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Abstract

to determine which program is the best for what task.

mappers supporting the SAM output format.

de/projects/rabema.html.

Background: Second generation sequencing technologies yield DNA sequence data at ultra high-throughput.
Common to most biological applications is a mapping of the reads to an almost identical or highly similar
reference genome. The assessment of the quality of read mapping results is not straightforward and has not been
formalized so far. Hence, it has not been easy to compare different read mapping approaches in a unified way and

Results: We present a new benchmark method, called Rabema (Read Alignment BEnchMArk), for read mappers. It
consists of a strict definition of the read mapping problem and of tools to evaluate the result of arbitrary read

Conclusions: We show the usefulness of the benchmark program by performing a comparison of popular read
mappers. The tools supporting the benchmark are licensed under the GPL and available from http://www.segan.

1 Background

Second generation (2G) sequencing technologies have
many and diverse biological applications [1-7] and have
effectively transformed the field of DNA sequence analysis.
With the advances in sequencing technologies that con-
tinuously increase throughput at dramatically decreasing
costs, also an increased demand for computationally effi-
cient analysis tools has arisen. One of the most demanding
but fundamental computational processing steps is read
mapping, i.e. finding the positions of all sequenced reads
in a reference genome. A variety of tools to solve the read
mapping problem have been published, e.g. [8-12]. As
read mapping is fundamental to all downstream analyses,
the outcome of an analysis may differ significantly depend-
ing on the way reads were mapped. In addition, research
in this field will remain active due to continuous progress
in sequencing technology. Hence, the need for a careful
and clear definition of the quality (resp. accuracy) of a
read mapping result is apparent. Also, as the number of
users of 2G sequencing machines and the number of read
mapping tools for different purposes increase, it becomes
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crucial to be able to compare read mapping software to
determine what tool is the best one for a specific purpose.
Unfortunately, the various read mappers have different
properties and use slightly different definitions of the read
mapping problem which make such a comparison difficult.
Here, we will discuss and carefully define this pro-
blem, and point to the challenges that comprehensive
and sensitive read mapping faces. Furthermore, we pre-
sent a novel benchmark based on which the quality and
speed of read mapping tools can be assessed. Our con-
tribution consists of a precise definition of the read map-
ping problem and tools to evaluate the results of a read
mapper. This enables the generation of gold standards
for both simulated and real-world reads. It thus over-
comes shortcomings when only using simulated reads,
such as biases present in real data (cf. [13]). Using the
four read mappers shown in Table S1 (supplementary
tables, figures, and sections can be found in Additional
File 1), we give an example of such an evaluation.
Besides helping to objectively compare programs, proper
benchmarking has other merits, namely to kindle a keen
competition among computer scientists. This often results
in efficient algorithms and fast implementations. Examples
are the RNASeq Genome Annotation Assessment Project
[14] or the ENCODE Gene Prediction Workshop [15]
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which resulted in many new approaches to gene predic-
tion and quantification.

Another advantage is better support for the algorithm
engineering cycle [16]: First, an algorithm is designed
and analyzed theoretically. This is followed by a careful
implementation. The implementation is then experimen-
tally evaluated and the theoretical hypotheses verified or
discarded. Using this information, the next iteration in
the cycle can be started.

Careful experimentation is one key aspect of a suc-
cessful practical solution to algorithmic challenges. We
expect that our benchmark method will help to advance
read mapping research in the next years.

2 Methods
We use common notation from mathematics and com-
puter science. We denote closed ends of an interval with
square brackets and open ends of an interval with round
brackets. For example, [a, b) is a half-open interval with
the values from, and including, a up to, and excluding, b.
For a sequence S, S gives the reverse-complement by
reversing S and exchanging the characters with their
complement. As usual, in DNA: C is exchanged with G
and A with T.

2.1 The Read Mapping Problem

An abstract definition of the read mapping problem can
be given as follows. The input is a reference sequence S, a
set R of reads r, a distance function J and a maximal dis-
tance k. J assigns a distance to semiglobal alignments of
reads against S. The domain of J determines which align-
ments are possible, e.g. whether Hamming or edit distance
is used. Note that J could also be the score of an align-
ment (e.g. a Smith-Waterman score), which we do not
consider in this paper (see Section S3).

For each read r, the problem is to find a set of matches
of r in S. The precise definition of the term match is
suprisingly involved and will be given in Sections 2.2 to
2.4. For now, let a match be a location in the reference
where the read aligns. A feasible match is a match where
the read aligns with distance < k. A best match is a feasible
match that has the smallest distance of all feasible matches
for the given read. We can rank the matches ascendingly
by their distance. Now, let us consider the set of matches
that is to be found. Obvious choices for the match set
could be to find: (1) all feasible matches, (2) all best
matches, (3) up to ¢ best matches, or (4) up to ¢ best-rank-
ing matches. In this work, we consider (1-3), and (3) with
¢ = 1, refered to as all, all-best, and any-best.

From the application of read mapping in biology, the
biological problem arises. Here, the position in the refer-
ence should be found that corresponds to the sample
position of each read. Because of ambiguities, this
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problem cannot be solved directly, but is approximated
by the mathematical problem.

2.2 Defining Matches

In this section, we will try to give an intuition for the
difficulties inherent in defining matches. These difficul-
ties stem mostly from the problem of how to decide
when two matches are different and when they should
be considered the same. This will profoundly influence
how we define a match and thus how we count correct
matches.

First of all, we do not allow the first and last base of a
read to align with a gap in the reference sequence. Such
alignments are superfluous: Aligning the first/last base
to the base at the left/right of the gap will always yield
an alignment with a lower or equal distance. Figure S4
gives an example.

When Are Two Matches Different?

When publishing their work, many authors of read map-
ping software simply count the number of mapped
reads. This only allows for a crude assessment of read
mappers relative to each other but not to the best possi-
ble solution.

Additionally, special care has to be taken when con-
sidering uniquely matching reads: If the read mapper
does not have full sensitivity, it could miss a second
match of a read and report it as unique match. Another
read mapper could find both matches and discard the
read as non-uniquely matching. In this case, a less sensi-
tive read mapper could get a higher rating. Thus, one
would also have to compare the non-uniquely matching
reads as found by a read mapper to the ones reported
as uniquely matching and compute a set of reads that
are false positives. This is rarely, if ever, done in the lit-
erature, though. Note that this set of false positives can
only be seen as an approximation if no read mapper
with full sensitivity is included in the comparison. Addi-
tionally, a definition of “full sensitivity,” i.e. of a gold
standard is still required. Consider the read and refer-
ence sequence fragments from Figure 1. Say, we want to
find the best two matches of the read in the reference
sequence, with an edit distance of up to 3. Both with an
edit distance of up to 3. Both localocations in the refer-
ence sequence are shown. The row alignments shows
two alignments of the read to the reference sequence
that appear to be “natural.” However, the alignments in
rows * and +x have a lower edit distance than the right
one. Common sense would tell us that the alignments
in the left column are not “significantly different,”
though. Each alignment with distance k induces align-
ments with distance at most k + 2 by aligning the left-
most/rightmost base one more position to the left/right
and introducing a gap. Repeats are another issue.
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reference  CAGACTCCCAACTGTCA

alignments TCCCAAC
* T-CCCAAC
Jox TCCCAA-C

Figure 1 Alignments of the read TCCCAAC against two locations in the reference sequence.

CAGACTCCCCCCAACTGTCA
TCCC---AAC

Consider the tandem repeat in Figure 2(a). Intuitively,
we can identify the two distinct alignments shown there.
Figure 2(b) shows another tandem repeat of shorter per-
iod with a read that aligns in this repeat region. Search-
ing for alignments in Figure 2(b) in the same way as in
Figure 2(a)), we could identify all alignments given in
this figure.

However, counting alignments in this way would require
a read mapper to find lots of positions in repeat regions.
This is not desirable since reads from long tandem repeat
regions would get a higher weight with this counting
scheme than reads from short tandem repeat regions or
reads from non-repeat regions. Only weighting each found
match with '/, (where n is the number of positions the
read aligns at) is deficient, too. It would be preferable to
find a way to naturally merge similar matches (e.g. the one
from the left column of Figure 1), matches that are very
close to each other (c.f. Figure 2(b)) and to separate
matches that are sufficiently distinct (c.f. Figure 2(a)).

To give a clear description on how to separate
matches, we will first introduce trace trees.
Trace Trees
Consider a dynamic programming matrix for semi-glo-
bal alignment (cf. [17]). Each alignment is represented
by a path from the top row to the bottom row. Horizon-
tal and vertical movements between cells represent
indels, diagonal movements matches and mismatches.

Standard DP alignment algorithms yield the smallest
distance for each alignment end position. From an end
position, we can search for start positions by performing
a traceback search backwards/upwards in the matrix.
Given a value for k, we can find all start positions for
the given end position that yield alignments with dis-
tance < k. The backward search yields a path through
the matrix which we call trace.

Note that we only consider DP algorithms that are
deterministic and always perform the same choice in
case of ambiguities. For example, if they have the choice
between tracing back vertically, diagonally, and/or hori-
zontally, they could always take the rightmost choice. In
this case, they would prefer vertical over diagonal, diag-
onal over horizontal movement. Needleman-Wunsch is
one example of such an algorithm. When plotting the
traces for all feasible matches, we could get an image
like the one shown in Figure 3 (The numbers below the
lower leafs in Figure 3 give the minimal distance for the
best alignments ending in this position): We can con-
sider the traces as graphs where cells correspond to
nodes and movements in a trace between cells can be
seen as edges. The resulting graphs have some simple
properties, namely that a) the graph decomposes into
connected components and b) each connected compo-
nent is a tree. If one chooses any vertex on the trace
shared by all alignments as a root, then the resulting

reference

reference

-CGACCCACCACGACCCACCACGACCCACCA - -

() CGACCCACCACGACCCACCA
CGACCCACCACGACCCACCA

e N T e

-CAACAACAACAACAACAACAACAACAA - -

CAACAACAACAA
CAACAACAACAA
(b) CAACAACAACAA
CAACAACAACAA

Figure 2 Two examples for reads mapping in a long (a) and in a short (b) tandem repeat.

CAACAACAACAA
CAACAACAACAA
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reference .
o
(3
L
A 6435444345617
*
Figure 3 This figure shows two neighbouring trace trees.

rooted tree is split into an upper and a lower part. The
upper leafs correspond to possible start positions of
alignments, the lower leafs correspond to possible end
positions. Each combination of one upper and one
lower leaf corresponds to a specific (although not neces-
sarily feasible) alignment and is thus an upper bound on
the number of feasible alignments.

Hamming Distance Matches

If we want to count all possible alignments, we note that
each match in the Hamming distance model corre-
sponds to exactly one diagonal in the matrix, namely
the one between the start and end position of the
match. Thus, we can define a match with Hamming dis-
tance simply with either its start or end position. For
consistency with our choice for edit distance (see
below), we pick the end position.

Redundant Edit Distance Matches

Considering all combinations of start and end positions
is not desirable for edit distance: In Figure 3, there
would be 4 x 6 = 24 such matches in the left tree alone,
possibly many feasible ones. We have to resort to other
means for counting alignments in the case of edit
distance.

Identify Matches With End Position

We observe that the shared trace is usually longer than
the branching parts. This means that large parts of the
alignment are basically the same and even differing
alignments might have the same distance. To avoid
counting these as separate alignments, we proceed as
follows.

We identify each match with its end position e and
use the leftmost start position s with minimal distance
as its canonical start position. The choice of s as the
canonical start position is arbitrary. However, picking
the leftmost position as s has the advantage that the
interval between s and e contains the start position of
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all alignments of minimal score ending in e. In the
example from Figure 3, this reduces the number of
matches for the right tree from 24 to 6.

2.3 Error Landscapes

In this section, we define error landscapes in order to
capture the intuition of the match definition we will
give in Section 2.4 more formally. The distance (i) of a
read to the genome at position i is the distance of the
best alignment that ends there. If we plot the points
(i, 0 (i) for each reference sequence position i and con-
nect them, we get an error landscape such as the one
shown in Figure 4(a). In this landscape, valleys represent
regions where the read aligns with a low distance and
mountains represent regions where the read aligns with
a high distance.

Now, we let imaginary ground water in our landscape
rise to a level of k + 0.5. This is shown in Figure 4(b).
In this example, this yields five lakes. Each lake repre-
sents a class of matches with sufficiently low distance.
The metaphor of the landscape with lakes corresponds
to the natural merging of similar matches.

We expect a read mapper to locate each of these
classes but it suffices to find one representantive in each
class for the all variant. For criteria all-best and any-
best, each lake is assigned the distance of the point with
the lowest distance of all contained points. Put differ-
ently, each lake is assigned its depth — if we stay in the
metaphor of landscapes and lakes.

distance

match end position

distance

(b)

match end position

Figure 4 This figure gives an example of the error landscape:
(a) shows the landscape before smoothing and (b) shows it
after smoothing and with water. The end position is plotted on
the x axis, the distance is plotted on the y axis. In (a), the raised
ground water is shown and the separating position has been
smoothed. The point between the lines marked in red is a
separating position (see Definition 3).
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2.4 Matches as Equivalence Classes

After arguing, which matches should be considered the
same and which different, we need to formalize this
notion. Hence, the aim of this section is to give a strict
mathematical definition for the term match such that it
closely models the intuitions from Sections 2.2 and 2.3.

In Section 2.2, we already argued that we want to
identify each match with its end position. We also
enforce the alignment of the last read and reference
bases as described there. Now, we want to find an
equivalence relation that partitions the set of feasible
matches in a sensible way such that each class corre-
sponds to an intuitive match.

We will do this by defining an equivalence relation for
merging neighbouring matches and then defining
another one that merges separated feasible matches
sharing the same trace. For numbers a, b in the follow-
ing, we assume w.l.o.g. that a < b. Also, we identify
matches with their end position and use the two terms
match and end position interchangeably.

Definition 1 (Neighbour Equivalence). Two feasible
matches (identified by their end positions) a, b are

neighbour equivalent (ag b) iffor all x, a < x < b the

following holds: o(x) < k.
Definition 2 (Trace Equivalence). Two matches a, b

are trace equivalent (a; b) if their traces share a part.

This is the case if their canonical start position is equal.

For example, for k = 4, the last match ending in the
rightmost leaf of the left tree and the leftmost leaf of
the right tree in Figure 3 are neighbour equivalent but
not trace equivalent. However, the matches ending at
the third and fourth leaf of Figure 3 are trace equivalent
but not neighbour equivalent.

Definition 3 (k-Trace Equivalence). Two matches a, b
are k-trace equivalent (akETb) if one of the following
holds: (1) They are feasible, neighbour equivalent, and
trace equivalent. (2) There exist feasible, trace-equivalent
matches o, B and a separating match { such that o < a
<{<b<p

A separating match {is a match with 6 ({) > k and
there exists o, B, oo < <f such that J (), 0 (B) < k.

Obviously, & and L are equivalence relations. Also, it

is easy to see that XL is reflexive, symmetric and transi-
tive and thus an equivalence relation. We now define
two matches a, b to be equivalent (a = b) if they are k-
trace equivalent or neighbour equivalent. The disjunc-
tion of two equivalence relations yields another equiva-
lence relation.

It follows that = gives a well-defined partition of the
feasible matches which corresponds to the intuitions
given in Section 2.3.
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2.5 Gold Standard and Evaluation

Following the definition of k-trace equivalence, each
equivalence class is an interval. The reference data set
(gold standard) can thus be described as an array of tri-
ples (k, first, last) describing all intervals of feasible
matches [first, last] for a given k for each read.

Given the gold standard and the result of a read map-
per, the quantitative evaluation of the read mapper
result is easy. In the evaluation, a specific value is
selected for k, say c¢. Now, all intervals from the gold
standard are selected, where the value of k equals c.
After sorting these intervals, binary search can be used
to check which equivalence classes were found by the
read mapper.

An additional preprocessing step has to be done in the
case of all-best and any-best evaluations. Here, we
update the value of k in each interval I in the gold stan-
dard to the smallest value of k for all intervals contained
in 1. This is done before the selection step described in
the above paragraph.

Further technical issues are described in Section S1.

2.6 Building the Gold Standard

We differentiate between building the gold standard for
the biological problem and the mathematical problem.
Biological Problem

Since it is not possible to observe the sequencing pro-
cess at the molecular level, we use simulated reads.
Note that simulation data always has certain shortcom-
ings, as biases present in real biological data are hard to
simulate. Such biases in short read sequencing data have
been reported e.g. in [13]. Nevertheless, simulated data
can be informative in benchmarking tools, and can
therefore be used to complement real-world data.

From our simulation, we obtain read sequences
together with their actual sample positions. Each of
these positions is a representative of the one equivalence
class the read mapper should find. Given this represen-
tative, the whole equivalence class (i.e. interval) can be
found as described below for the mathematical problem.
This procedure is, in essence, similar to simulating reads
and checking whether their mapping position is close to
the actual sample position, but has the advantage of not
having to choose a cutoff for what is defined as “close”.
With our definition, the genomic sequence itself defines
how far away from the originally simulated position a
read may map in order to be counted as correct. Inter-
vals in ambiguously mappable regions will be broader,
while intervals in unambiguous regions will be tight.
Mathematical Problem
A naive solution for generating a gold standard for the
mathematical problem is to use an online multiple
string search algorithm and then merge the matches,



Holtgrewe et al. BMC Bioinformatics 2011, 12:210
http://www.biomedcentral.com/1471-2105/12/210

according to =. However, this is too slow even for mod-
erate genome sizes.

A more sophisticated method is to take the matches
of a read mapper with full sensitivity as the input. This
will yield at least one match m in each equivalence
class. Using m as seed, we can then reconstruct the
interval around it and only have to look at a fraction of
the reference sequence.

Starting from each m, we first extend the interval to
the right. We extend until we find a match that has
score >k and no match right of it with score < k that
has the same begin position. Analogously, we extend the
interval to the left.

Finding the end and begin positions of the alignments
can be efficiently implemented with approximate string
search algorithms for Hamming and edit distance. For
edit distance, we use Myers’ bit vector algorithm [18],
for Hamming distance we use a naive implementation.

Given k,,,,., a maximal value for k, we compute the
gold standard for all 0 < k < k,,,,, for each read.

2.7 Read Mapping and Similar Problems

The mathematical objective of read mapping may vary
for different types of biological analyses. For example,
when mapping RNA-Seq reads onto a genomic
sequence, one should consider that reads will span
exon-exon boundaries. Here, a spliced mapping
approach would be a reasonable choice.

The benchmarking method that we describe here con-
siders the “core” read mapping problem, and evaluates
how far a read mapper is away from the mathematically
optimal solution. We do not address related problems
such as spliced read mapping or multi-read assignment.
We only consider pairwise alignments for individual
reads using the popular and parameter free distance
measures Hamming and Levenshtein distance.

Still, being able to measure how sensitively a read
mapper detects all (best) mapping positions is indirectly
useful for multi-read assignment: If a read mapper
misses a high number of mapping locations, a subse-
quent multi-read assignment step is less likely to find
the correct assignment.

2.8 Practical Considerations

The description above is simplified in some parts to ease
the understanding. In practice, there are the following
differences and additional considerations:

We always used absolute error values in our descrip-
tions which is appropriate for reads of the same length.
However, some technologies, e.g. 454 pyrosequencing,
yield reads of varying length. Thus, we use error rates,
which are relative to the read length.

Gold standards could be built from any read mapper
with full sensitivity, e.g. Mrsfast [19] or Razers [12].
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Razers supports both Hamming and edit distance for
arbitrary read length whereas Mrsfast only supports
Hamming distance. Of course, also tools that claim
100% sensitivity may contain bugs; RazerS is our in-
house tool that we can correct quickly in case of pro-
blems. Therefore, we chose Razers for building gold
standards.

2.9 Read Simulation

For our benchmark, we use the Mason read simulator
[20]. The program takes a FASTA genome reference
sequence S for its input. It then simulates an arbitrary
number of haplotypes by adding indels and mismatches
to S. Third, it simulates read sampling from the haplo-
types, depending on the sequencing technology. Finally,
it writes out the reads in FASTQ files and also creates a
SAM file that describes the gold standard for the biolo-
gical problem from Section 2.1.

Details can be found in Section S2.

3 Results and Discussion

3.1 Read Mapper Comparison

We have evaluated the read mappers Bowtie [11], Bwa
[9], Shrimp2 [10], and Soap2 [8] on read sets for D.
melanogaster and S. cerivisae from the Short Read
Archive (SRA). Information about the read sets can be
found in Table S2, Table S3 shows information regard-
ing the used reference sequences. The gold standard for
the mathematical problem from Section 2.1 was built
with an error rate of 8% and edit distance. Also, we gen-
erated simulated read datasets for the evaluation of the
biological problem from Section 2.1.

We used default parameters for Bwa as advised by the
author; Illumina reads were mapped using the com-
mands aln, samse, and sampe, 454 reads were mapped
using bwasw. For Shrimp2, weighted seeds were used to
improve performance for longer reads, as suggested by
the authors. For Soap2 and Bowtie, we performed some
initial benchmarks to optimize sensitivity, at the cost of
a higher running time. These programs were also run
with default paramters, the variants with tuned para-
meters are labeled Soap2 and Bowtie* For parametriza-
tion details, see Section S4.

We limited the output of each read mapper to 100
alignments per read, where possible, to 1 for simulated
reads. There is no option to limit the output of Soap2
to a certain number of alignments per read. For the eva-
luation, we perform a postprocessing step and only
select the best 100 matches by edit distance, breaking
ties randomly.

The experiments were performed on a computer with
Linux 2.6.30, Intel Xeon processors with 2.67 Ghz and
76 GB of main memory. No program was run with
more than one process/thread. Memory consumption
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was measured by parsing the output of the Unix com-
mand top every second. Table S4 shows the resource
consumption for building the indices of Bowtie, Bwa
and Soap?2.

As a sanity check of the method, we also ran Razers
with default parameters on all read sets. The expectation
was that it should find nearly all intervals since it uses
the same definition of the read mapping problem as the
read mapping benchmark. Full sensitivity should only be
limited by (1) reads with more than 100 matches, (2)
the default sensitivity of 99%, and (3) its default error
rate of 8% which might make it join lakes that are sepa-
rated when analyzing with a lower error rate. The run-
ning time was expected to be generally lower than that
of Shrimp and higher than that of index-based tools.
This expectation was fulfilled and subsequently, Razers
was excluded in the following evaluation. Plots and data
that also show the performance, as well as the running
times of Razers are available from the project homepage.

The metric normalized found intervals is defined as
follows: Each read gives at most one point. If a read
matches at # locations (i.e. intervals), each found loca-
tion gives '/n point. To get percentages, the number of
achieved points is divided by the number of reads and
multiplied by 100. In the following, we will use the
terms sensitivity and normalized found intervals
interchangeably.

Real-World Data

Figure 5 shows the evaluation of normalized found
intervals (aiming to find all and any-best intervals) over
a varying error rate using different read sets for D. mel-
anogaster. The plots are for 10,000 uniformly sampled
reads from each read set. The read sets’ SRA accession
numbers are given in the caption of each plot. Table S5
shows the running time and memory consumption of
the programs on these read sets. Here, we want to focus
on the evaluation of sensitivity. Bowtie was not run on
454 reads because its lack of support for gaps practically
makes it inapplicable to the indel-error prone 454 reads.
Likewise, we did not process 454 reads with Soap2 since
we were not able to obtain suitable parameters.

Figures 5(a) and 5(c) show the sensitivity results for
the all problem on Illumina reads. Bowtie* and Shrimp2
are the most sensitive tools; while all tools’ perfor-
mances suffer from increasing error rates, Shrimp2
achieves the highest sensitivities at high error rates
where the absolute number of errors is greater than 3.
Soap2 and Bowtie, especially in their default versions,
seem to be tuned toward low numbers of errors. The
effect can be seen on long reads in Figure 5(c): Using
default settings, both tools’ sensitivities drop dramati-
cally for reads with more than 2 errors. The optimiza-
tion of parameter settings for Soap2 and Bowtie clearly
improves performance on long Illumina reads. For high
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error rates, this improvement even leads to 10 percen-
tage points more sensitivity. For the short reads in Fig-
ure 5(a), Bowtie’s default already constitutes the optimal
parameter setting; the lines for Bowtie* and Bowtie are
therefore the same here. From Figures 5(a) and 5(c), we
also see that Bwa does not perform very well in the all
category. It is consistently about 2-3 percentage points
behind Bowtie*. This is explained by the fact that Bwa
only reports a single match for reads that exceed the
number of matches to report (in our case 100).

Looking at the results for Illumina reads in the any-
best category shown in Figures 5(b) and 5(d), we see
that Bwa is the best performing tool for this case. This
holds for long and short reads, and for all investigated
error rates. For short reads, both versions of Soap2 and
of Bowtie perform equally well. As they are fully sensi-
tive for reporting at least one best Hamming match for
each read, their sensitivity only drops here due to
missed gapped alignments. As can be seen for long
reads, an absolute number of errors greater than 2,
again leads to an increase in missed matches for the
default versions of Soap2 and Bowtie. While Shrimp2
performs very well at the all problem, in the any-best
criterium it lags behind all other tools (with exception
of the non-optimized default of Soap2 and also Bowtie’s
default at high error rate). Due to the limitations men-
tioned above, only Bwa and Shrimp are shown in Fig-
ures 5(e) and 5(f). For the long 454 reads, there usually
exists only one or few mapping locations per read.
Therefore, differences in sensitivities between the all
and the any-best category are not as pronounced as for
the shorter, more ambiguously mapping Illumina reads.
Here, Shrimp2 consistently has a lead of 10-20 percen-
tage points over Bwa. This higher sensitivity comes at
the cost of one order of magnitude higher running time
and memory consumption.

We conclude from our analysis that Shrimp2 is a
highly sensitive tool for detecing multiple matches (cate-
gory all). Thus, it appears to be a good choice for ana-
lyses that require high sensitivity. Also, Bwa is a very
diverse tool and shows especially good performance for
the practically relevant any-best problem. Apparently,
Bowtie and Soap are geared towards fast short read
mapping with low error rates. In the any-best category
they find matches of short reads with high sensitivity.

For all tools, parametrization becomes increasingly
important with increasing read lengths and increasing
numbers of errors. Different parameter settings for the
same tool can lead to discrepancies in sensitivity of
more than 20 percentage points. This emphasizes the
importance of a benchmark such as the one presented
in this article which can be used by developers and
users alike to test tools with different parametrizations.
Figures S6 and S7 show the same evaluation for the
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data on reads from S. cerivisiae. (Note that tests were
only performed on Illumina reads of length 20 and 36
since no longer reads could be obtained for this organ-
ism.) The relative results and conclusion are similar for
all read sets; sensitivies are higher for all read mappers,
due to the lower repeat content of the genome. Notably,
Shrimp2 does not gain as much as the other read

mappers on the Illumina reads, but still achieves a high
sensitivity.

Simulated Data

Tables 1 and S7 show the sensitivity of the read map-
pers on simulated data for fly (and yeast). Bwa and
Shrimp2 consistently yield the best results, finding the
best locations of at least 90% of all intervals on all read
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Table 1 Performance in found interval percentage for the
read mappers on simulated D. melanogaster reads

lllumina  lllumina Illumina 454 454
36 bp 50 bp 100 bp @200 bp @400 bp

Bowtie 785 722 55.0 - -
Bowtie* 785 72.2 59.2 - -
Bwa 927 935 938 - -
Shrimp2 90.1 91.1 928 89.7 929
Soap 79.6 73.1 54.7 - -
Soap* 79.8 73.1 575 - -

Data is given for mapping in edit distance mode. 454 reads were only
mapped with Shrimp2.

sets. The results for yeast reads are better than for fly
reads. The most likely explanation is the lower complex-
ity of the yeast genome with less ambiguities. Both read
mappers’ quality increases, with increasing read length,
probably because of the same reason: The longer the
reads are, the less ambiguities there are.

Bowtie and Soap2 do not support indels and are con-
sequently not robust against the rising number of indels
in the longer reads. This can be seen in the decreasing
quality of their results. The optimized parametrizations
yield slightly better results than the default parametriza-
tions. In total, Bowtie finds slightly more original loca-
tions than Soap2, probably because of support for base
qualities.

3.2 Usages For Our Method

Our method is very useful for the exact validation of
read mapper results. It can be used to compute the
exact percentage of matches found by a read mapper.
This can be done for large samples of read data sets,
10,000 in our example, but more are possible.

For performing a comparison of read mappers, we
propose the following guidelines:

1) Use reads from state-of-the-art technology with
popular parameters for size and paired-end modes. 2)
Use current versions of popular tools from multiple
paradigms, such as index-based filtration-based read
mappers. 3) Run the read mappers with various parame-
trizations, including default parameters, possibly allow-
ing the read mapper authors to provide the best
possible parameters. 4) Use a method based on a formal
definition, e.g. Rabema, to perform an exact assessment
of read mapper quality. 5) Complement this with heuris-
tic measures such as counting mapped and uniquely
mapped reads for datasets of real-world-size, taking into
considerations the notes in Section 2.2 about possibly
missed duplicate matches. 6) Possibly, show how the
results of downstream analysis differ between two read
mappers.

Our method gives a gold standard for the read map-
ping problem. This works for both simulated and real-
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world read sets and allows to put each read mapper not
only in relation to other read mappers, but to an opti-
mal solution.

Furthermore, the implementation of our method
allows to print missed equivalence classes/intervals. This
allows the analysis of why a read mapper does not find
certain matches. It can also be used to debug and
improve read mappers as well as evaluate the automatic
computation of read mapper parametrization. If a read
mapper finds a location that is not in the generated gold
standard then this is reported by our tool as well and
can be seen and used as a sanity check.

4 Conclusions

We presented a benchmark for read mapping, beginning
with the distinction of the biological problem and a
mathematical abstraction. For the mathematical abstrac-
tion, we gave a precise problem definition which allows
to define the required results. Our method works both
for real-world reads and simulated data.

We implemented tools to build the introduced gold
standard and performed a comparison of several popular
read mapping tools. The example comparison uses Illu-
mina and 454 reads, both real-world and simulated data.
We found that Shrimp2 is a highly sensitive tool for
detecting multiple matches. Bwa is a very diverse tool
and especially good for finding one of the best align-
ments of a read. Soap2 and Bowtie are both good
choices for mapping short reads quickly and sensitively,
Bowtie being a slightly better choice according to our
analysis.

Currently, our method is limited to base-space reads.
However, three of the four currently commercially avail-
able 2G sequencing platform (including the widely used
[llumina technology), create reads in base space. Thus,
our method is useful for a wide audience.

The online material at http://www.seqan.de/projects/
rabema.html contains download links for the reference
sequences and read sets we used, the resulting SAM
files, the tools for the benchmark evaluation, and a
manual.

4.1 Future Work

At the moment, the generator for the gold standard
does not incorporate mate pair information and quality
values. We plan to add support for this in a future
release. Note that read mapper programs incorporating
mate-pair and quality value information can already
leverage this information in benchmarks for the biologi-
cal problem.

Another point for improvement is allowing to use ABI
SOLiD [21] reads. For this, support for color-space
sequences has to be added to SeqAn, the gold standard
generator has to be adapted to support them and Razers
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(or another exact read mapper) has to be extended to
work with color-space reads. More details on this can
be found in Section S3.

5 Authors’ contributions

The original idea of the benchmark came from DW and
KR. DW came up with the intuition of the error land-
scape. From this idea, MH derived the exact definition
through equivalence classes, trace and neighbour equiva-
lency, implemented the software and wrote most of the
paper. AKE helped with the experimental evaluation.
Additionally, AKE, DW and KR contributed equally to
the work through discussion and editing.

All authors read and approved the final manuscript.
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