.000 0.105

NIKOLSKY_BREAST_CANCER_16P13_AMPLICON 0.001 0.284 1.000 0.050

CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_UP 0.001 0.284 1.000 0.039

FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_REJECTED_VS_OK_DN 0.001 0.284 1.000 0.123

IZADPANAH_STEM_CELL_ADIPOSE_VS_BONE_UP 0.002 0.327 1.000 0.045

BUYTAERT_PHOTODYNAMIC_THERAPY_STRESS_UP 0.002 0.341 1.000 0.057

HSIAO_HOUSEKEEPING_GENES 0.002 0.360 1.000 0.260

This table lists the 20 most statistically significant gene sets as determined by a one-tailed Fisher’s exact test, according to Pinto [12]. This analysis was based on
the 2 × 2 contingency table shown in Table 3b. Multiple testing was adjusted using Benjamini-Hochberg and Holm’s procedures. Results of unadjusted and
adjusted tests (Benjamini-Hochberg and Holm’s procedure) are referred to as nominal p-value, FDR q-value, and Holm’s p-value, respectively. Overlap proportions
with the gene cluster detected by the proposed test are referred to as overlap proportion.
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cluster detected is considered as “failure to detect” in
terms of the joint power, although the accuracy of cluster
detection is considerably high in reality. Therefore, as
additional measures of the accuracy of the test, we con-
sidered sensitivity and specificity [29]. First, we defined
the sensitivity of cluster detection tests as the probability
of detecting genes that actually constitute the true gene
cluster, i.e., the average proportion of the number of
genes in the true gene cluster that are included in the
detected gene cluster. Similarly, we defined the specificity
of cluster detection tests as the probability of not detect-
ing the genes that do not actually constitute the gene
cluster, i.e., the average proportion of the number of
genes outside the true gene cluster that are not included
in the detected gene cluster.

Sensitivity = E

[
#
{
genes both in true gene clusters and in detected gene clusters

}
#
{
gene in true gene clusters

}
]

Specificity = E

[
#
{
genes both outside true gene clusters and outside detected gene clusters

}
#
{
genes outside true gene clusters

}
]

Both summary measures are better the larger they are,
with 1.0 being the optimal. Figure 2 shows all these
measures of the test for simulation datasets generated
under each CRR. The standard power and sensitivity of
the proposed test eventually plateaued around 0.9 (0.914
and 0.901, respectively) at CRR = 3.0. However, even if
CRR exceeds 3.0, the joint power tends to increase
slightly with increasing CRR, and ends up at the same

level of 0.894 at CRR = 5.0. In contrast, the levels of
specificity are quite high across all CRRs (>0.95) because
the number of genes outside the true gene cluster
(13,681 genes) is much higher than those falsely
detected (typically, dozens of genes).
Finally, we compared the expected number of genes

affected by CNVs (gene count) per case and control in
the “true” gene cluster with each observed number. For
calculating the expectations, we used the expectation for
the binomial distribution, as shown in the Appendix
section. Based on a mutation rate of p = 1.0 × 10-4,
cluster size M = 100-776, prevalence P(D = 1) = 1%,
and CRR g = 1.0-5.0, the expected number of gene
counts per case and control in the “true” gene cluster is
comparable to each observation per case and control,
respectively, although a smaller cluster size is preferable
to fit the observations (Table four).

Discussion
Using a scan statistic framework, we proposed a novel
method to extract gene clusters associated with a speci-
fic disease from a global gene pathway. Unlike conven-
tional methods of gene set analyses, our method
completely considers the topology of the gene pathway.
In the global gene pathway (known as the interactome),
each gene has a specific role determined by its position.
Gene set analyses dismiss such topological pathway
information, which generally reduces statistical power.

Figure 2 Empirical Type I Error Rate, Power, Sensitivity, and Specificity of the Proposed Test. We displayed the type I error rate and
power for the proposed test at the nominal significance level of 5% as a function of CRR. The estimation was performed at the nominal
significance level of a = 0.05 over 1000 independent simulation datasets of 1000 cases and 1000 controls. (a) Solid black and red lines denote
the standard and joint power, respectively, at CRR = 2.0, 3.0, 4.0, or 5.0. The standard power at CRR = 1.0 represents the type I error rate. The
dashed blue line indicates the nominal significance level of 0.05. (b) Solid black and red lines show sensitivity and specificity at each CRR,
respectively.
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In fact, when we tested whether each gene set was more
frequently affected by deletions in ASD cases compared
with the controls using Fisher’s exact test, statistical sig-
nificance disappeared after adjustment for multiple test-
ing, which indicated a severe loss of power (Table 2). In
contrast, our method detected the gene cluster showing
a statistical significance for deletions, although the result
was not adjusted for testing twice (both for all CNVs
and deletions, P = 0.025).
Another problem with gene set analysis is overlap

between gene sets. Typically, many gene sets share the
same genes. For example, the gene sets listed in Table 1
considerably overlap, as shown in Figure 1. This overlap
makes interpretation of results from gene set analyses
difficult. However, this problem can be completely
avoided by extracting one or a few gene clusters from
the whole gene pathway. In contrast to approaches
using a predefined gene set, it is difficult for this
approach to yield meaningful biological interpretations
of identified gene clusters.
To interpret the detected gene clusters from a biologi-

cal point of view, we examined overlap (at least 50%)
with predefined gene sets (Table 1). These overlapping
gene sets can then be used to interpret detected gene
clusters using the consideration of each overlapped pro-
portion as a type of “weight”. Although we believe this
interpretational method is sufficient, it is also possible
to identify overlapping gene sets more formally, using
Fisher’s exact test on the cross-tabulation of the number
of affected genes (gene counts) in/out of a detected gene
cluster and by gene counts in/out of a gene set.
In general, scan statistics are used for the scanning of

time and space to look for clusters of events (e.g., dis-
ease occurrence). The idea is to scan a small window
over the whole “map” and to calculate some locality sta-
tistic for each window. The maximum of these locality
statistics is then defined as the scan statistic.
In this study, we chose the test statistic for testing the

difference between two proportions as a locality statistic
for calculation ease; nevertheless, other locality statistics
can be considered. For example, a locality statistic might
be the p-value derived from a one-tailed Fisher’s exact
test in this study setting. Moreover, for each locality sta-
tistic, we can use a 2 × 2 table with columns that corre-
spond to cases and controls, and rows that correspond
to the number of subjects with or without at least one
CNV in each window (Table 3a). This approach has
been previously proposed for the analysis of rare single
nucleotide variants [16], but it is less powerful than a
method based on the number of rare variants (Table 3b)
in the context of a quantitative trait [18]. Therefore, we
employed the latter “gene count” approach. The locality
statistic used in the present study is the same as the
cumulative minor-allele test (CMAT) statistic, which

was developed for analyzing rare nucleotide variants
[19]. Note that other statistics that collapse genotypes at
multiple rare nucleotide variants into a univariate test
may be used as a locality statistic for the scan statistic
proposed here [20,21].
Although scan statistics make no assumptions about

the shape of the scanning window in general, we used a
circular window for computational feasibility. However,
tests using circular scan statistics make it difficult to
correctly detect non-circular clusters, and tend to detect
a larger cluster than the true one by absorbing sur-
rounding regions (genes) where there is no elevated risk
[28], which leads to a decrease in power, sensitivity, and
specificity. In fact, the gene cluster detected in the ASD
dataset is relatively large but may, in fact, be smaller
than estimated. Therefore, scan statistics using flexibly
shaped windows are preferred, although a more efficient
algorithm is needed for practical feasibility.
Next, to evaluate the performance of the proposed

scan statistic, we conducted a simulation study based on
a simplified scenario, which assumes that genes causa-
tive for a disease will be localized proximally to each
other in a gene pathway, resulting in one causal gene
cluster [25]. This simulation also assumes that any one
variant in these genes may lead to disease [19]. In this
scenario, the simulation revealed that the statistic shows
a high level of accuracy in detecting circular clusters

Table 3 Contingency Table of Rare CNVs in a Window for
a Case-Control Sample

(a)

Cases Controls

Subjects with at least One Affected Gene in
Z

ΣI(xi(Z)) ΣI(yi(Z))

Subjects without any Affected Genes in Z m1 - ΣI(xi
(Z))

m0 - ΣI(yi
(Z))

All Subjects m1 m0

(b)

Cases Controls

Affected Genes in Z Σxi(Z) Σyi(Z)

Affected Genes outside Z n1 - Σxi(Z) n0 - Σyi(Z)

All Affected Genes n1 n0

(a) This table summarizes the cross-tabulation between the disease status
(cases vs. controls) and the location of each gene affected by CNVs (inside vs.
outside a scanning window Z) in terms of subject number. xi(Z) and yi(Z)
denote to the number of genes in a window Z that were affected by CNVs of
the ith case and control, respectively. m1 and m0 denote the total number of
subjects with genes affected by CNVs in cases and controls, respectively.
“Affected genes” mean genes affected by CNVs in a sample. I(a) is an
indicator variable taking the value 1 if a >0 and 0 otherwise.

(b) This table summarizes the cross-tabulation between disease status (cases
vs. controls) and the location of each gene affected by CNVs (inside vs.
outside a scanning window Z) in terms of a gene count. xi(Z) and yi(Z) denote
the number of genes in a window Z that were affected by CNVs of the ith
case and control, respectively. n1 and n0 denote the total number of genes
affected by CNVs in cases and controls, respectively. “Affected genes” mean
genes affected by CNVs.
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with CRR ≥ 3.0, where CRR is defined as the risk of
developing a disease in a person with at least one CNV
in a causal gene cluster versus a person with no CNV in
that cluster.
Based on the simulation scenarios used here, the

expected number of genes affected by CNVs per case
and control in a “true” gene cluster is comparable to
each observation per case and control, respectively,
although a smaller cluster size is preferable to fit the
observations (Table 4). Thus, the simulation scheme
used appears reasonable to some extent, although other
radii, sizes, and locations of gene clusters were not
investigated.
With regard to a gene pathway, in this study, we trea-

ted a gene pathway as an undirected graph, where the
direction of the interaction (edge) between genes
(nodes) is not specified. In addition, we defined the
shortest paths among all pairs of nodes as distances,
which were calculated using the Dijksta’s algorithm

implemented in the RBGL package [34]. This definition
of distance is commonly used in the functional geno-
mics field [35], but other definitions should also be
investigated in terms of graph theory.
Finally, as our method is expected to strongly depend

on the spatial configuration of genes, an extensive and
reliable functional gene pathway is crucial for its perfor-
mance. Our knowledge of human pathways is still far
from complete, and thus, the extent to which our
method is influenced by incomplete information remains
to be investigated.

Conclusions
This study has provided a sound statistical framework
for analyzing genome-wide rare CNV data by incor-
porating gene pathway information. The scan statistic
approach proposed here shows a high level of accuracy
in detecting gene clusters in a whole gene pathway.
For other settings, this framework can be easily
applied by choosing locality statistics suitable for the
desired purposes. This proposed method is not
restricted to CNVs and can, in principle, be used for
analyzing genome-wide resequencing data. With the
amount and quality of gene pathway information
expanding rapidly, the method of handling such infor-
mation in a statistically proper manner is becoming
increasingly important for analyzing rare variants,
including rare CNVs.

Methods
Scan statistics and permutation tests
Let us consider the gene pathway defined by the Path-
way Commons metadatabase, which integrates nine
publicly available biological pathways [30]. This pathway
of Homo sapiens contains 13,682 genes (or their
encoded proteins) and 538,610 protein-protein interac-
tions in all (September 7, 2010), and we use this path-
way for our analyses and simulations. This pathway is
represented by a set of nodes and set of edges between
these nodes. The nodes represent gene products, e.g.,
individual proteins. There is an edge from node A to
node B if A transfers the signal it received immediately
to B in the case of a signaling pathway (e.g., changing
the phosphorylation state of B) or if A and B catalyze
two successive reactions (e.g., metabolic pathways). To
take into account the internal structure of the pathway
and to give rigorous meaning to the “closeness” between
genes, we defined the distance between nodes (genes) as
follows: assume that each edge represents a unit dis-
tance between two nodes and that the shortest way to
connect two nodes via two edges in the pathway implies
two units of distance. If more than one path connects
two nodes, the shortest distance between the two nodes
indicates the distance between them. Note the phrase

Table 4 Expected Number of Genes Affected by Deletions
in the Most Likely Gene Cluster per Case and Control
Compared with Each Observation

(1) Cluster size = 776

Observations CRR

1.0 2.0 3.0 4.0 5.0

Case 0.054 0.078 0.144 0.203 0.203 0.254

Control 0.011 0.078 0.077 0.076 0.076 0.076

(2) Cluster size = 500

Observations CRR

1.0 2.0 3.0 4.0 5.0

Case 0.054 0.050 0.095 0.137 0.174 0.209

Control 0.011 0.050 0.050 0.049 0.049 0.048

(3) Cluster size = 300

Observations CRR

1.0 2.0 3.0 4.0 5.0

Case 0.054 0.030 0.058 0.085 0.110 0.134

Control 0.011 0.030 0.030 0.029 0.029 0.029

(4) Cluster size = 200

Observations CRR

1.0 2.0 3.0 4.0 5.0

Case 0.054 0.020 0.039 0.058 0.076 0.093

Control 0.011 0.020 0.020 0.020 0.019 0.019

(5) Cluster size = 100

Observations CRR

1.0 2.0 3.0 4.0 5.0

Case 0.054 0.010 0.020 0.029 0.039 0.048

Control 0.011 0.010 0.010 0.010 0.010 0.010

This table compares the expected number of genes affected by CNVs in the
most likely gene cluster per case and control with each observation. The
expected numbers were calculated from the disease model for CRR = 1.0, 2.0,
3.0, 4.0, or 5.0 and cluster size = 100, 200, 300, 500, or 776 (776 = size of the
most likely cluster).
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“distance between a pair of nodes” is used to imply the
“shortest distance between this pair”.
To detect gene clusters associated with a disease in the

pathway, we can choose a set of windows to search over,
where each window consists of a set of one or more
genes. Note that throughout this paper we use the term
“gene set” as a set of genes with a common biological
functionality, exemplified by Table 1 and Table 2. By
contrast, the term “window” only refers to a set of genes
to test and does not necessarily possess such a clear func-
tionality. In principle, the number of windows searched
can be as high as 2N, where N is the number of all genes
in the pathway (i.e., 13,682). However, such a huge num-
ber of windows is not computationally feasible. There-
fore, in practice, we enforced constraints on the size and
shape of windows to make their number much smaller.
In this study, we considered circular windows centered
on each gene with a continuously varying radius from
zero to a possible upper limit R (Figure 3). This con-
straint markedly reduces the number of windows to (R +
1)N. Because the windows of a maximum radius R = 4
include more than 99.9% of all genes in the pathway (Fig-
ure 4), we set R = 4 in the present study. This drastically
decreases the number of windows from virtually infinite
to just about 68,000. We define a set of windows Z,
where each window Z Î Z is set as circular on each gene,
and the radius of the windows vary from zero to the pre-
set maximum R = 4 (Figure 3, see the Appendix section).
Our method compares the proportion of genes

affected by rare CNVs in each window between cases
and controls. If a window (gene cluster) is associated
with a disease, the proportion of affected genes in this
window substantially differs between cases and controls.
Let �case(Z) and �control(Z) denote the proportion of
genes affected by rare CNVs in cases and controls,
respectively, which are contained in a window Z. The
standard test statistic for testing the difference between
two proportions can then be used to test the null
hypothesis: �case(Z) = �control(Z).
Merely testing the null hypothesis would provide us a

large number of windows to test, which would create
the problem of multiple testing. To avoid this problem,
we set the null hypothesis H0 of no gene cluster asso-
ciated with the disease in the gene pathway, and we set
the alternative hypothesis stating that there is at least
one window Z for which the proportion of affected
genes is higher in cases than in controls.

H0 : φcase(Z) = φcontrol(Z) forany Z ∈ Z

H1 : φcase(Z) > φcontrol(Z) forsome Z ∈ Z

Here we employed a one-tailed test because it
appeared unlikely that rare CNVs have protective effects
against diseases [14].

Figure 3 A Diagram Showing Scan Windows. All the nodes with
numbers 1-19 are genes, and the edges represent any kind of
interaction between two genes. Circles centered on node 1
represent scan windows to search over, with a continuously varying
radius from zero to the preset upper limit R = 4. For example, a
blue circle indicates a window centered on node 1 with a radius of
two.

Figure 4 Distribution of Distances between All Gene Pairs. The
solid line indicates the distribution of distances between all possible
gene pairs in the gene pathway, which was defined by Pathway
Commons (Homo sapiens) [30]. The vertical dashed line denotes the
preset maximum diameter (= 2 × the maximum radius) of windows.
Considering all windows of maximum diameter, more than 99.9% of
genes in the gene pathway analyzed were covered by at least one
of the windows.
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Let n1 denote the total number of genes affected by
rare CNVs in cases and let xi(Z) denote the number of
genes in a window Z affected by rare CNVs of the ith
case. Similarly, let n0 denote the total number of genes
affected by rare CNVs in controls and let yi(Z) denote
the number of affected genes in a window Z of the ith
control. In the window Z, the number of affected genes
carried by each phenotypic group is Σixi(Z) and Σiyi(Z).
The data are then summarized in a 2 × 2 contingency
table (Table 3b), and the scan test statistic for the above
hypothesis is simply given by the maximum locality sta-
tistic for a window Z:

max
Z∈Z

φ̂case(Z) − φ̂control(Z)√(
1
n1

+
1
n0

)
φ̂(Z)(1 − φ̂(Z))

Where

φ̂case(Z) =
∑

i
xi(Z)/n1, φ̂control(Z) =

∑
i
yi(Z)/n0, and

φ̂(Z) = (
∑

i
xi(Z) +

∑
i
yi(Z))/(n1 + n0). Note that we

calculated the statistic only for windows of ∑ixi (Z)>0 to
avoid a denominator = 0.
To determine the distribution of the test statistic

under the null hypothesis, we performed a permutation
test. In this study, the p-value of the test is determined
on the basis of the null distribution of the test statistic
with a large number (we used 999) of permutation repli-
cates, where the labels “case” and “control” are
permuted.
If the test of the single most significant cluster (here-

after referred to as the “most likely cluster”) is statisti-
cally significant, there is interest in testing for the
presence of additional clusters ("secondary clusters”). To
derive secondary clusters in addition to the most likely
cluster, locality statistics for each window Z are
arranged in descending order. The first (largest) locality
statistic is a scan statistic for the most likely cluster, and
the second (largest) locality statistic is a scan statistic
for the second most likely cluster and so on. However,
because expanding or reducing the cluster size will only
marginally alter the locality statistic, there will almost
always be a second most likely cluster that is almost
identical to the most likely cluster. Most clusters of this
type provide little additional information. Thus, the
most interesting secondary clusters are the windows Z
that do not overlap with the most likely cluster and that
are statistically significant. To test for secondary clusters
that do not overlap with the most likely clusters, p-
values for secondary clusters are calculated using the
null distribution of the scan statistic for the most likely
clusters. Because the locality statistic for the secondary
cluster is less than that of the most likely cluster, the p-
values for secondary clusters are typically conservative

to some extent [27]. This procedure is then repeated
until there are no more clusters with p-values less than
a significance level, a = 0.05.

Simulation scheme
First, we describe a novel way of simulating case-control
genome-wide rare CNV data. We assume that a rare
variant resides on one gene (i.e., no rare variant resides
on more than two genes) and that M genes are included
in a single causal gene cluster. Then, we denote the gen-
otype at the jth gene in the causal gene cluster by gj,
and the joint genotypes for M disease genes in the clus-
ter by g = {g1,g2,...,gM}. Because a homozygote for a
minor allele is extremely rare at each variant site
because of its rarity, the genotype for an individual at
the jth disease variant is denoted by gj{0,1}, where 0
denotes the wild-type genotype (homozygous for a
major allele) and 1 denotes a heterozygote. We use D =
1 to denote a case individual and D = 0 to denote a
control. According to Wright [36], let a referent geno-
type g0 denote the joint genotype = 0 at all sites. If we
specify the population genotype frequencies P(g), the
disease prevalence P(D = 1), and the risk ratio RR(g) = P
(D = 1|g)/(D = 1|g0) for all g, then we get the following
equation:

P(g|D = 1) =
P(g)P(D = 1|g)∑
g P(g)P(D = 1|g)

=
P(g)RR(g)∑
g P(g)RR(g)

For the disease model, we assume that a rare mutation
that disrupts any one of M genes in the causal gene
cluster may well lead to common diseases; therefore, we
adopted RR(g) = constant as the risk model in our simu-
lation; say, g for g ≠ g0 and RR(g) = 1 for g = g0. Thus,
for g ≠ g0

P(g|D = 1) =
γP(g)

(1 − γ )P(g0) + γ

Hereafter, we refer to g as the cluster risk ratio (CRR).
Furthermore, we have

P(g|D = 0) =
P(g) − P(g|D = 1)P(D = 1)

1 − P(D = 1)

in which all terms on the right-hand side are known.
In the disease model, we assume that in the source

population, all variant sites in the considered gene clus-
ter are independent. We also assume that genotypes = 1
at each variant site are generated with a nearly constant
probability of p. This assumption is not required for our
method but is used only for the ease of simulation. Let
gi refer to a joint genotype with i genotypes of 1 and
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(M-i) genotypes of 0. We can then approximate the
population genotypic frequencies by the binomial distri-
bution as follows:

P(gi) =
(
M
i

)
pi(1 − p)M−i

Therefore, for gi ≠ g0,

P(gi|D = 1) =
γ

(
M
i

)
pi(1 − p)M−i

(1 − γ )(1 − p)M + γ

Thus, we can simulate the joint genotype of a causal
gene cluster for cases and controls by the following two
steps: (1) calculate P(gi|D =1) and P(gi|D =0) for all gi
and (2) randomly select i mutated genes from a causal
gene cluster with the probability of P(gi|D = 1) for a
case subject and with the probability of P(gi|D = 0) for a
control subject.
For genes not included in a causal gene cluster, it fol-

lows from this model that P(gi|D = 1) = P(gi|D = 0) = P
(gi), and the joint genotypes outside a causal gene clus-
ter can be obtained according to the above steps. Finally,
by combining joint genotypes inside and outside a cau-
sal gene cluster, we can create entire joint genotypes for
both cases and controls.
In all our simulations, we generated 1000 datasets

with each consisting of 1000 cases and 1000 controls.
Based on previous studies [37,38], the CNV mutation
rate, p, is set as 1.0 × 10-4 because our study focuses
only on rare CNVs with relatively homogeneous fre-
quency spectra. To simulate ASD, we set the disease
prevalence to 1.0% [39,40]. We considered CRR = 1.0,
2.0, 3.0, 4.0, or 5.0 in reference to several reported
CNVs with quite high odds ratios of 2.7-21.6 [3,4]. For
the true causal gene cluster, we chose the gene cluster
detected in the ASD dataset analyzed above that con-
tains 776 genes within the radius of two (Additional file
1), i.e., M = 766 in the simulation.
The program for computation of the scan statistic was

developed for this work and implemented in C on Win-
dows XP. This program is available on request to the
authors. All the other computations and simulations
were conducted on the same computer, using R pro-
gramming language [41] ver 2.9.0.

Appendix
The procedure for choosing a set of genes (window) Z to
search over
1. We first obtain a distance matrix dkl, which is defined
by shortest distance between gene k and gene l (k, l =
1,..., N). By focusing on the kth gene (row), we choose a
set of genes (window) Z with distances equal to or

smaller than the radius r (i.e., dkl ≤ r). Then, we com-
pute a scan statistic T(Z) for the chosen window.
2. Next, by increasing the radius r to the predefined

upper limit R, we find the window with the highest
value of T(Z) that is centered on the kth gene.
3. Finally, by moving the kth centered gene (row) from

1 to N, we find the set of genes with the globally highest
value of T(Z).

The expected number of genes affected by CNVs (gene
count) per case and control
Here we provide the equation for the expected gene
count in a disease gene cluster per case and control.
Following the argument of method section, we have

P(gi|D = 1) =
γ

(
M
i

)
pi(1 − p)M−i

(1 − γ )(1 − p)M + γ

P(gi|D = 0) =
P(gi) − P(gi|D = 1)P(D = 1)

1 − P(D = 1)

=
(1 − K){(1 − γ )(1 − p)M + γ (1 − K)}

(1 − γ )(1 − p)M + γ

×
(
M
i

)
pi(1 − p)M−i

where K equals disease prevalence, P(D = 1).
Therefore, the expected gene count in a case indivi-

dual is given by:

E[i|D = 1] =
γMp

(1 − γ )(1 − p)M + γ

Similarly, the expected gene count in a control is
given by:

E[i |D = 0]

=
(1 − K){(1 − γ )(1 − p)M + γ (1 − K)}Mp

(1 − γ )(1 − p)M + γ

Additional material

Additional file 1: Additional file 1.doc. The Gene Cluster Detected in
the Whole Gene Pathway by the Proposed Test

Additional file 2: Additional file 2.doc. Genes Detected by the
Proposed Test for Deletion
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