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Abstract

Background: The Bayesian shrinkage technique has been applied to multiple quantitative trait loci (QTLs) mapping
to estimate the genetic effects of QTLs on quantitative traits from a very large set of possible effects including the
main and epistatic effects of QTLs. Although the recently developed empirical Bayes (EB) method significantly
reduced computation comparing with the fully Bayesian approach, its speed and accuracy are limited by the fact
that numerical optimization is required to estimate the variance components in the QTL model.

Results: We developed a fast empirical Bayesian LASSO (EBLASSO) method for multiple QTL mapping. The fact
that the EBLASSO can estimate the variance components in a closed form along with other algorithmic techniques
render the EBLASSO method more efficient and accurate. Comparing with the EB method, our simulation study
demonstrated that the EBLASSO method could substantially improve the computational speed and detect more
QTL effects without increasing the false positive rate. Particularly, the EBLASSO algorithm running on a personal
computer could easily handle a linear QTL model with more than 100,000 variables in our simulation study. Real
data analysis also demonstrated that the EBLASSO method detected more reasonable effects than the EB method.
Comparing with the LASSO, our simulation showed that the current version of the EBLASSO implemented in
Matlab had similar speed as the LASSO implemented in Fortran, and that the EBLASSO detected the same number
of true effects as the LASSO but a much smaller number of false positive effects.

Conclusions: The EBLASSO method can handle a large number of effects possibly including both the main and
epistatic QTL effects, environmental effects and the effects of gene-environment interactions. It will be a very useful
tool for multiple QTL mapping.

Background
Quantitative traits are usually controlled by multiple
quantitative trait loci (QTLs) and environmental factors.
Interactions among QTLs or between genes and envir-
onmental factors make a substantial contribution to var-
iation in complex traits [1]. The goal of QTL mapping
is to infer genomic loci that are associated with the trait
and to estimate the genetic effects of these loci includ-
ing their main effects and gene-gene (epistasis) and
gene-environment (G × E) interactions. Due to the phy-
sical linkage of and/or epistatic interactions among mul-
tiple QTLs, it is highly desirable to analyze a large
number of loci simultaneously. Since hundreds or thou-
sands of genomic loci or markers are usually genotyped

and involved in QTL mapping studies, including all
these markers and their possible interactions in a model
leads to a huge number of model variables, typically
much larger than the sample size. Two general techni-
ques often employed to handle such oversaturated mod-
els are variable selection and shrinkage.
Variable selection attempts to identify a subset of all

possible genetic effects that best explain the phenotypic
variation, typically using a stepwise search procedure in
conjunction with a selection criterion such as the Baye-
sian information criterion (BIC) [2]. On the other hand,
a shrinkage method includes all variables in the model
but uses a penalty function of the variables or appropri-
ate prior distributions on the variables to shrink most
non-effect variables toward zero. Early shrinkage meth-
ods include ridge regression [3] and the least absolute
shrinkage and selection operator (LASSO) [4]. More
recently, Bayesian shrinkage method [5] has received
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considerable attention and been applied to multiple
QTL mapping [6-10]. All these works employ Markov
chain Monte Carlo (MCMC) simulation to fit the Baye-
sian model and provide comprehensive information
about the model drawing from the posterior distribution
of the model variables. Despite the advances in the
development of the MCMC simulation algorithms [11],
MCMC simulations are computationally intensive and
time consuming.
In order to reduce the computational burden of the fully

Bayesian approach relying on MCMC simulation, one of
the authors of this paper developed an empirical Bayes
(EB) method [12] that uses a properly chosen prior distri-
bution for the model variables to shrink variables toward
zero. It was demonstrated that the EB method can handle
a large number of model variables simultaneously. More
recently, the EB method has been extended to handle clas-
sification predictor variables [13]. Although the EB
method [12] requires much less computation comparing
to the fully Bayesian approach, its efficiency is limited by
the fact that a numerical optimization algorithm such as
the simplex algorithm [14] is needed to estimate the var-
iance components. On the other hand, a very efficient EB
method, named relevance vector machine (RVM), for
learning a linear model was developed in the machine
learning community [15,16]. The RVM can estimate the
variance components in a closed form, which along with
other algorithmic techniques make it a very fast algorithm.
The RVM assumes a uniform prior distribution for the
variance components. Although this choice of the prior
distribution gets rid of any hyperparameters to be pre-spe-
cified, it lacks the flexibility of adjusting the degree of
shrinkage needed for analyzing a specific data set. Particu-
larly, its uniform prior distribution may not provide
enough shrinkage in multiple QTL mapping that includes
a very large number of possible effects, often resulting in a
large number of false effects [13].
In this paper, capitalizing on the idea of RVM, we devel-

oped a fast empirical Bayesian LASSO (EBLASSO) algo-
rithm based on the Bayesian LASSO model [10,17] with
an exponential prior distribution for the variance compo-
nents in contrast to the inverse chi-square distribution for
the variance components used by the EB method [12].
Simulation studies demonstrate that our EBLASSO
method can provide a speed up to orders of magnitude
faster than the EB method and can detect more true QTL
effects without increasing the false positive rate. Real data
analysis also show that the EBLASSO method is able to
detect some effects when the EB method fails.

Methods
Linear model of multiple QTLs
Let yi be the phenotypic value of a quantitative trait of
the ith individual in a mapping population. Suppose we

observe yi, i = 1, ..., n of n individuals and collect them
into a vector y = [y1, y2, ..., yn]

T. Considering environ-
mental effects, main and epistatic effects of all markers
and gene-environment (G × E) interactions, we have the
following linear regression model for y:

y = μ + XEβE + XGβG + XGGβGG + XGEβGE + e, (1)

where μ is the population mean, vectors bE and bG
represent the environmental effects and the main effects
of all markers, respectively, vectors bGG and bGE capture
the epistatic effects and the G × E interactions, respec-
tively, XE, XG, XGG and XGE are the corresponding
design matrices of different effects, and e is the residual
error that follows a normal distribution with zero-mean
and covariance σ 2

0 I. Throughout the paper we use I to
denote an identity matrix whose size can be clearly
identified from the context.
The design matrix XG depends on a specific genetic

model. We adopt the widely used Cockerham genetic
model as also used by [18] in their generalized linear
model for multiple QTL mapping. For a back-cross
design, the Cockerham model defines the values of
the main effect of a marker as -0.5 and 0.5 for two
genotypes at the marker. For an intercross (F2)
design, there are two possible main effects named
additive and dominance effects. The Cockerham
model defines the values of the additive effect as -1, 0
and 1 for the three genotypes and the values of the
dominance effect as -0.5 and 0.5 for homozygotes
and heterozygotes, respectively. The columns of the
design matrix XGG are obtained as the element-wise
product of any two different columns of XG , and
similarly the columns of XGE are constructed as the
element-wise product of any pair of columns from XE

and XG.
Defining β = [βT

E ,β
T
G,β

T
GG,β

T
GE]

T, X = [XE, XG, XGG,
XGE], we can write (1) in a more compact form:

y = μ + Xβ + e. (2)

Suppose that there are p environmental covariates
and q markers whose main effects are additive, then
the size of matrix X is n × k where k = p + q(q + 1)/2
+ pq. Typically, we have k ≫ n. If dominance effects
of the markers are considered, k is even larger. Our
goal is to estimate all possible environmental and
genetical effects on y manifested in the regression
coefficients b, which is a challenging problem because
k ≫ n. However, we would expect that most elements
of b are zeros and thus we have a sparse linear model.
Taking into account this sparsity, we will adopt the
Bayesian LASSO model [10] where appropriate prior
distributions are assigned to the elements of b as
described in the next section.
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Prior and posterior distributions
The unknown parameters in model (2) are, μ σ 2

0 and b.
While our main concern is b, parameters μ and σ 2

0 need
to be estimated so that we can infer b. To this end, we
assign a noninformative uniform prior μ to and σ 2

0 , i.e.,
p(μ) ∝ 1 and p(σ 2

0 ) ∝ 1. Following the Bayesian LASSO
model [10], we assume a three-level hierarchical model
for b. Let us denote the elements of b as bi, i = 1, 2, ...,
k. At the first level, bi, i = 1, 2, ..., k follow independent
normal distributions with mean zero and unknown var-
iance σ 2

i : βi ∼ N(0, σ 2
i ). At the second level,

σ 2
i , i = 1, 2, · · · , k, follow independent exponential distri-

bution with a common parameter
λ : p(σ 2

i ) = λ exp(−λσ 2
i ). For a given l, the distribution

of bi is found to be the Laplace distribution:

p(βi) =

√
λ

2
exp(−√

2λ|βi |), which is known to encou-

rage the shrinkage of bi toward zero [4]. However, the
degree of shrinkage strongly depends on the value of l.
To alleviate the problem of choosing an inappropriate
value for l, we add another level to the hierarchical
model at which we assign a conjugate Gamma prior
Gamma(a, b) with a shape parameter a > 0 and an
inverse scale parameter b > 0 to the parameter l. As
discussed in [10], we can pre-specify appropriate values
for a and b so that the Gamma prior for l is essentially
noninformative.
Let us define vector σ 2 = [σ 2

1 , σ
2
2 , · · · , σ 2

k ]. The joint
posterior distribution of all the parameters (μ, σ 2

0 , b, s
2,

l) can be easily found [10]. In principle, MCMC simula-
tion can be employed to draw samples from the poster-
ior distribution for each parameter. However, since the
number of parameters 2k + 3 in our model can be very
large, the fully Bayesian approach based on MCMC
sampling requires a prohibitive computational cost. To
avoid this problem, Xu developed an empirical Bayes
method for inferring b [12]. Our goal here is to develop
a much faster and more accurate empirical Bayes
method that can easily handle tens of thousands of
variables.

Maximum a posteriori estimation of variance components
Similar to the EB method of [12], our EBLASSO first
estimates s2, σ 2

0 and μ, and then finds the posterior dis-
tribution of b based on the estimated parameters. Since
l is a parameter that we do not want to estimate, we
can find the prior distribution of σ 2

i independent of l as
follows

p(σ 2
i ) =

∫ ∞

0
p(σ 2

i |λ)p(λ)dλ =
a

b(σ 2
i

/
b + 1)

a+1 . (3)

The posterior distribution of μ, b, s2 and σ 2
0 is given

by

p(μ,β, σ 2, σ 2
0 |y) ∝ p(y|μ,β, σ 2

0 )p(μ)p(β|σ 2)p(σ 2)p(σ 2
0 ). (4)

The marginal posterior distribution of μ, s2 and σ 2
0

can then be written as

p(μ, σ 2, σ 2
0 | y) =

∫
p(μ,β, σ 2, σ 2

0 | y)dβ. (5)

Let us define the precision of bi as αi = 1
/
σ 2
i , i = 1, 2,

..., k and let a = [a1, a2, ..., ak]. It turns out to be more
convenient to estimate a rather than s2 as will be
shown shortly. Let us collect all parameters that need to
be estimated as θ = (μ, s0, a). The log marginal poster-
ior distribution of θ can be found from (5) as follows

L(θ) = −1
2
[log |C| + (y − μ)TC−1(y − μ)] −

k∑
i=1

(a + 1) log
1 + bαi

bαi
+ constant, (6)

where C = σ 2
0 I +

∑k
i=1 α−1

i xixTi is the covariance matrix
of y with a given a.
Similar to the EB method [12] and the RVM [15,16],

we will iteratively estimate each parameter by maximiz-
ing the log marginal posterior distribution L(θ) with the
other parameters being fixed. Since it is not difficult to
find the optimal μ and σ 2

0 in each iteration as shown in
[12,15], we will give the expressions for μ and σ 2

0 later
but focus on the estimation of a now. Let us define
C−i = C − α−1

i xixTi and ỹ = y − μ. Then following the
derivations in [16], we can write L(θ) in (6) as L(θ) = L
(θ-i) + L(ai), where L(θ-i) does not depend on ai and L
(ai) is given by

L(αi) =
1
2

[
log

αi

αi + si
+

q2i
αi + si

]
− (a + 1) log

1 + bαi

bαi
, (7)

with si = xTi C
−1
−i xi and qi = xiTC−1

−i ỹ. If we assume a >
-1.5 and b > 0, we prove in the additional file that L(ai)
has a unique global maximum and that the optimal ai

maximizing L(ai) is given by

α∗
i =

⎧⎨⎩
r1, if δ > 0&� > 0&γ < 0&L(r1) > 0 or if δ < 0
r2, if δ = 0&γ < 0,
∞, otherwise,

(8)

where we have defined δ = 2a + 2 + sib − bq2i ,
� = γ 2 − 4δ(2a + 3)s2i , � = γ 2 − 4δ(2a + 3)s2i ,

r1 =
−γ − √

�

2δ
and r2 = −(2a + 3)s2i

/
γ. Note that the

Gamma distribution requires that a > 0 and b > 0 as we
mentioned earlier. When -1.5 <a ≤ 0 as assumed here,
we essentially use an improper distribution. In the addi-
tional file, we show that this improper distribution
appears appropriate for getting a point estimation of ai
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given in (8). It turns out that negative values of a give
one more degree of freedom to adjust the shrinkage as
will be demonstrated later in the Results section. More-
over, if a = -1, the last term in the right hand side of (7)
disappears. In this case, we essentially use a noninforma-
tive uniform prior. Then it is not difficult to verify that
(8) gives the optimal ai derived in [16]:

α∗
i =

⎧⎨⎩
s2i

q2i − si
, if q2i > si

∞, if q2i ≤ si.
(9)

Note that a* in (8) and (9) depends on other
unknown parameters through si and qi, and thus, ai will
be estimated iteratively as detailed in the EBLASSO
algorithm described in the next section. Comparing with
the EB method [12], our method finds each ai (and
equivalently σ 2

i ) in a closed form, whereas the EB
method generally needs to employ a numerical optimi-
zation algorithm to find each σ 2

i . Therefore, our method
not only saves much computation but also gives more
accurate estimate of each ai. Moreover, exploiting the
similar techniques used in the RVM [16], we can further
increase computational efficiency as described in the
ensuing section.

Fast Empirical Bayesian LASSO algorithm
Note that when ai = ∞, we have bi = 0. Therefore, in
each iteration, we can construct a reduced model of (2)
that includes only nonzero bis and the corresponding
columns of X. Let xi be the ith column of X. If ai = ∞
in the previous iteration but α∗

i is finite in the current
iteration, then we add xi to the model and set αi = α∗

i ; if
ai is finite in the previous iteration but α∗

i = ∞ in the
current iteration, we delete xi from the model and set ai

= ∞; if both ai and α∗
i are finite, we retain xi in the

model and update ai as αi = α∗
i . This can be done for all

is in a pre-specified order in each iteration. Alterna-
tively, we can employ a greedy and potentially more effi-
cient method to construct the model as described in the
following. We define two iteration loops: an outer itera-
tion loop and an inner iteration loop. In each outer
iteration, we estimate μ and σ 2

0 . In the inner iterations,
assuming μ and σ 2

0 are known and fixed, we estimate
each ai and construct the model. Specifically, in each
inner iteration, we first calculate each α∗

i from (8) and
hen find j = argi max{�L(α∗

i ) = L(α∗
i ) − L(αi),∀i}, where

ai stands for the value of ai obtained in the previous
inner iteration. This step basically identifies the xj that
gives the largest increase in the log posterior distribu-
tion. Then we add, delete or retain xj as described early.
The inner iterations can run until a local convergence
criterion is satisfied. Let vector α̃ contain all finite ais,
vector β̃ consist of the corresponding bis and matrix X̃

contain the corresponding columns of X. Then we
essentially construct the following reduced model:

y = μ + X̃β̃ + e, (10)

where the number of columns of X̃, kr, is typically
much less than the number of rows, n. This property
will be used to reduce computation.
To calculate α∗

i in (8), we need to first calculate si and
qi which requires C−1

−i . Since C-i is different for different

i, it may need large computation to calculate all C−1
−i .

However, it was shown in [16] that we can calculate si
and qi as follows

si =
αiSi

αi − Si

qi =
αiQi

αi − Si
,

(11)

where Si = xTi C
−1xi and Qi = xTi C

−1ỹ. This requires
only one matrix inversion in each iteration for calculat-
ing all si and qi, i = 1, ..., k. However, since C is a rela-
tively large matrix of size n × n, direct calculation of C-1

may still require large computation. To avoid this pro-
blem, we can use the Woodbury matrix identity to
derive an expression for C-1:

C−1 = σ−2
0 I − σ−4

0 X̃	 X̃
T
, (12)

where

	 = (A + σ−2
0 X̃

T
X̃)−1 (13)

with A = diag (α̃). The size of matrix ∑ is kr × kr
which is typically much smaller than the size of C. Since
inverting a matrix of N × N using an efficient method
such as QR decomposition needs computation of O(N3),
calculating ∑ requires much less computation than
directly inverting C. Using (12), we can calculate Si and
Qi as follows:

Si = σ−2
0 xTi xi − σ−4

0 xTi X̃	 X̃
T
xi

Qi = σ−2
0 xTi ỹ − σ−4

0 xTi X̃	 X̃
T
ỹ.

(14)

So far we have derived the method for efficiently estimat-
ing a. Other two unknown parameters μ and σ 2

0 can be

obtained by setting
∂L(θ)
∂μ

= 0 and
∂L(θ)

∂σ 2
0

= 0. This gives

μ = 1TC−1y
/
(1TC−11), (15)

where 1 is a vector whose elements are all 1, and [15]

σ 2
0 =

| ỹ − X̃ u |2
n − kr +

∑kr
i=1 α̃i	ii

, (16)
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where ∑ii is the ith diagonal element of ∑ and

u = σ−2
0 	 X̃

T
ỹ. (17)

After we get estimates of μ, σ 2
0 and a, we finalize the

model (10), where the prior distribution of β̃i is now

N(0, α̃−1
i ), i = 1, 2, · · · , kr. For those xis not in the model,

we can declare that they do not affect the quantitative trait
because their regression coefficient is zero. For those xis in
the matrix X̃, the posterior distribution of their regression
coefficients β̃ is Gaussian with covariance ∑ in (13) and
mean u in (17) [15]. We can then use the z-score or more
conservative t-statistics to test if β̃i 	= 0 at certain signifi-
cance level. In this paper, the posterior mean uj of the jth
effect is reported as the empirical Bayes estimate of bj,
denoted by β̂j, and the posterior standard deviation,

s
β̂j
= (	jj)1/2, is used as the standard error of β̂j.

We now summarize our fast EBLASSO algorithm as
follows.

Algorithm 1 (EBLASSO algorithm)
1. Initialize parameters: choose a > -1.5 and b > 0,
calculate μ = 1T y/n, ỹ = y − μand set σ 2

0 to be a

small number, e.g., 0.1 × ỹT ỹ
/
n.

2. Initialize the model: Find j = argi max{| xTi ỹ |,∀i},
and calculate aj from (9), set all other ais to be ∞

and X̃ = xj.
3. Calculate ∑ from (13), Si and Qi, ∀i, from (14).
4. Update the model
while the local convergence criterion is not satisfied
Calculate qi and si from (11), ∀i.
Calculate α∗

i from (8), ∀i.
Find j = argi max{�L(α∗

i ) = L(α∗
i ) − L(α(n)

i )}.
if α∗

j = ∞
if xj is in the model, delete it and update ∑, Si

and Qi, ∀i.
else

if xj is in the model, set αj = α∗
j and update ∑, Si

and Qi, ∀i.
if xj is not in the model, add it, set αj = α∗

j and
update ∑, Si

and Qi, ∀i.
end if
end while

5. Update the residual variance σ 2
0using (16).

6. Calculate ∑ from (13) and C-1 from (12).
7. Update the fixed effects μ using (15) and update
ỹ = y − μ.
8. Calculate Si and Qi from (14).
9. If the global convergence criterion is not satisfied,
go to step 4.

10. Find the posterior mean of β̃ifrom (17) and the
posterior variance ∑ii from (13).
11. Use t-statistics to test if β̃i 	= 0.

The parameters a and b can be set to be a small num-
ber (e.g., a = b = 0.01) so that the Gamma prior distri-
bution is essentially noninformative [10]. Alternatively,
we can use the predicted error (PE) obtained from
cross-validation [4] to choose the values of a and b. As
done in [16], the initial value of σ 2

0 is chosen in step 1
to be a small number and the initial model is selected in
step 2 to have a single effect that corresponds to the
maximum L(ai) with a = -1. The outer iteration loop
consists of steps 4-9, while the inner iteration loop is
step 4, where we use the greedy method described ear-
lier to update the model. In step 4, we use the method
given in the Appendix of [16] to efficiently update ∑, Si
and Qi after a xj is added to or deleted from the model
or after aj is updated. The local convergence criterion
can be defined as the simultaneous satisfaction of the
following three conditions: 1) no effect can be added to
or deleted from the model, 2) the change of L(θ )
between two consecutive inner iterations is smaller than
a pre-specified small value, and 3) the change of α̃
between two consecutive inner iterations is less than a
pre-specified value. The global convergence criterion
can be defined as the simultaneous satisfaction of the
following two conditions: the change of L(θ ) between
two consecutive outer iterations is smaller than a pre-
specified small value, and 2) the total change in μ, σ 2

0
and α̃ between two consecutive outer iterations is less
than a pre-specified value. A Matlab program has been
developed to implement the algorithm; and a more effi-
cient C++ program is under development.

Results
Simulation study
We simulated a single large chromosome of 2400 centi-
Morgan (cM) long covered by evenly spaced q = 481
markers with a marker interval of 5 cM. The simulated
population was an F2 family derived from the cross of
two inbred lines with a sample size n = 1000. The geno-
type indicator variable for individual i at marker k is
defines as Xik = 1, 0, -1 for the three genotypes, A1A1,
A1A2 and A2A2, respectively. Twenty markers are QTLs
with main effects and 20 out of the (4812 ) = 115, 440
marker pairs have interaction effects. The locations and
effects of the markers and maker pairs are shown in
Table 1. Environmental effects and G × E effects were
not simulated. The true population mean is μ = 100 and
the residual variance is σ 2

0 = 10.
The total phenotypic variance for the trait can be

written as
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σ 2
y = σ 2 +

q∑
j=1

q∑
j′=1

βjβj′cov(xj, xj′), (18)

where cov(xj, xj’) is the covariance between Xj and Xj’

if j ≠ j’ or the variance of Xj if j = j’, which can be esti-
mated from the data. The total phenotypic variance was
calculated from (18) to be σ 2

y = 98.67 and the total
genetic variance contributed by the main and epistatic
effects of the markers was calculated from the second
term of the right hand side of (18) to be 88.67. If we
ignore the contributions from the covariance terms
which are relatively small, the proportions of the pheno-
typic variance explained by a particular QTL effect j can
be approximated by

h2j =
β2
j var(xj)

σ 2
y

, (19)

where var(xj) is the variance of Xj. In the simulated
data, the proportion of contribution from an individual
QTL varied from 0.30% to 9.75%, whereas the propor-
tion of contribution from a pair of QTLs ranged from
0.26% to 7.25%, as shown in Table 1. Some of the mar-
kers had only main or epistatic effect, while the others
had both main and epistatic effects. The QTL model
contained a total of 1 + 481 + (4812 ) = 115, 922 possible
effects, a number about 115 times of the sample size.
The data were analyzed in Matlab on a personal com-

puter (PC) using the EBLASSO algorithm, the EB
method, the RVM and the LASSO. The Matlab program
SPARSEBAYES for the RVM was downloaded from
http://www.miketipping.com. We translated the original
SAS program for the EB method [12] into Matlab, and
slightly modified the program to avoid possible memory
overflow due to the large number of possible effects.
We also got the program glmnet [19] that is a very effi-
cient program implementing the LASSO and other
related algorithms. The PC version of glmnet uses
Matlab to initialize and call the core LASSO algorithm
that is implemented efficiently with Fortran code.
We used the PE [4] obtained from ten-fold cross vali-

dation to select the values of hyperparameters a and b
in our EBLASSO algorithm. Ideally, we should test a
large set of values for a ≥ -1 and b > 0, but this may be
time consuming. Therefore, we first ran cross-validation
for the following values: a = b = 0.001, 0.01, 0.05, 0.1,
0.5, 1; the degree of shrinkage generally decreases along
this path. Table 2 lists the PEs and the standard errors
of the PEs for different values of a and b. It is seen that
the PE for a = b = 0.1 is the smallest, although it is
close to the PEs for a = b = 0.05 and 0.5 but relatively
smaller than PEs for the other values of a and b. To see
if a = b = 0.1 is the best set of values, we further ran

Table 1 True and estimated QTL effects for the simulated
data with main and epistatic effects

Markersa Position Trueb EBLASSOc EBc

(i, j) (cM, cM) b(h2) β̂(s
β̂
) β̂(s

β̂
)

(11,11) (50,50) 4.47(0.0975) 4.5801(0.1612) 4.8593(0.2075)

(26,26) (125,125) 3.16(0.0524) 3.0768(0.1576) 3.3221(0.2035)

(42,42) (205,205) -2.24(0.0250) -2.3169(0.1796) -2.2769(0.2262)

(48,48) (235,235) -1.58(0.0128) -1.3171(0.1720) -1.3634(0.2205)

(72,72) (355,355) 2.24(0.0247) - 1.6537(0.4277)

(73,73) (360,360) 3.16(0.0506) 5.1247(0.1555) 3.8771(0.4219)

(123,123) (610,610) 1.10(0.0062) - 1.5168(0.2432)

(127,127) (630,630) -1.10(0.0063) - -1.1834(0.2460)

(161,161) (800,800) 0.77(0.0030) - -

(181,181) (900,900) 1.73(0.0152) - -

(182,182) (905,905) 3.81(0.0725) 5.6744(0.2400) 5.5127(0.2894)

(185,185) (920,920) 2.25(0.0263) 1.7123(0.2327) 1.7070(0.2858)

(221,221) (1100,1100) -1.30(0.0088) -1.4276(0.1506) -1.0867(0.1956)d

(243,243) (1210,1210) -1.00(0.0051) -0.8603(0.1486) -

(262,262) (1305,1305) -2.24(0.0245) -2.2539(0.1826) -1.6078(0.2417)

(268,268) (1335,1335) 1.58(0.0120) 2.4264(0.2040) 2.1736(0.2509)

(270,270) (1345,1345) 1.00(0.0049) - -

(274,274) (1365,1365) -1.73(0.0147) -1.4114(0.1800) -1.4935(0.2254)

(361,361) (1800,1800) 0.71(0.0026) 0.7856(0.1457) 0.6520(0.1859)d

(461,461) (2300,2300) 0.89(0.0040) - -

(5,6) (20,25) 2.24(0.0230) 1.7839(0.1654) 1.5752(0.2886)

(6,39) (25,190) 2.25(0.0128) 1.9691(0.2168) -

(42,220) (205,1095) 4.47(0.0511) 4.3836(0.2198) 4.6414(0.3394)

(75,431) (370,2150) 0.77(0.0014) 1.1360(0.2124)d -

(81,200) (400,995) -2.24(0.0128) -2.4190(0.2460) -

(82,193) (405,960) 1.58(0.0063) 1.6345(0.2442) -

(87,164) (430,815) 3.16(0.0235) 2.9263(0.2254) 1.7059(0.3319)d

(87,322) (430,1605) 3.81(0.0342) 4.1019(0.2274) 3.7040(0.3632)

(92,395) (455,1970) 1.73(0.0081) 1.5714(0.2065)d -

(104,328) (515,1635) 1.00(0.0024) 0.8081(0.1979)d -

(118,278) (585,1385) -2.24(0.0120) -2.0796(0.2221) -2.2590(0.3460)

(150,269) (745,1340) 1.10(0.0028) 1.0740(0.2142) -

(237,313) (1180,1560) 0.71(0.0014) - -

(246,470) (1225,2345) -1.10(0.0032) -1.2381(0.2114)d -

(323,464) (1610,2315) 0.89(0.0020) - -

(328,404) (1635,2015) -1.73(0.0079) -2.3036(0.2123) -1.9428(0.3330)

(342,420) (1705,2095) -1.30(0.0041) -1.3886(0.2121)d -

(344,407) (1715,2030) -1.00(0.0025) - -

(373,400) (1860,1995) -1.58(0.0070) -1.4732(0.2028) -

(431,439) (2150,2190) 3.16(0.0278) 2.6700(0.2121) 2.2454(0.3366)d

μ 100 100.70 100.59

σ 2
0 10 11.76 0.25

CPU time 3.4 mins 249 hrs
aWhen i = j, the QTL is a main effect; otherwise, it is an epistatic effect.
bThe true value of a QTL effect is denoted by b and the proportion of
variance contributed by the QTL is denoted by h2.
cThe estimated QTL effect is denoted by β̂ and the standard error is denoted
by sβ̂. The EBLASSO algorithm used hyperparameters a = b = 0.1 and the EB
algorithm used hyperparameters τ = -1 and ω = 0.001.
dThe estimated QTL effect was obtained from a neighboring marker (≤ 20 cM
away) rather than from the maker with the true effect.
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cross-validation with b = 0.1 and a = 0.5 or -0.01. For a
fixed b, the degree of shrinkage decreases when a
decreases. It is seen from Table 2 that the PE for b =
0.1 and a = 0.5 or -0.01 is greater than that for a = b =
0.1. Therefore, cross-validation gave a = b = 0.1 as the
best set of values. Table 2 also lists the number of
effects detected with different values of a and b. All 30
effects detected with a = b = 0.1 are presented in Table
1 and shown in Figures 1 and 2.
To test the performance of the EB method, we ran the

program with the following parameter values: τ = -1, ω
= 0.0001, 0.0005, 0.001 and 0.01, which yielded 14, 13,
22, and 8 true simulated effects, respectively, and 1, 1, 1,
and 0 false effects, respectively, as shown in Table 2.
Cross-validation was not done because it was too time-

consuming, and thus, the optimal values for the para-
meters could not be determined. Nevertheless, we listed
22 true positive effects estimated with τ = -1 and ω =
0.001 in Table 1, which reflects the best performance of
the EB method with the set of parameters values tested.
We also plotted these 22 effects in Figures 3 and 4.
Comparing the effects detected by EBLASSO and EB
methods shown in Table 1 and in Figures 1, 2, 3 and 4,
the EBLASSO method detected 13 (17) true main (epi-
static) effects, whereas the EB method detected 15 (7)
true main (epistatic) effects. Overall, the EBLASSO
detected 8 more true effects than the EB method with-
out any false positive effects, whereas the EB method
gave one false positive effect. We would like to

Table 2 Summary of results for the simulated data with main and epistatic effects

Algorithm Parameters◇ PE ± STE* Number of effects†‡ (σ̂ 2
0 )

† CPU time (mins)

(0.001, 0.001) 16.49 ± 0.8908 25/0 13.5 3.4

(0.01, 0.01) 15.95 ± 0.7477 28/0 12.46 3.4

(0.05, 0.05) 15.89 ± 0.7498 30/0 11.72 3.4

(0.1, 0.1) 15.81 ± 0.8359 30/0 11.72 3.4

EBLASSO (0.5, 0.5) 15.86 ± 0.7717 31/0 11.57 3.4

(1, 1) 16.07 ± 0.7203 29/0 12.31 3.4

(0.5, 0.1) 16.14 ± 0.8557 28/0 12.5 3.4

(-0.01, 0.1) 15.92 ± 1.0161 32/1 11.31 3.4

(-1, 0.0001) - 14/1 21.22 2,760.0

EB (-1, 0.0005) - 13/1 12.15 4,140.0

(-1, 0.001) - 22/1 0.25 14,940.0

(-1, 0.01) - 8/0 0.01 2,760.0
◇ Parameters are (a, b) for the EBLASSO, and (τ, ω) for the EB.

*The average PE and the standard error were obtained from ten-fold cross validation.
†The number of effects and residual variance were obtained using all 1000 samples not from cross validation.
‡The first number is the number of true positive effects; the second number is number of false positive effects. All the effects counted have a p-value ≤ 0.05.
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Figure 1 Main effects estimated with the EBLASSO for the
simulated data with main and epistatic effects.
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Figure 2 Epistatic effects estimated with the EBLASSO for the
simulated data with main and epistatic effects. The horizontal
axis is scaled as

√
(marker i)2 + (marker j)2 for each marker pair

(marker i, marker j).

Cai et al. BMC Bioinformatics 2011, 12:211
http://www.biomedcentral.com/1471-2105/12/211

Page 7 of 13



emphasize here that the EB method may detect less
number of true effects in practice because as we men-
tioned earlier it is too time-consuming to choose the
optimal values for the parameters τ and ω. To see if
EBLASSO could estimate QTL effects robustly, we
simulated three replicates of the data: each replicate
consists of 1000 individuals whose genotypes at 481
markers were independently generated and whose phe-
notypes were calculated from (2) with e independently
generated from Gaussian random variables with zero
mean and covariance 10I. We performed cross-valida-
tion and determined the best values of a and b for each
replicate. Using these values, we ran the EBLASSO and
identified 35, 38, 34 true positive effects and 4, 6, 2 false

positive effects, respectively, for three replicates. These
results showed that the EBLASSO could detect QTL
effects robustly.
The EBLASSO took about 3.4 minutes of CPU time

for each set of values of a and b listed in Table 2,
whereas the EB took 249 hours of CPU time for τ = -1
and ω = 0.001 and about 46, 69, 46 hours for τ = -1 and
ω = 0.0001, 0.0005, 0.01, respectively. This simulation
study showed that the EBLASSO method not only can
detect more effects, but also offers a huge advantage in
terms of computational time. Note that all simulations
were done in Matlab. It is expected that the EBLASSO
algorithm will be even faster, after its implementation in
C++ is completed.
We wished to test the performance of the RVM and

the LASSO on the simulated data. To this end, we
replaced the inner iteration in our EBLASSO algorithm
with the program SPARSEBAYES that implemented the
RVM. Although we carefully modified SPARSEBAYES
to avoid possible memory overflow due to the large
number of possible effects, the program ran out of
memory after one or two outer iterations. Hence, we
did not get any results from the RVM method. Consid-
ering the QTL model in (2), the LASSO tries to estimate
μ and the QTL effects b as follows

min
μ,β

[
1
2n

(y − μ − Xβ)T(y − μ − Xβ) + λ

k∑
i=1

|βi|
]
, (20)

where l is a positive constant that can be determined
with cross-validation [4]. We tried to run the program
glmnet [19] with the simulated data. However, glmnet
could not handle the big design matrix X of 1, 000 ×
115, 922 in our QTL model, and we did not get any
results from glmnet.
In order to compare the performance of our

EBLASSO algorithm with that of the RVM and the
LASSO, we simulated a new set of data by deleting the
20 epistatic effects in the previous set of simulated data,
and then used a QTL model that only contained 481
possible main effects to estimate QTL effects, i.e., the
design matrix X in (2) was 1000 × 481. The small num-
ber of possible effects was chosen to avoid the memory
overflow problem of the RVM and glmnet. The results
of the EBLASSO, EB, RVM and LASSO for this data set
are summarized in Table 3. To choose the values of a
and b for the EBLASSO, we ran ten-fold cross validation
with the following parameters: a = b = 0.001, 0.01, 0.05,
0.1, 0.5, 1. Since a = b = 0.1 yielded the smallest PE, we
further performed cross-validation with b = 1, and a =
-0.95, -0.75, -0.5, 0.5. This gave the smallest PE at a =
-0.75 and b = 0.1. Finally, we used a = -0.75 and b = 0.1
to run the EBLASSO algorithm on the whole data set,
which identified all 20 true effects but also 5 false
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Figure 3 Main effects estimated with the EB method for the
simulated data with main and epistatic effects.
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Figure 4 Epistatic effects estimated with the EB method for
the simulated data with main and epistatic effects. The
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positive effects. In fact, since the EBLASSO program ran
very fast on this data set, we did ten-fold cross valida-
tion for 165 sets of values for a and b obtained by com-
bining the following values: a = -1, -0.95, -0.85, -0.75,
-0.5, -0.1, -0.05, -0.01, -0.001, 0.001, 0.01, 0.05, 0.1, 0.5,
1 and b = 0.001 0.01 0.05 0.1, 0.5, 1, 2.5, 5, 10, 15, 20.
The smallest average PE and standard error were 10.49
± 0.5444 achieved at a = 0.05 and b = 10. With this set
of values, the EBLASSO identified all 20 true effects and
also 6 false positive effects, which is similar to that iden-
tified at a = -0.75 and b = 0.1. This study showed that
the two-step cross-validation approach, where cross-vali-
dation was run with a = b = 0.001, 0.01, 0.05, 0.1, 0.5, 1
and then with a fixed b but a varying a, performed well
and could save much time. We further simulated three
replicates of the data in the same way described earlier
for the model with epistatic effects. We then repeated
the two-step cross-validation for each replicate. Using
the values of a and b determined in cross-validation, the
EBLASSO detected 20, 19, 19 true effects, and 4, 1 and
2 false positive effects, respectively, for three replicates.
This again showed that our EBLASSO could estimate
the effects robustly.
The optimal values for the parameters of the EB

method were τ = -1 and ω = 0.01, since they gave the

smallest PE in cross-validation as listed in Table 3. With
τ = -1 and ω = 0.01, the EB method detected 19 true
effects and 4 false positive effects. The RVM detected all
20 true effects as the EBLASSO did, but it also output a
large number of 42 false positive effects. This result is
consistent the observation [13] that the uniform prior
distribution used in the RVM usually yields many false
positive effects. To choose the optimal value of l for the
LASSO, we ran ten-fold cross validation starting from l
= 4.9725 (which gave only one nonzero effect) and then
decreasing l to 0.0025 with a step size of 0.0768 on the
logarithmic scale (Δ ln(l) = 0.0768). The smallest PE
was achieved at l = 0.0675. We then used this value to
run glmnet on the whole data set, which yielded 97
nonzero effects. For each of these nonzero effects, we
calculated their standard error using equation (7) in [4],
and then calculated the p-value of each nonzero effect.
This gave 20 true effects and 48 false positive effects
with a p-value less than 0.05. Comparing the number of
effects detected by the EBLASSO, EB, RVM and
LASSO, the EBLASSO offered the best performance
because it detected all true effects and a very small
number of false positive effects.
It is seen from Table 3 that the EBLASSO and the

LASSO took much less time than the EB method and

Table 3 Summary of results for the simulated data with only main effects

Algorithm Parameters◇ PE ± STE* Number of effects†‡ (σ̂ 2
0 )

† CPU time (sec)

(0.001, 0.001) 11.52 ± 0.5677 14/0 11.1 1.2

(0.01, 0.01) 11.52 ± 0.578 16/0 10.53 1.3

(0.05, 0.05) 11.36 ± 0.6088 17/0 10.32 1.1

(0.1, 0.1) 11.23 ± 0.5571 17/0 10.32 1.1

(0.5, 0.5) 11.32 ± 0.5937 17/0 10.34 1.1

EBLASSO (1, 1) 11.4 ± 0.5929 16/0 10.64 1.1

(0.5, 0.1) 11.57 ± 0.5593 15/0 10.83 1.3

(-0.5, 0.1) 10.87 ± 0.5599 17/0 10.31 1.6

(-0.75, 0.1) 10.78 ± 0.5646 20/5 9.52 1.5

(-0.95, 0.1) 11.09 ± 0.5045 22/20 8.71 1.4

(-1, 0.0001) 17.73 ± 2.0244 9/0 16.07 1491.9

(-1, 0.0005) 15.81 ± 2.5732 16/0 11.66 1676.0

EB (-1, 0.001) 12.21 ± 1.7635 17/2 10.65 1657.9

(-1, 0.01) 10.69 ± 0.9903 19/4 9.05 1954.9

(-1, 0.1) 11.63 ± 0.5743 20/20 7.29 2222.7

RVM - - 20/42 7.81 268.7

0.1347 10.77 ± 0.4583 16/27 9.47 0.7

0.0850 10.52 ± 0.4442 20/49 8.89 0.7

LASSO 0.0675 10.50 ± 0.5248 20/48 8.63 0.7

0.0536 10.52 ± 0.4382 19/35 8.28 0.7

0.0338 10.59 ± 0.4434 17/2 7.35 0.7
◇ Parameters are (a, b) for the EBLASSO, (τ, ω) for the EB and l for the LASSO.

*The average PE and the standard error were obtained from ten-fold cross validation.
†The number of detected effects and residual variance were obtained using all 1000 samples not from cross validation.
‡The first number is the number of true positive effects; the second number is number of false positive effects. All the effects counted have a p-value ≤ 0.05.

Cai et al. BMC Bioinformatics 2011, 12:211
http://www.biomedcentral.com/1471-2105/12/211

Page 9 of 13



the RVM on analyzing this data set. It is expected that
the EBLASSO is much faster than the EB method
because as we discussed earlier the EB needs a numeri-
cal optimization procedure. The RVM and EBLASSO
generally should have similar speed because two algo-
rithms use the similar technique to estimate effects.
However, when applying to the same data set, the RVM
often yields a model with much more nonzero effects
than the EBLASSO as is the case here, because the
RVM does not provide sufficient degree of shrinkage.
Due to this reason, the RVM algorithm requires more
time than the EBLASSO. The LASSO took slightly less
CPU time than the EBLASSO in this example. However,
we would emphasize that the LASSO was implemented
with Fortran but our EBLASSO was implemented with
Matlab. The speed of EBLASSO is expected to increase
significantly once it is implemented in C/C++.

Real data analysis
This dataset was obtained from [20]. This dataset con-
sists of n = 150 double haploids (DH) derived from the
cross of two spring barley varieties Morex and Steptoe.
The total number of markers was q = 495 distributed
along seven pairs of chromosomes of the barley genome,
covering 206 cM of the barley genome. The phenotype
was the spot blotch resistance measured as the lesion
size on the leaves of barley seedlings. Note that spot
blotch is a fungus named Cochliobolus sativus. This
dataset was used as an example for the application of
the EBLASSO method. Genotype of the markers were
encoded as +1 for genotype A (the Morex parent), -1
for genotype B (the Steptoe parent), and 0 for missing
genotype. Ideally, the missing genotypes should be
imputed from known genotypes of neighboring markers.
For simplicity, we replaced the missing genotypes with 0
in order to use the phenotypes of the individuals with
missing genotypes. The total missing genotypes only
account for about 4.2% of all the genotypes. Including
the population mean, the main and the pair-wise epi-
static effects, the total number of model effects was
1 + 495 + (4952 ) = 122, 761, about 818 times as large as
the sample size.
Table 4 gives the average PE and the standard error

obtained from 5-fold cross validation, the residual var-
iance and the number of effects detected by the
EBLASSO method for different values of a and b. It is
seen that the PEs for a = b = 0.001, 0.01.0.05 are almost
the same but are smaller than the PEs for other larger a
and b. However, when a = b = 0.001 or 0.01, only one
or two effects were detected. When a = b = 0.1, 0.5 or
1, the residual variance is very small, implying that the
model is likely over-fitted. Specifically, the number of
columns of matrix X̃ in the model (10) is equal to the

total number nonzero effects, which is more than 120
for a = b = 0.1, 0.5 or 1 as indicated in Table 4. Hence,
since the number of samples (150) is relative small, y -
μ can be almost completely in the column space of X̃,
which results in very small residual variance. Based on
these observations, it seems that a = b = 0.05 gives rea-
sonable results, because the PE is among the smallest
and the residual variance is relatively but not unreason-
ably small. Nevertheless, in order to estimate effects
more reliably, we searched over all effects detected with
a = b = 0.05, 0.07, 0.1, 0.5 or 1, and found eight effects
are detected with all these values. Markers or marker
pairs of these eight effects and their values estimated
with a = b = 0.05 were listed in Table 5. All 11 effects
estimated with a = b = 0.05 were also plotted in
Figure 5. As seen from Table 5, one single QTL at mar-
ker 446 contributes most of the phenotypic variance

Table 4 Summary of the results of the EBLASSO
algorithm for the real data

a = b PE ± STE* Number of effects†‡ (σ̂ 2
0 )

†

0.001 0.70 ± 0.21 1/1/1 0.6706

0.01 0.79 ± 0.31 2/2/2 0.5996

0.05 0.70 ± 0.21 11/11/11 0.2699

0.07 0.96 ± 0.30 10/15/15 0.2104

0.1 1.20 ± 0.18 13/128/132 2.59E-06

0.5 1.21 ± 0.09 9/112/122 2.59E-06

1 1.25 ± 0.17 8/115/132 2.59E-06

*The average PE and the standard error were obtained from five-fold cross
validation.
†The number of effects and residual variance were obtained using all 150
samples not from cross validation.
‡The first number is the number of effects with a p-value ≤ 0.05 and
proportion of variance ≥ 0.5%; the second number is the number of effects
with a p-value ≤ 0.05; the third number is the total number of non-zero
effects reported by the program.

Table 5 Eight effects estimated with the EBLASSO
algorithm for the real data

Markers β̂j(sβ̂j
) ĥ2j

(446,446) 1.4173(0.0432) 0.7639

(187,187) 0.2624(0.0421) 0.0262

(77,77) 0.1881(0.0413) 0.0132

(238,238) -0.1742(0.0427) 0.0101

(197,483) 0.1748(0.0405) 0.0117

(37,130) 0.1557(0.0422) 0.0085

(53,270) -0.1649(0.0452) 0.0081

(149,175) 0.1697(0.0464) 0.0078

μ̂ 5.7037

σ̂ 2
0 0.2699

ĥ2 0.8495

Eights effects were detected with all of the following parameters: a = b =
0.05, 0.07, 0.1, 0.5, 1; β̂j,

s
β̂j and ĥ2j listed here were obtained with a = b =

0.05.
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(about 76%), while the other QTL effects contribute
from about 0.8% to 2.6% of the variance. We also ana-
lyzed the data with the EB method. One effect at marker
446 was detected with a p-value < 0.05 when τ = -1, ω =
0.0001 or 0.0005, no effect was detected with p-value ≤
0.05 when τ = -1, ω = 0.001 or 0.01. The CPU time of
the EB was about 46 minutes for each set of values of τ
and ω tested; whereas the CPU time of the EBLASSO
method was about 3 minutes for a = b = 0.05.

Discussion
Xu [12] compared several methods for multiple QTL
mapping including the EB [12], LASSO [4], penalized
likelihood (PENAL) [21] and stochastic search variable
selection (SSVS) [22,23] methods. The SSVS method is
much slower than the EB method; whereas LASSO and
PENAL methods are faster than the EB method.
Although we did not directly compare the speed of our
EBLASSO with that of the PENAL method, based on all
comparisons with the EB method in [12], we observed
that the EBLASSO method is faster than PENAL meth-
ods. Direct comparison between the EBLASSO and
LASSO showed that the LASSO is slightly faster than
the current version of EBLASSO, however, this may not
be the case when the EBLASSO is implemented in C/C
++ instead of Matlab. Although EB, LASSO, PENAL
and SSVS methods all produced satisfactory results in a
simulation study [12], the EB method outperformed the
other three methods in terms of the mean-squared
error. Moreover, when being applied to a real data set,
the EB and LASSO detected some effects, whereas the
PENAL and SSVS failed to generate any meaningful
results [12]. In our simulation studies, we observed that
the EBLASSO method detected more true effects than
the EB method with almost the same false positive rate,
and the same number of true effects as the LASSO but

with a much smaller number of false positive effects.
When analyzing a real data set, we found that the
EBLASSO method detected a reasonable number of
effects, but the EB method detected one or zero effect
depending on values of the hyperparameters used.
These observations in both simulation study and real
data analysis demonstrated that the EBLASSO method
outperforms the EB method and the LASSO.
The EBLASSO method was built upon the idea of the

RVM in machine learning. The EBLASSO and EB meth-
ods, as well as the RVM, all are based on a Bayesian
hierarchical linear regression model and all estimate the
variances of the regression coefficients. The difference
of the three methods in the regression model is the dif-
ferent prior distributions for the hyperparameters. The
EB method and the RVM employ inverse chi-square and
uniform distributions, respectively, for the variances of
the regression coefficients, while the EBLASSO assigns
exponential distributions to the variance components
and uses a Gamma distribution for the parameter of the
exponential distribution, which leads to the prior distri-
bution in (3) for the variance components. The uniform
prior distribution used by the RVM may not provide
enough degree of shrinkage for certain data and thus
generate a large number of false positive effects as
shown in [13] and as demonstrated in our simulation
study.
The prior distributions used by the EBLASSO and

RVM methods enable one to estimate the variance com-
ponents in a closed form, while the EB method generally
needs a numerical optimization algorithm to estimate
the variance components. This difference has at least
two implications: 1) both the EBLASSO and the RVM
methods requires much less computation than the EB
method to estimate the variance components, and 2) the
EBLASSO method and the RVM method can always
find the unique optimal estimate of a variance compo-
nent but the numerical optimization algorithm used by
the EB method may not find the optimal value of the
variance due to the nonlinearity and non-convexity of
the objective function. Another main factor that makes
the EBLASSO method and RVM more efficient is an
automatic variable selection procedure resulting from
the process of estimating variance components, because
the variables whose precision is infinity or equivalently
whose variance is zero are excluded from the model.
This results in an efficient formula in (12) for calculat-
ing the inverse of the covariance matrix of the data.
This is especially beneficial when the number of samples
is relatively large. On the other hand, the EB method in
principle can be applied to a linear regression model
with any prior distribution for the variances of regres-
sion coefficients. Since the prior distribution may play
an important role in estimation of the QTL effects, the

Figure 5 Effects estimated with the EBLASSO algorithm for the
real data. Blue bars represent the positive effects, while the red
bars represent the absolute values of negative effects.
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EB method has its value when one tries to explore dif-
ferent prior distributions.
To get the best performance, the EBLASSO method

needs to properly choose values of hyperparameters a
and b. In this paper, we selected the values of a and b
that gave the smallest average PE resulting from ten-
fold cross validation. Ideally, we need to find PEs for a
large set of values for a ≥ -1 and b > 0 and then identify
the best values for a and b. In our simulation study, we
found a two-step cross validation procedure could sig-
nificantly reduce the number of values to be tested with-
out missing the best values, thereby reducing
computational time. In this two-step procedure, we first
run cross-validation for the following set of values: a =
b = 0.001, 0.01, 0.05, 0.1, 0.5, 1. We identify the values
(denoted as a* and b*) from this set of values that yields
the smallest PE. We then fixed b to be b* and run
cross-validation for several other values of a greater or
less than a*. The final best values of a and b are the
ones that yield the smallest PE.
The EBLASSO algorithm may still be improved. In the

analysis of simulated data with both main and epistatic
effects, although the EBLASSO method detected 8 more
true effects than the EB method without any false posi-
tive effects, it missed three effects that the EB method
detected. It is unclear how this discrepancy occurred.
One possible reason is the different prior distributions
used in the two methods. Although it is difficult for the
EBLASSO method to use the scaled inverse chi-square
distribution that is used by the EB method, other prior
distributions may worth investigation. Another possible
reason may be the greedy method used to select the vari-
able to include in or to exclude from the model. In the
current algorithm, we choose the variable that gives the
largest increase in the likelihood to add to or delete from
the model. It may be better to simultaneously add or
delete more than one variables. The EBLASSO method
presented in this paper assumes continuous quantitative
traits. It can also be extended to handle binary or poly-
chotomous traits and the algorithm is under develop-
ment. The algorithm is currently implemented in Matlab.
We are developing programs in C++ to implement the
algorithm, which is expected to be much faster and to be
capable of running in R and SAS environments.

Conclusions
We have developed a fast empirical Bayesian LASSO
method for multiple QTL mapping that can deal with a
large number of effects possibly including main and epi-
static QTL effects, environmental effects and the effects
of environment and gene interactions. Our simulation
studies demonstrated that the EBLASSO algorithm
needed about 3.4 minutes of CPU time, running in
Matlab on a PC with 2.4 GHz Intel Core2 CPU and 2

Gb memory running Windows XP, to analyze a QTL
model with more than 105 possible effects, whereas the
EB method took more than 2,000 minutes to analyze
the same model on the same computer. Our simulation
studies also showed that the EBLASSO method could
detect more true effects with almost the same false posi-
tive rate comparing to the EB method. Our real data
analysis demonstrated that the EBLASSO method could
output more reasonable effects than the EB method.
Comparing with the LASSO, our simulation showed
that the current version of the EBLASSO implemented
in Matlab was slightly slower than the LASSO imple-
mented with glmnet in Fortran, and that the EBLASSO
detected the same number of true effects as the LASSO
but a much smaller number of false positive effects. In
conclusion, the EBLASSO method will be a useful tool
in multiple QTL mapping.

Additional material

Additional file 1: Derivation of Equation (8)
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