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Abstract

Background: Ontologies have become an essential asset in the bioinformatics toolbox and a number of ontology
access resources are now available, for example, the EBI Ontology Lookup Service (OLS) and the NCBO BioPortal.
However, these resources differ substantially in mode, ease of access, and ontology content. This makes it relatively
difficult to access each ontology source separately, map their contents to research data, and much of this effort is
being replicated across different research groups.

Results: OntoCAT provides a seamless programming interface to query heterogeneous ontology resources
including OLS and BioPortal, as well as user-specified local OWL and OBO files. Each resource is wrapped behind
easy to learn Java, Bioconductor/R and REST web service commands enabling reuse and integration of ontology
software efforts despite variation in technologies. It is also available as a stand-alone MOLGENIS database and a
Google App Engine application.

Conclusions: OntoCAT provides a robust, configurable solution for accessing ontology terms specified locally and
from remote services, is available as a stand-alone tool and has been tested thoroughly in the ArrayExpress,
MOLGENIS, EFO and Gen2Phen phenotype use cases.

Availability: http://www.ontocat.org

Background
Ontologies are increasingly used to annotate life science
data [1], to improve search and integration [2], and to
model complex biological knowledge unambiguously [3].
By definition, an ontology is a specification of a repre-

sentational vocabulary for a shared domain of discourse
- definitions of classes, relations, functions, and other
objects [4] or in short it is an explicit specification of a
conceptualisation [5]. For example, the Disease Ontol-
ogy [6] and the NCI Thesaurus [7] are both examples of
ontologies in the disease domain and cancer (accession:
DOID:162) and Malignant Neoplasm (accession: C9305)
are examples of equivalent concepts therein. When used
this allows for unambiguous attribution of a particular
experimental condition or sample characteristic.
In recent years the OBO Foundry community has suc-

ceeded in creating a valuable catalogue of orthogonal,

cross-linked ontologies [8] for life sciences, of which the
Gene Ontology [9] for integration of gene annotations is
a well known example. However, there is still a consid-
erable overlap especially in the areas of anatomy and
disease, requiring much querying and integration when
using ontologies in practice.
For the purpose of this article, ontology querying and

integration is defined as integration of ontologies into
software applications and the practical use of ontologies
to annotate real data. This clarification is necessary as
ontology integration can also be understood as the inte-
gration of ontologies when building new ontologies by
reusing other ontologies, or integration of ontologies by
merging different ontologies into a single one that uni-
fies them [10].
Bioinformaticians integrating public domain ontologies

into their work face the following issues: (1) there are
no standardised identifying features that characterise
ontologies from the user’s perspective; (2) individual
ontology resources do not follow the same logical orga-
nisation; (3) to search for appropriate ontologies
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requires expert knowledge [11,12]; and (4) programma-
tic ontology search is challenging. A WWW ontology
broker has been proposed to solve some of the issues
[11]. This was predated by an important effort in the
biomedical domain, namely the Unified Medical Lan-
guage System (UMLS), which encompasses a number of
controlled vocabularies critical for the biomedical
sciences and is still in active use for more than twenty
years since its conception in 1986 [12].
There are now two major ontology repositories avail-

able: the EBI Ontology Lookup Service (OLS) [13,14]
and the NCBO BioPortal [15]. Although there is some
overlap in content between them (see Figure 1 [Created
in VennMaster [16] on 27-07-2010]); some ontologies
are only available in one repository so potentially both
have to be queried to access all available ontologies. For
example, Disease Ontology [6] is available in both repo-
sitories, but NCI Thesaurus [7] is not available in OLS,
and Pride Controlled Vocabulary [17] does not exist in
BioPortal. Table 1 highlights a case where both OLS
and BioPortal serve the same ontology, but differ in fea-
tures such as accessions, versions, or number of terms
available. Moreover, many users also develop local
ontologies for internal use, which are proprietary and
cannot be published online, or are still in development
and not suitable for public consumption. Those ontolo-
gies are often developed in OBO or OWL.
It has been postulated that manual annotation is no

longer sufficient to keep up with the current rate that
new data are generated in the biomedical domain [18].
The field is undergoing rapid evolution, with the first
generation of ontology development tools gaining wide
adoption. Most notable examples in this area include
Protégé [19], OBO-Edit [20], and OWL API [21]. Our

experience is that building services to seamlessly access
all these public repositories and local ontologies involves
considerable effort, because these resources are still
evolving or have rather advanced and heterogeneous
programming structures. A new generation of tools
geared more towards bioinformaticians is needed, with
the focus on flattening the learning curve and making
common tasks simpler.
Here we report the development of the software

library for Common Ontology API Tasks (OntoCAT)
that can be easily used from Java programs, Bioconduc-
tor/R [22] (ontocat package) and RESTful web services
clients. Development as an open source community
effort has helped to alleviate the challenges of accessing
a fast evolving landscape of ontology resources and has
already enabled large scale ontology integration in the
Experimental Factor Ontology [23], ArrayExpress [24],
MOLGENIS/XGAP [25] and Gen2Phen http://www.
gen2phen.org use cases.

Implementation
OntoCAT is an application suite that combines access
to a large number of terms via a Java6 package, a REST
interface, and an R interface, all available under the per-
missive LGPLv3 or Apache (R package) licenses for any-
one to use and extend.
The OntoCAT Java package provides a generic Onto-

logyService interface (described in detail in Figure 2) to
query ontology sources. A code example is also provided
in Figure 2. OntoCAT provides simple and easy-to-use
API for BioPortal and OLS web services, and the OWL
API [21] (BioportalOntologyService, OlsOntologyService
and FileOntologyService respectively). Table 2 illustrates
how the common interface maps to respective function-
alities in supported resources. OBO ontologies are trans-
lated by OWL API into valid OWL by a dedicated OBO
parser. This process results in a lossless version of the
OBO ontology in OWL, as in terms of content OBO
format can be considered a subset of OWL. In particu-
lar, synonyms and definitions are loaded into synonym
and def OWL annotations respectively and are then
available as synonyms and definitions in OntoCAT.
Web applications can connect using REST or SOAP

services as shown in Figure 3 and demonstrated in the
online documentation via a simple html search widget.
Researchers using R statistics can connect using the Bio-
conductor/R ontocat package [26]. Documentation is
available at http://www.ontocat.org including program-
ming examples and a complete javadoc. Simple demo
applications showing OntoCAT for ontology searches
with Google Web Toolkit on the Google App Engine
framework and the MOLGENIS platform [27] are avail-
able at http://ontocat-web.appspot.com and http://www.
ontocat.org/wiki/OntocatDownload. The Java API

Figure 1 Overlap between BioPortal and OLS. Venn diagram
representation showing overlap in content between BioPortal and
EBI Ontology Lookup Service. The relative size of the circles relates
to the number of ontologies stored in each repository (numbers
shown in connected labels) and the overlap between the two
repositories. 66 ontologies are shared between BioPortal and OLS
[Created in VennMaster [16] on 27-07-2010]
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exposes the results as Java objects or Java primitives, the
R package returns R objects, and the REST interface
returns XML or JSON.
The basic OntologyService interface is further enhanced

by a number of easy to use decorators (a design pattern
that allows additional behaviour to be added to an existing
object dynamically), which extend the primary functional-
ity of the underlying resources to add caching, allow inte-
grated searches across multiple ontology services or
perform more specialised tasks like translation and sorting:

CachedServiceDecorator
Adds two caching layers to every request relayed
through the decorator. All requests test the first
cache with a 24 hours expiry first. If no record is
found the request is passed through to the original
provider. If the original provider query fails

the results are returned from the eternal cache
(if available). This provides a fallback mechanism if
an ontology resource becomes temporarily unavail-
able, e.g. due to maintenance downtime.

CompositeDecorator
Allows searching across multiple ontology resources
using a single OntologyService interface, effectively
establishing another meta layer of abstraction. All
underlying resources encompassing different reposi-
tories and local files are therefore available from a
single access point. An example is provided in Figure
2 and in the online documentation. This service is
multithreaded and requests are simultaneously sent
off to all the underlying resources (the number of
threads used is configurable). As in R the Java code

Table 1 Comparison of FMA ontology features available in BioPortal and OLS

OLS BioPortal

Ontology name Foundational Model of Anatomy Ontology Foundational Model of Anatomy

Version 0.1 3.0

Release date 15/09/2006 03/03/2009

Ontology accession FMA 1053

Format OBO OWL

Size in terms 75149 81053

Term accession FMAID (e.g. FMA:7088) label (e.g. Heart)

The FMA ontology as shown here differs substantially in availability and structure between the two repositories [created on 27-07-2010].

Zooma
an ontology mapping

application designed 
to find optimal matches
between text values
and ontology terms

Three modes of operation:
• find optimal mappings
• provide mappings suggestions
• detect erroneous mappings

A wider problem – such mappings 
are found in  everything we do

Ontology

getOntologies() lists all ontologies available through a service

getOntology() returns an Ontology object

Term

searchAll() lists OntologyTerm objects matching keywords 

searchOntology() searches a single ontology

getTerm() returns an OntologyTerm object 

getAllTerms() returns all terms from a given ontology

getAnnotations() returns all additional annotations on a term 

getSynonyms() lists synonyms of a term (if available) 

getDefinitions() lists definitions of a term (if available)

Hierarchy

getRootTerms() lists all root terms in an ontology

getTermPath() returns first path to ontology root

getChildren() returns immediate children of a term 

getParents() returns immediate parents of a term 

getAllChildren() returns a set of all children of a term

getAllParents() returns a set of all parents of a term

getRelations() lists term’s relations, e.g. partOf, derivesFrom

OntoCAT’s common OntologyService interface implemented for local 
ontologies in OWL and OBO as well as for public ontology resources: BioPortal

and OLS

// Instantiate a composite service
OntologyService os = CompositeDecorator.getService(

new BioportalOntologyService(),
new OlsOntologyService(),
new FileOntologyService(

new URI("http://www.ebi.ac.uk/efo/efo.owl"))
);

// Query all ontology resources in one uniform call
List<OntologyTerm> result = os.searchAll("thymus")

Code example Asynchronous requests to individual 
service implementations

Local 
ontologies

(OWL or 
OBO)

BioPortal

OLS

Custom 
extension

(SPARQL...)

Ontology-driven applications

searchAll

Figure 2 Common workflow to integrate ontology resources. The figure represents the common work flow when using OntoCAT’s
OntologyService interface (left-hand side) in ontology driven applications (right-hand side). OntoCAT is being used as a dispatcher to send off
ontology related queries to several configurable resources, such as local ontology files, public repositories like OLS and BioPortal and is
potentially easily extendable for other resources.
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Table 2 Mappings between OntoCAT’s interface and the underlying resources respective functionalities.

OntoCAT OLS client BioPortal REST OWL API

QueryServiceLocator().getOntologyQuery() http://rest.bioontology.org/bioportal/ OWLOntology

ontology methods

getOntologies() .getOntologyNames()
Δ
eager fetching with .getOntology()

./ontologies
?email=email_address

.getOntologyID()
Δ

getOntology() .getOntologyNames()
.getOntologyLoadDate()
.getVersion()

./virtual/ontology/ontologyAccession ?
email=email_address

getOntologies().get(0)

term methods

searchAll() .getPrefixedTermsByName(query, false)
Δ

./search/
?query=url-encoded_query
&sexactmatch=[1/0]
&includeproperties=[1/0]
&maxnumhits = 10000000
&email=email_address

.getClassesInSignature()
OWLClass.getAnnotations()

searchOntology
()

depending on the search options a combination of:
1) .getTermsByExactName(query, ontolo-gyAccession)
2) .getTermsByName(query, ontologyAcces-sion, false)
3) .getTermsByAnnotationData(ontologyAccession, annotationType, query,
fromDblValue, toDblValue), .getAnnotationStringValue()
Δ

./search/
?query = url-encoded query
&isexactmatch=[1/0]
&includeproperties=[1/0]
&maxnumhits = 10000000
&email=email_address
&ontologyids=ontologyAccession

searchAll()
there is only one ontology

getTerm() Δ
.getTermById(termAccession, ontologyAccession)

./virtual/ontology/ontologyAccession
?conceptid=url-encoded termAccession
&email=email_address

.getClassesInSignature()
Δ

if termAccession was not found:
./search/?query=url-encoded_termAccession
&isexactmatch = 1

&includeproperties = 1 &maxnumhits = 10000000

&email=email_address

&ontologyids=ontologyAccession

getAllTerms() no native support, slow
getRootTerms()
getAllChildren()

./virtual/ontology/ontologyAccession/all ?pagesize =
300
&pagenum=pagenum
&email=email_address

.getClassesInSignature()
Δ

getAnnotations
()

.getTermMetadata(termAccession, ontologyAccession) getTerm() OWLClass.getAnnotations() OWLAnnotation.
getProperty().getIRI().toURI()
OWLAnnotation.getValue().getLiteral()

getSynonyms() getAnnotations()
Δ

getTerm()
Δ

getAnnotations()
Δ

getDefinitions() getAnnotations()
Δ

getTerm()
Δ

getAnnotations()
Δ
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Table 2 Mappings between OntoCAT?’?s interface and the underlying resources respective functionalities. (Continued)

hierarchy methods

getRootTerms() .getRootTerms(ontologyAccession)
eager fetching with getTerm()

./virtual/ontology/ontologyAccession
?conceptid = root &email=email_address
getChildren()

.getClassesInSignature()
OWLClass.getSuperClasses()
getAnnotations()

getTermPath() non-recursive traversal of the path to root with getParents()
Δ

./virtual/rootpath/ontologyAccession/url-encoded
termAccession &email=email_address
Δ

non-recursive traversal of the path to root
with getParents()
Δ

eager fetching with getTerm()

getChildren() .getTermChildren(termAccession, ontologyAccession, 1, null) getTerm()
Δ

OWLClass.getSubClasses()

getParents() .getTermParents(termAccession, ontologyAccession) getTerm()
Δ

OWLClass.getSuperClasses()

getAllChildren() getChildren() called non-recursively

getAllParents() getParents() called non-recursively

getRelations() .getTermXrefs(termAccession, ontology-Accession).
getTermRelations(termAccession, ontolo-gyAccession)

not implemented in OntoCAT not implemented in OntoCAT

Search defaults to non-exact matching and excludes properties, but this can be overridden by user with specific search options (see SearchOptions enum in the package). The Δ symbol signifies that some
additional processing is performed on the original output of the underlying service to integrate the results with the OntoCAT’s OntologyService interface. For example, in the case of OBO synonyms the appropriate
property is found among the term’s metadata and the additional context information is removed before the values are returned. Eager fetching means that when the underlying service returns only partial results,
e.g. BioPortal’s rootpath only provides term accessions, an additional query is issued to fully populate the result set. All hierarchy algorithms where noted are called in a non-recursive way to avoid memory issues
for traversing large graphs in a recursive manner.
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cannot be multithreaded a dedicated implementation
exists in CompositeServiceNoThreads.

SortedSubsetDecorator
Adds sorting and subsetting capabilities to any
search in the underlying service. This allows the
prioritization and ranking of terms when searching
over a specific selection of ontologies. The service is
instantiated with a list of ontology accessions indi-
cating suggested priority of use. All searches per-
formed with the decorated OntologyService will be
truncated to only include the results from this initial
list of ontologies, and ranked in the original order
the ontologies were specified.

TranslatedOntologyService
Allows the mapping of term accessions from one
local identifier namespace to a different one, e.g.
between BioPortal and OLS schemas as shown in
Table 1. This facilitates combining different ontolo-
gies under a single schema and resolves format
inconsistencies, e.g. OWL NCBITaxon_1 versus
OBO NCBITaxon:1. Behind the scenes an Ontolo-
gyIdTranslator encapsulates a set of user defined
OntologyIdMappings. Each mapping consists of a
regular expression that uniquely identifies a term as
belonging to a particular ontology, and another reg-
ular expression to translate the term accessions and
ontology accessions into the required format.

Respective example code snippets are provided in the
online documentation http://www.ontocat.org/wiki/
OntocatGuide. Use of the decorator design pattern
allows other ontology users to quickly extend OntoCAT,
implementing additional functionality such as custom
search filters.

Results
OntoCAT has proven a valuable toolbox to search and
integrate ontologies from heterogeneous sources on a
large scale. Example use cases of OntoCAT for integrat-
ing ontologies with data include: harmonising and pro-
moting consistency in data annotations, facilitating
automated annotations, inferring additional information
based on the knowledge conceptualisation, supporting
complex user queries and user interfaces, nonsense
detection and integrating external data. We report suc-
cessful applications in the following real world scenarios:

Use case: updating ontology properties
The Experimental Factor Ontology (EFO) [23] is an
application focused ontology modelling the experimental
factors in functional genomics experiments available
from the EBI databases ArrayExpress [24] and the Gene
Expression Atlas [28]. The development of EFO involves
construction of mappings to multiple existing domain
specific ontologies, such as the Disease Ontology [6]
and Cell Type Ontology [29]. This is achieved using a
combination of automated downloads of relevant ontol-
ogy terms using OntoCAT. Periodically all the estab-
lished cross-references in EFO to external ontologies
have to be re-evaluated against BioPortal in order to
detect changes in source ontologies in addition to
importing new and extra annotations such as new syno-
nyms and external definitions for EFO terms. Multi-
threading the OntoCAT requests allows our annotators
to process and import extra information from over
20,000 external ontology terms in less than 10 minutes.
Legacy OBO-like term accessions proved to be the big-
gest challenge, as they are not directly resolvable
through BioPortal. For this reason custom implementa-
tions of the TranslatedOntologyService and OntologyId-
Translator classes were created saving great amounts of
manual annotation and checking, and are available in
the uk.ac.ebi.efo.bioportal package.

Use case: annotating user supplied experimental values
with ontology terms
The ArrayExpress Archive [24] and the Gene Expression
Atlas [28] together contain over one million unique
experiment annotations. These are all annotated with
ontology terms from the EBI’s pre-release version of the
application ontology EFO, and where they do not exist
in EFO they have to be checked against publicly

Figure 3 Use case diagram. Use case diagram of a simplified user
interaction with existing ontology resources through OntoCAT.
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available ontologies. This previously manual process has
now been automated using the Zooma http://zooma.sf.
net application, which extracts a list of unmapped terms
from the source database and queries the local EFO
pre-release OWL file and existing mapped data inside
local databases. It returns perfect matches as automatic
mappings, and also launches queries at BioPortal and
OLS for unmapped terms. If several mappings to EFO
are possible, these experiment annotations are flagged as
requiring curation and periodically mapped by a mem-
ber of the Atlas curation team. If no mappings to EFO
were present, but possible mappings were acquired from
other ontologies (using OntoCAT), then these are
flagged as new suggestions and used in the development
of EFO.

Use case: local ontology management
OntoCAT has also been applied using the MOLGENIS
software [27], and in particular on the eXtensible Geno-
type And Phenotype data platform, XGAP [25]. A user
interface for ontology term search and management has
been deployed as part of MOLGENIS code generation
software and is used in XGAP and other models to
allow users to search publically available ontologies and
download terms to unambiguously annotate their
experimental genotype, QTL or GWAS data http://
www.xgap.org.
In addition a small html search widget can be used by

bioinformaticians to add OntoCAT search and term
selection anywhere in their web applications. Here the
user is provided with a ‘search’ box where they can type
in keywords and then a selection of matching candidate
terms is loaded from OLS, BioPortal, OWL or OBO
files for the user to choose from (exact results depend
on how the underlying OntoCAT’s REST service is con-
figured). Working examples of both systems are pro-
vided in the online documentation http://www.ontocat.
org/wiki/OntocatGuide.

Use case: data analysis
Ontologies are used in data analysis as well as for anno-
tation purposes and a new Bioconductor [22] package
ontocat http://www.ontocat.org/wiki/r is now available
to read in and query OWL/OBO format ontologies into
R for use in downstream analyses. The ontocat package
was released in Bioconductor 2.7 and comes with built-
in offline support for EFO and also supports online Bio-
Portal and OLS ontology queries.

Discussion
Simplicity and ease of use
OntoCAT was designed to make common use cases easy
to implement while still enabling implementation of
advanced algorithms. Many of such common tasks are

demonstrated in code examples that are provided in the
online documentation http://www.ontocat.org/wiki/
OntocatGuide. OntoCAT was developed as a common
access point for available resources and therefore does
not incorporate all of their rich feature sets (see Table 3).
New features are added to OntoCAT only when new use
cases demand it and only for cases where the functional-
ity in question is available across all the supported ontol-
ogy resources or can be in some way emulated (see
Future work below). The advantage of this approach is
the OntologyService interface is more stable keeping the
API very close to programmer’s practice.
To further lower the barrier to practical use we fol-

lowed the convention over configuration design
approach. Whenever possible a default behaviour requir-
ing zero configuration can be used by the developer
minimizing the number of decisions that are needed to
made, while not losing the flexibility of defining custom
settings when necessary. This principle is strictly
adhered throughout the package, but one notable exam-
ple is the implementation of the Simple Knowledge
Organization System (SKOS, http://www.w3.org/TR/
skos-primer) properties. W3C recommends their usage
to annotate definitions and synonyms in OWL, but few
OWL ontologies adhere to this. OntoCAT fully supports
SKOS properties. Whenever they are employed in an
ontology; label, synonym and definition annotations will
be recognised automatically. However, it is still possible
to specify custom URI fragments on a per ontology
basis when using a local file source.
Use of synonyms is another common task that has

considerable significance in text mining activities [30].
The OBO standard for denoting synonyms and defini-
tions is also fully supported without additional config-
uration. However, extra information available in OBO,

Table 3 Comparison of available features between
existing ontology repositories and OntoCAT

OLS BioPortal OntoCAT

Web services SOAP REST REST

Java API Yes Yes

Complexity (C) 16 29 16

Richness (R) 177 1405 ≥ 1582

log R/C 1.0 1.7 ≥ 2.0

OWL support Yes Yes

OBO support Yes Yes Yes

Local ontologies Yes

Open source Apache License Apache License LGPL v.3

Complexity is represented as a number of public methods available in the
respective Java API interface or different web services signatures where the
former is not available. Richness is measured as a number of hits returned
from a non exact query for ‘thymus’. A logarithm of richness and complexity
quotient is provided as a single score to judge the relation between the two.
It is higher the richer the source and less complex it is to access [created on
27-07-2010].
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in the form of cross-references to describe the origins of
the synonym, synonym category and scope (EXACT,
BROAD, NARROW, RELATED), are stripped from the
results to be consistent with output from other services.
The raw values can still be accessed through getAnnota-
tions() if required.
Generally speaking ontologies consist of individuals

(instances), classes (concepts), attributes, and relations.
In order to avoid the confusion in the implementation -
the word “concept” is avoided altogether in the imple-
mentation, and “term” is used instead to denote both
individuals and concepts. Here an ontology term is
defined as a tuple consisting of (1) term accession, (2)
term label, and (3) ontology accession that the particular
term belongs to. Ideally a term accession should be
enough to uniquely identify a term thereby rendering
term label and ontology accession redundant. However,
this is not the case when label is the accession as shown
for the FMA ontology in BioPortal (see Table 1). Storing
an ontology accession helps to resolve the actual ontol-
ogy the term belongs to. The label is only recorded for
convenience as in most cases it is used for text mining,
query support or indexing. In fact, in this case the label
forms the fragment of the term URI, but the term can-
not be retrieved solely by its URI as the REST query
additionally requires the Bioportal-assigned ontology
accession.
In theory a URI should be enough to uniquely identify

an ontology term across all services solving the complex
issue of integrating data annotated using different ontol-
ogy resources and in the semantic web applications;
wide adoption would render the TranslatedOntologySer-
vice unnecessary. In BioPortal it is already possible to
use URIs (called full IDs) in place of the short term
accessions, however at present terms cannot be retrieved
solely by their URIs as the REST interface requires the
BioPortal-assigned ontology accession to be provided
additionally. While this is a minor issue that is likely to
be resolved in the future, there are a number of other
factors preventing wide adoption of resource identifiers.
Although OWL ontologies fully support term URIs
already, OBO format provides only rudimentary support.
OBO community is in the process of embracing Persis-
tent Uniform Resource Locators (PURLs) to encode
namespaces and this issue is likely to be mitigated in
the future. However, while all PURLs are URIs, not all
URIs are PURLs, in particular URIs are not limited to
http protocol. To add to the confusion OWL 2 specifi-
cation replaced URIs with Internationalized Resource
Identifier (IRIs), which potentially are not backward
compatible with URIs (Unicode vs. ASCII encodings).
Ideally, a consensus is also required in whether and how
to report the ontology version within the URI and there

is also the issue of URI stability between versions, e.g.:

• FMA 3.1 - http://sig.uw.edu/fma#Anatomical_entity
• FMA 3.0 - http://sig.biostr.washington.edu/fma3.0#
Anatomical_entity
• FMA 1.4 - http://bioontology.org/projects/ontolo-
gies/fma/fma20OwlDlComponent#Anatomical_entity

Common functionality and integration
No term-level versioning information is stored at pre-
sent as we have no use cases where this would be parti-
cularly useful. This information is only available through
BioPortal, no such feature exists in OLS, and there are
no standards to code against to identify versions in
OWL. A common practice in the community is that any
substantial change to a term is recorded by assigning a
new term accession and obsoleting the original one. It is
not strictly defined what makes a change substantial, e.
g. debatable whether changing a class’ position in ontol-
ogy hierarchy warrants a new accession. Alternatively,
term annotations could be used as a proxy for detecting
changes. A version clash could be detected where a sin-
gle annotation (e.g. label or synonym) changes between
two retrievals of the same ontology term. BioPortal
exclusively provides access to previous versions of ontol-
ogies, however their feature set is limited compared to
the most recent versions (accessed by the so called vir-
tual ontology id), i.e., hierarchy and search services are
not available. For example, for ontologies following a
daily release cycle it is impractical to reindex them so
often. However, since BioPortal stores all the ontologies
that were ever processed in a downloadable format, it is
possible to use this facility by passing any of the version
links provided in the BioPortal’s ontology summary view
into the OntoCAT’s FileOntologyService. This allows
working with a specific version of the ontology, not
necessarily the latest one, including hierarchy and search
functionalities. It is particularly useful in ontology devel-
opment process for regression testing. Example 14 in
the online documentation shows how two different ver-
sions of EFO can be compared in such a way. Replicas
of ontologies, i.e., the same ontology present in both
repositories, are treated as different ontologies as they
have different ontology accessions. BioPortal assigns
unique numeric identifiers, whereas OLS uses the abbre-
viation of the ontology name. These ontology accessions
cannot be resolved against each other automatically and
in practice this should not be attempted due to differ-
ences shown in Table 1. In fact, not a single ontology
between BioPortal and OLS shares the same ontology
accession thus a manual mapping is required. Example
7 in the online documentation demonstrates how one
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ontology namespace could be translated into another
using the aforementioned TranslatedOntologyService
and the two replicas integrated. When searching across
both the repositories combined it is also possible to
ignore one of the copies selectively with the SortedSub-
setDecorator (see example 4 in the online documenta-
tion). Due to significant differences in the same
ontology between the sources as demonstrated in Table
1 integrating the results is not recommended in practice.
Nevertheless, replication is handled gracefully without
additional overhead because of the unique ontology
accessions. That is if a user tries to access the term
GO:0043227 given its term (GO:0043227) and ontology
(GO) accessions, only a single version specific to OLS
(as identified by the ontology accession) will be
returned.
The following features were implemented directly in

OntoCAT as the underlying ontology resources did not
support them, and we had use cases for these.

• Neither the OLS client nor OWL API provide get-
Synonyms(), getDefinitions (), getAllParents(), getAll-
Children(), and getAllTerms() methods natively; these
were implemented using available meta data. The
functionality of searching annotations across the
whole repository does not exist in OLS either and
cannot easily be emulated. A warning is issued
whenever a user attempts this.
• The OWL API does not support search methods
natively. These were implemented to provide the full
functionality of searching properties and non exact
matching. For example, a search for ‘thymus’ with
search options: non exact, not including properties
involves iterating through all the classes’ labels in an
ontology to verify which label contains the specified
keyword. A class label is defined in this context in
order of preference and availability as a user-speci-
fied property, rdfs:label, skos:prefLabel, or a fragment
of the class URI.
Only in-memory caching of ontology terms is per-
formed, and the whole cache is searched when a
query is issued. We have not observed scalability
issues on the local level when using ontologies up to
40000 terms that would warrant building an index
to aid the queries. However, users could potentially
employ OntoCAT as a means of populating an
external index, e.g. Lucene-based http://lucene.
apache.org, which we also did to enable query
expansion in our MOLGENIS database. The in-
memory cache is used to access OWL classes by
their accessions as a convenience method for bypass-
ing the OWL API requirement for fetching a class
by its full URI. It is in theory potentially unsafe and
could lead to collisions, i.e., OWL format allows for

two classes to share the accession providing they are
in different namespaces and in such a case one of
the terms would be discarded. In practice this is
unlikely to happen as most ontologies use globally
unique term identifiers and this shortcut makes the
interface easier to work with and to understand for
consumers of OBO ontologies, where the usage of
URIs is not as widespread.

A disadvantage of using web services over local access
is that they are slower. It could be argued that providing
an extra layer of abstraction would slow them down
even further. However, in our tests OntoCAT only adds
on average 9% overhead to a BioPortal query and less
than 1% to an OLS query when compared to using the
underlying source APIs directly. An OntoCAT term
search takes on average 240 ms in BioPortal and 340 ms
in OLS. These timings include the additional overhead
OntoCAT imposes on the repository services 10 ms ± 5
ms for BioPortal and less than 1 ms for OLS. Moreover,
with OntoCAT the queries can be easily parallelised,
intermediate results cached or even whole ontologies
downloaded from BioPortal for local querying, which
results in orders of magnitude efficiency improvements
that eclipse these minimal adverse overhead issues.
Furthermore, use of both web services provides some
redundancy in case of service dropout.
To generate these results a list of 100 random 13

character long alphanumeric strings was created. Ran-
dom strings were used in order to prevent the reposi-
tory from returning a previously cached result and to
bypass the internal caching. These were then all used as
a search keyword to query BioPortal and OLS. The stan-
dard high precision system timer was used to time each
query and all the results were then averaged and cor-
rected for average roundtrip time (measured by pinging
the respective servers) to give the final figures. Complete
code is available in the ServiceProfiler class. Please note
that this cannot be considered a valid comparison of
responsiveness of the two repositories, as the tests have
not been performed across all the services and over
extended period of time, but rather it is given here as a
means of estimating expected OntoCAT’s performance.
OntoCAT can handle arbitrary large ontologies, as

long as OWL API has enough dedicated heap space
available to parse them. For example, FMA (81053
terms) can be loaded with as little as 2GB of memory
dedicated to the Java Virtual Machine (JVM), which is
not unreasonable to expect from a modern laptop, and
even less so on an academic cluster. If there is not
enough memory available OntoCAT internally will catch
the OutOfMemoryError exception on ontology loading
and will inform the user which JVM settings have to be
adjusted.
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Future work
The current repertoire of supported ontology resources
could easily be extended when new resources become
available and appropriate use cases are identified. Such
services would only need to implement the OntologySer-
vice interface to immediately become aligned with pre-
existing resources and allow for their seamless inter-
changeability. For example, we envision the creation of a
dedicated SPARQL wrapper to allow for integration
with RDF triplestores.
It is also possible to extend the functionality of an indi-

vidual resource separately without impeding the core
functionality. Example 8 in the online documentation
demonstrates searching of a sub-tree of an ontology,
which is possible using the BioportalOntologyService
object directly, but was not promoted to the main Onto-
logyService interface, as this functionality remains specific
to BioPortal. This particular feature was implemented
when requested by a user, and further extensions could
be made in a similar fashion.

Conclusions
OntoCAT is a comprehensive software package that
allows bioinformaticians to uniformly access ontology
terms from diverse public repositories and private file
sources using simple Java, R and REST web service
commands. OntoCAT is used in a growing list of appli-
cations including the Experimental Factor Ontology [23]
development, the eXtensible Genotype And Phenotype
data platform, XGAP [25], the Zooma annotation tool
http://zooma.sf.net and the ArrayExpress [24] and Gene
Expression Atlas [28] annotation systems.

Availability and requirements
Project name: OntoCAT
Home page: http://www.ontocat.org
Operating system: Platform independent
Programming language: Java6
License: LGPLv3
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