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Abstract

different conditions.

Background: Comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC x GC-
MS) is a powerful technique which has gained increasing attention over the last two decades. The GC x GC-MS
provides much increased separation capacity, chemical selectivity and sensitivity for complex sample analysis and
brings more accurate information about compound retention times and mass spectra. Despite these advantages,
the retention times of the resolved peaks on the two-dimensional gas chromatographic columns are always shifted
due to experimental variations, introducing difficulty in the data processing for metabolomics analysis. Therefore,
the retention time variation must be adjusted in order to compare multiple metabolic profiles obtained from

Results: We developed novel peak alignment algorithms for both homogeneous (acquired under the identical
experimental conditions) and heterogeneous (acquired under the different experimental conditions) GC x GC-MS
data using modified Smith-Waterman local alignment algorithms along with mass spectral similarity. Compared
with literature reported algorithms, the proposed algorithms eliminated the detection of landmark peaks and the
usage of retention time transformation. Furthermore, an automated peak alignment software package was
established by implementing a likelihood function for optimal peak alignment.

Conclusions: The proposed Smith-Waterman local alignment-based algorithms are capable of aligning both the
homogeneous and heterogeneous data of multiple GC x GC-MS experiments without the transformation of
retention times and the selection of landmark peaks. An optimal version of the SW-based algorithms was also
established based on the associated likelihood function for the automatic peak alignment. The proposed alignment
algorithms outperform the literature reported alignment method by analyzing the experiment data of a mixture of
compound standards and a metabolite extract of mouse plasma with spiked-in compound standards.

Background

Metabolomics examines the structures, functions, inter-
actions, and dynamics of cellular metabolites, identifies
their cellular localization (i.e., subcellular membrane
compartments and domains), and determines the
dynamic changes that occur during physiological and
pathophysiological perturbations. Metabolomics,
together with other modern omics, has the potential to
facilitate the development of preventive, predictive and
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personalized medicine markets in health and wellness
[1]. Multiple high-throughput analytical methods have
been developed for metabolomics. One such powerful
approach is comprehensive two-dimensional gas chro-
matography-mass spectrometry (GC x GC-MS) [2-5],
which can easily detect a large number of metabolites
from a complex sample.

The GC x GC-MS system provides much increased
separation capacity, chemical selectivity and sensitivity
for metabolomics analyses [6-13]. This approach uses
two columns connected via a thermal modulator. Its
second column is usually a short column after the main
analytical column, where the second column is naturally
operated at a higher temperature than the first column
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with different stationary phase. The compounds co-
eluted from the first column are further separated in the
second column through the difference of column tem-
perature and the chromatographic matrix. The further
separated compounds are directed to a high capacity
time-of-flight mass spectrometry system for detection.
Consequently, the GC x GC-MS system brings more
accurate information about compound retention times
and mass spectrum, representing a powerful technique
for the analysis of compounds in complex biological sys-
tems. However, as in one-dimensional GC, retention
times are shifted due to uncontrollable factors such as
temperature and pressure fluctuations, matrix effects on
samples and stationary phase degradation. As a result, it
is difficult to compare compound profiles obtained from
multiple samples.

To date, six alignment methods have been published
to correct the retention time shifts in the GC x GC sys-
tem. For aligning data in small or local regions, Fraga et
al. [14] proposed a generalized rank annihilation method
and Mispelaar et al. [15] introduced a correlation-opti-
mized shifting method. The alignment algorithm for the
entire chromatogram of GC x GC-MS data was devel-
oped by Pierce et al. [16] using an indexing scheme with
a piecewise retention time alignment algorithm. Zhang
et al. [17] developed a two-dimensional correlation opti-
mized warping method (2-D COW). These four meth-
ods align the GC x GC-MS data only based on two-
dimensional retention times without using the signature
feature of a compound, i.e., mass spectrum of fragment
ions. Therefore, it is likely that a high rate of false-posi-
tive alignment is introduced due to the fact that some
compounds with similar chemical functional groups
have similar retention times in the two gas chromato-
graphic dimensions.

Oh et al. [18] and Wang et al. [19] developed peak-
based alignment methods using the two-dimensional
retention times as well as the mass spectrum of com-
pound fragment ions, which are called MSort and
DISCO, respectively. In these methods, the raw instru-
ment data of each sample were first reduced to a com-
pound peak list, where each compound was
characterized by its two-dimensional retention times,
mass spectrum and other features. The two-dimensional
retention times and mass spectra were then used for
compound alignment. Incorporating compound mass
spectrum into alignment can greatly reduce the rate of
false-positive alignment. DISCO can align both homoge-
neous and heterogeneous data while MSort can be
applied only to homogeneous data. The homogeneous
data refer to experiment data acquired under the identi-
cal GC x GC-MS experiment conditions and the hetero-
geneous data acquired under different GC x GC-MS
conditions.
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In order to enable the analysis of heterogeneous data,
DISCO first transfers the two-dimensional retention
time values to z-scores, to balance the contribution of
the two-dimensional retention times to the Euclidean
distance between two peaks. It then selects a number of
landmark peaks and corrects the retention times of the
rest of peaks based on these selected landmark peaks.
The landmark peaks are peaks that appear in all samples
(peak lists), and are discovered by an optimization pro-
cess followed by a filtering process. The optimization
process employs the Euclidean distance of two peaks in
the two-dimensional retention time space and fragment
ion mass spectra were employed in sequential, while the
filter process removes false landmark peaks based on
compound elution order in the first and the second
dimension GC, respectively. After landmark peak dis-
covery, a local linear fitting is rendered to the remaining
peaks based on the selected landmark peaks. However,
it is more likely that the retention time shift is nonlinear
in reality [20]. The performance of DISCO algorithms
highly depends on the accuracy of landmark peak selec-
tion and the local linear fitting approach may not able
to precisely adjust compound retention time due to the
nature of nonlinear retention time shift. For this reason,
we developed novel peak alignment algorithms to align
homogeneous as well as heterogeneous data using
Smith-Waterman local alignment, in which the land-
mark peak selection and retention time transformation
are not required. All the statistical analyses and simula-
tions were performed using a statistical package R (R
Development Core Team) and the R code is available at
http://stage louisville.edu/faculty/x0zhan17/home.html.

Method
GC x GC-MS data
In this study, two sets of GC x GC-MS data were used.
One is a mixture of 116 compound standards and the
other is a metabolite extract with spiked-in compounds.
In the first dataset (Dataset I), a mixture of 76 com-
pound standards (8270 MegaMix, Restek Corp., Belle-
fonte, PA), C7-C40 saturated alkanes (Sigma-Aldrich
Corp., St. Louis, MO) and a deuterated six component
semi-volatiles internal standard (ISTDF) mixture (Restek
Corp., Bellefonte, PA) at a concentration of 2.5 pg/mL
were analyzed on a LECO Pegasus 4D GC x GC-MS
instrument (LECO Corporation, St. Joseph, MI, USA)
equipped with a cryogenic modulator. The GC x GC-
MS analyses were repeated 10, 2, and 4 times under
three different temperatures, 5°C/min, 7°C/min, and 10°
C/min, respectively, resulting in a total of 16 datasets.
As for the spiked-in sample (Dataset II), a 100 pL
mouse plasma sample was mixed with 900 pL of organic
solvent mixture (methanol/water 8:1, v/v) and vortexed
for 15 s. After sitting at 20°C for 30 min, the mixture
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was centrifuged with 16000 xg at 4°C for 15 min. Super-
natants from the mixture were collected and evaporated
to dryness with a SpeedVac and then redissolved in 100
puL of pyridine. Fifty micro litters of the metabolite
extract were treated with 100 pL of 50 mg/mL ethoxya-
mine hydrochloride pyridine solution for 30 min at 60°
C. Subsequently, the extracts were derivatized with 100
uL of MTBSTEFA for 1 h at 60°C. The derivatized sam-
ple was spiked with ISTD mixture at a concentration of
2.5 ug/mL right before the GC x GC-MS analysis. Then
the compounds were analyzed five times on GC x GC-
MS.

All GC x GC/TOF-MS analyses were performed on a
LECO Pegasus 4D time-of-flight mass spectrometer
(TOF-MS) with a Gerstel MPS2 autosampler. The Pega-
sus 4D GC x GC/TOF-MS instrument was equipped
with an Agilent 7890 gas chromatograph featuring a
LECO two-stage cryogenic modulator and secondary
oven. A 30 m x 0.25 mm i.d. x 0.25 pm film thickness,
Rxi-5 ms GC capillary column (Restek Corp., Bellefonte,
PA) was used as the primary column for the GC x GC/
TOEF-MS analysis. A second GC column of 1.2 m x 0.10
mm id. x 0.10 pm film thickness, BPX-50 (SGE Incor-
porated, Austin, TX) was placed inside the secondary
GC oven after the thermal modulator. The helium car-
rier gas flow rate was set to 1.0 mL/min at a corrected
constant flow via pressure ramps. A 1 pL liquid sample
was injected into the linear using the splitless mode
with the injection port temperature set at 260°C. The
primary column temperature was programmed with an
initial temperature of 60°C for 0.5 min and then ramped
at a variable temperature gradient to 315°C. The sec-
ondary column temperature program was set to an
initial temperature of 65°C for 0.5 min and then also
ramped at the same temperature gradient employed in
the first column to 320°C accordingly. The thermal
modulator was set to +20°C relative to the primary
oven, and a modulation time of 5 s was used. The MS
mass range was 10-750 m/z with an acquisition rate of
150 spectra per second. The ion source chamber was set
at 230°C with the MS transfer line temperature set to
260°C, and the detector voltage was 1800 V with elec-
tron energy of 70 eV.

The LECO ChromaTOF software version 3.4 equipped
with the National Institute of Standards and Technology
MS database (NIST MS Search 2.0, NIST/EPA/NIH
Mass Spectral Library, NIST 2002) was used for instru-
ment control, spectrum deconvolution, and compound
identification. Manufacturer recommended parameters
for ChromaTOF were used to reduce the raw instru-
ment data into a compound peak list. These parameters
are: baseline offset = 0.5; smoothing = auto; peak width
in first dimension = 6 s; peak width in the second
dimension = 0.1 s; signal-to-noise ratio = 100; match
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required to combine peaks = 500; R.T. shift = 0.08 s;
minimum forward similarity match = 600. The peak list
of each GC x GC-MS data was then manually exam-
ined. In case that there are multiple peaks identified as
the same compound in an experiment, only the peak
with the largest peak areas was selected. Table 1 sum-
marizes each dataset by calculating the number of com-
pounds. The numbers in parentheses are the original
number of peaks before correcting the multiple peaks.
The scatter plots of Dataset I and II, the density plots of
the first and second dimension retention times are
depicted in Figure S1 as given in the Additional File 1.
Since the identified compounds by ChromaTOF could
be wrong, all the compound names identified are
“tentative.”

Similarity measure
The most widely used mass spectral similarity measures
are the Finnigan INCOS dot product and the probability
based matching (PBM) [21,22]. Stein and Scott (1994)
demonstrated that the dot product is the best performed
measure out of five similarity measures including PBM.
On the other hand, Liu et al. [23] compared different
measures of spectral similarity and concluded that the
Pearson’s correlation coefficient is robust but the differ-
ence between the dot product and the Pearson’s correla-
tion coefficient is subtle. In this study, we used the
Pearson’s correlation coefficient for the purpose of com-
parison with DISCO algorithms, in which the Pearson’s
correlation coefficient was employed.

The Pearson’s correlation coefficient for mass spectral
similarity measure between two mass spectra, Iy, and

Iy;, of two peaks, y; and w;, as follows:

S(yj xi) = corr(ij, L)
cov(ly,, Iy,)

\/var(Iy}. )Wvar(Iy,) .

Smith-Waterman local alignment

The Smith-Waterman (SW) local alignment was intro-
duced by Temple Smith and Michael Waterman for the
identification of common molecular subsequences,
where the optimal local alignment between two
sequences was determined by calculating the similarity
score using dynamic programming [24,25]. The SW
algorithm is closely related to global alignment, i.e.,
Needleman-Wunsch global alignment [26].

Consider two sequences X = x;1 X5 ... x,,, of length m
and of ¥ = y1y; ... y, of length n. For 1 < 1 < i < m and
1 <k <j<mn we denote by Xj, ; and Yy, ; the sub-
sequences of X and Y given by xpx;,,1 ... x; and yiyri1 -
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Table 1 The summary of GC x GC/TOF-MS datasets
(@) Compound standards
5°C/min
RUN ID S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
The number of compounds 78 (180)* 76 (186) 76 (161) 75 (151) 74 (151) 73 (145) 74 (172) 76 (163) 77 (168) 75 (174)
Compound standards
(continued)
7°C/min 10°C/min (b) Spiked-in
RUN ID S11 S12 S13 S14 S15 S16 C1 C2 c3 c4 c5
The number of compounds 75 (132) 73 (170) 76 (148) 73 (138) 76 (113) 75 (118) 466 (759) 456 (733) 436 (694) 452 (727) 418 (661)

*, the number of peaks found by ChromaTOF before multiple peak correction

(a) A total of 16 datasets were generated under the temperature gradients of 5°C/min, 7°C/min, and 10°C/min for the mixture of compound standards. (b) A total

of 5 datasets were generated for spiked-in sample.

¥;» respectively, and by H(i j) the maximum of all possi-
ble scores for alignments between a sub-sequence of X
ending at x; and one of Y ending at y;. In particular, H(j,
j) is set to zero when H(i, j) is negative. The SW algo-
rithm uses dynamic programming, by initializing

H(i,0) = 0 = H(0, )

for0<i<mandO0<j<n
and by calculating

H(i,j) = max{0, H(i — 1,j — 1) + m(i, )

JH(i—1,j) —d, H(i,j — 1) — d}, @

to find the maximum H(i, j) of over all values of i and
j» where m(i, j) = u if x; = y; and v otherwise and d is
the gap penalty for some non-negative constants u, v, d.

To find the highest-scoring alignment, the path of
choices from (1) should be found using the procedure
called a traceback. The traceback procedure works by
building the alignment in reverse, i.e., starting from the
highest value of H(i, j)and ending at a cell with a value
of zero. The overview and variants of the SW algorithm
have been described in great detail by Ewens and Grant
[25].

Pairwise peak alignment implementation

All the pairs of peak lists among the datasets were con-
structed, considering that one was a reference chroma-
togram and the other was a target chromatogram. For
the comparison analysis of homogeneous peak align-
ment, a total of 45 homogeneous chromatogram pairs
were generated by compound standards with a tempera-
ture gradient of 5°C/min and 10 homogeneous chroma-
togram pairs by the spiked-in sample. As for
heterogeneous peak alignment, the pairs were created
between (5°C/min and 7°C/min), (5°C/min and 10°C/
min), and (7°C/min and 10°C/min) using compound

standards data, resulting in a total of 68 heterogeneous
chromatogram pairs.

The comparison criterion
The performances of all the methods are compared by
calculating the true positive rate (TPR), positive predic-
tive value (PPV), and F1 score of the peak alignment.
Suppose there are n target peaks Y = {y1, y2, . ¥p» ¥ri1>
., ¥u} and m reference peaks X = {x1, X2, ..., Xy Xpi1, oo
x,,} with r positive peak pairs {(y1, x1), (¥2, %3), .., (Vp»
x.)}, where r < min(n, m). Note that if two peaks are
generated by the same compound, it is called a positive
peak pair. If a certain peak alignment method is used
for the two datasets, Y and X, to find ¢ peak pairs
matched, then the values of TPR and PPV of the peak
alignment between two datasets are calculated by the
following equations:

P
TPR = ;
TP + FN
P
PPV = ;
TP + FP

where TP is the number of positive peak pairs that
were aligned as positive (true positive) and is less than
or equal to min(r, t), FP is the number of negative peak
pairs that were aligned as positive (false positive) and is
t - TP, EN is the number of positive peak pairs that
were not aligned (false negative) and is r - 7P, and TN
is the number of negative peaks that were not aligned
(true negative) and is m-n - r - FP. Note that the total
number of peak pairs is m-n.

TPR is called recall and PPV precision. Their harmo-
2 -TPR - PPV
TPR + PPV
racy which is called F1 score. F1 score was used as the
accuracy measure of the peak alignment. Thus, the lar-
ger are TPR and PPV, the larger is F1 score. That is, if

nic mean (= ) is then used as an accu-
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F1 score (or TPR and PPV) is larger, the peak alignment
performs better.

Results

Smith-Waterman peak alignment algorithms

The Smith-Waterman (SW) local alignment was origin-
ally developed for the alignment of gene sequences [20].
We present modified SW algorithms that support the
peak alignment based on the peak list of comprehensive
two-dimensional gas chromatography mass spectrometry
data. The details of SW algorithm are described in the
Method section.

We use the following notations throughout the article.
Let Y = y195 ... ¥, be the ordered peak list of the target
GC x GC-MS data and X = x1x5 ... x,, the ordered peak
list of the reference GC x GC-MS, where x; and y; (1 <
i <m, 1 <j< n)are composed of the first and the sec-
ond retention times of the ith and jth peaks, (x;1 «x;»)
and (y;,1, yj,2), respectively. That is, both X and Y are
sorted in ascending order of the sum of two retention
times, x;; + x5 and y;; + yjo, for 1 <i<mand 1<) <
n, respectively. We denote by Yy ; and X, ; the sublists
of the ordered peak lists, Y and X, of the target and
reference GC x GC-MS data given by yiy,1 ... y; and
XpXpe1 o x;for 1 <k <j<mandl <h<ic<m,
respectively.

A similarity w(i, j) function is defined as follows:

S ulf s(xi/)/') zZp
i ={ S 24 ®

where u and v are non-negative constants, and p is a
user-defined cut-off value for the mass spectral similar-
ity ranging between 0 and 1. Note that we employed the
Pearson’s correlation coefficient for S(x; ;) as described
in the Method section. Then, by replacing m(i, j) in (1)
with w(i, j) in (2), the peak alignment can be rendered
using the SW algorithm. Since its traceback will be
stopped when encountering a zero, the SW algorithm
will give the single local match between two peak lists.
For this reason, we propose three modified SW algo-
rithms by changing its traceback process to find all the
possible local peak alignments with a significant score.

Once the m x n score matrix is constructed using (2),
the traceback is rendered after finding the maximum value
of H(i, j)over all values of i and j, where 1 <i <mand 1 <
j < n. Let us assume that the highest value occurs at the
cell (g, ). Then, at each step in the traceback process of 1
<i<g<mand]l <j<r<n, the current cell (i, j) is
moved back to the one of the cells (i-1, j-1), (i-1, j) or (i, j-
1) by starting from which the highest value of H(g, r) was
derived. At the same time, a pair of symbols is added onto
the front of the current peak alignment: x; and y; if the
step was to (i-1, j-1), x; and the gap character ‘- if the step
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was to (i-1, j), or the gap character *-” and y; if the step was
to (i, j-1). Then the traceback is ended when meeting a
cell with the value of zero. The original traceback of the
SW algorithm is stopped in this cell and outputs the best
single local alignment. However, our modified traceback
will find the path further until it reaches the start of the
matrix, where i = 1 or j = 1. To do this, when the current
traceback meets a cell (s, £) with the value of zero and the
position of this cell is not the start of the score matrix, i.e.,
s # 1 and ¢t # 1, the proposed algorithm finds the maxi-
mum value of H(j, j) over all values i and j, where 1 <i <
<g<mandl<j<t<r<nlfthe cell (v, w) has the max-
imum value of H(j, j), the previous traceback is rendered
similarly for 1 < i < sand 1 < < ¢ until meeting a cell
with the value of zero or until it reaches the start of the
matrix. If the current cell is the start of the matrix, the tra-
ceback process is stopped and, if not, the traceback will be
rendered again. We call this modified SW algorithm the
SW repeat alignment with maximum scores (SWRM).

In the second scheme, the traceback is first rendered
from the last cell (1, #), while the traceback starts from
the maximum value of H(j, j) in SWRM. If the cell (s, £)
with the value of zero is not the start of the matrix, the
traceback starts again from the cell (s, £) to find the
path over all values of i and j, where 1 <i<sand 1 <j
< t, and so on. We call this scheme the SW repeat
alignment with ending scores (SWRE).

The maximum value of H(j, j) is estimated at the last
column of the peak list of the target GC x GC-MS data.
That is, we first look for the highest value of H(i, n)
over all values of i and j, where 1 < i < m. If the highest
value is equal to zero, the maximum value of H(, j) is
found over all values of i and jfor 1 <i<mandj=n -
1. This process is repeated until the non-zero maximum
value is found. Then the traceback is rendered from
which the non-zero highest value was derived. We call
this method the SW repeat alignment with maximum of
ending scores (SWRME).

For each peak pair, the three proposed alignment
algorithms and DISCO were implemented along with
the different cut-off values of mass spectral similarity.
Once a pair of the peak lists is aligned by the proposed
algorithms, the peak pairs with mass spectral similarity
greater than the cut-off value p are retained and the rest
of peak pairs are discarded. The means and standard
errors (SEs) of TPR, PPV, and F1 score for all the cases
of each peak alignment method are estimated for the
purpose of performance comparison. The results of this
estimation are given in the Additional File 2.

Homogeneous GC x GC-MS pairwise peak alignment

The proposed algorithms and DISCO algorithms were
implemented for homogeneous GC x GC-MS data to
examine their performance of the peak alignment. In
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this case, the two homogeneous GC x GC-MS data were
utilized for the comparison analysis. One is the mixture
of compound standards composed of 10 datasets of 5°C/
min (its run id is from S1 to S10 as shown in Table 1)
and the other is the spiked-in metabolite sample
extracted from rat plasma, which is composed of 5 data-
sets (its run id is from C1 to C5 as shown in Table 1).
The performance was compared based on the true posi-
tive rate (TPR), the positive predictive value (PPV), and
the F1 score as described in the Method section. Since
the performance of all the peak alignment algorithms
here depends on the cut-off values determined by users,
a total of 13 values were used for p, which are 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.93, 0.95, 0.97, and 0.99,
to examine its effect on the peak alignment.

Figure 1 shows the performance of the peak alignment
for the first data set based on TPR and PPV. It should
be noted that the larger are TPR and PPV, the larger is
Fl score. Thus, as Fl score (or TPR and PPV) is larger,
the performance of peak alignment becomes better. All
the methods, SWRM, SWRE, SWRME, and DISCO,
have their maximum Fl score when p = 0.8 (as also
shown in Figure S2 (a) in the Additional File 1). Of
these four peak alignment algorithms, the SWRME
method has the highest Fl score, but it is not signifi-
cantly different from these of SWRM and SWRE when
p = 0.8 (Fl score: SWRM = 0.9455 + 0.0047; SWRE =

0.9457 + 0.0048; SWRME = 0.9461 * 0.0047).
4+ p=08
&
o
w0
x S p=0s9 )
& ¥~p=0.1
p=08
< | p=0.6—
o x x
—— SWRM p=o,1/' X
-&- SWRE !
o |t SWRME ']
& - DIsco =099 x
T T T T
0.85 0.90 0.95 1.00

PPV

Figure 1 The effect of cut-off values, p, in case of
homogeneous data (Compound standards data). The true
positive rates (TPR) versus the predictive positive values (PPV) are
plotted. The performances of four different methods, SWRM, SWRE,
SWRME, and DISCO, are compared according to the thirteen
different values, (0.1, 0.2, 0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9, 0.93, 0.95, 0.97,
0.99). The maximum F1 scores are occurred at p = 0.8 for all the
methods.
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Interestingly, the Fl score of DISCO is significantly less
than these of the proposed methods (Fl score = 0.8777
+ 0.0055). The maximum TPR is occurred when p = 0.4
in case of the proposed methods and, when p = 0.6,
DISCO has the highest TPR (TPR: SWRM = 0.9245 +
0.0059; SWRE = 0.9244 + 0.0059; SWRME = 0.9251 +
0.0058; DISCO = 0.8013 + 0.0078).

Figure 2 summarizes the TPR and PPV of the four
alignment algorithms using the spiked-in sample data.
In this case, the maximum F1 scores are occurred when
p = 0.9 for all the peak alignment methods (as also
shown in Figure S2 (b) in the Additional File 1). Like-
wise, all the three proposed methods show the similar
performance to each other in terms of F1 score, while
DISCO performs worst as depicted in Figure 2 (F1
score: SWRM = 0.5512 + 0.0236; SWRE = 0.5526 +
0.0184; SWRME = 0.5404 + 0.0320; DISCO = 0.4821 +
0.0121). The F1 scores of the proposed methods are
similar to each other up to the point p = 0.9. However,
when p is greater than 0.9, SWRM shows the better per-
formance than SWRE and SWRME.

Differently from the previous data, DISCO performs
better than the proposed methods when p goes to 1. In
addition, as p increases, the PPVs of SWRE and
SWRME methods decrease when p is near 0.95. The
detailed information of the performance of these two
data can be found in the Additional File 2.

In general, SWRM aligns the peak lists of both homo-
geneous data with higher F1 scores than other methods,

TPR

PPV

Figure 2 The effect of cut-off values, p, in case of
homogeneous data (Spiked-in data). The true positive rates (TPR)
versus the predictive positive values (PPV) are plotted. The
performances of four different methods, SWRM, SWRE, SWRME, and
DISCO, are compared according to the thirteen different values, (0.1,
0.2, 03,04, 0.5, 06, 0.7, 0.8, 0.9, 0.93, 0.95, 0.97, 0.99). The maximum
F1 scores are occurred at p = 0.9 for all the method.
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and its F1 score is significantly different from that of
DICSO. However, it seems that DISCO is less sensitive
to the choice of the cut-off value, p, than the proposed
methods since the distributed region of it performances
is much narrower than these of the proposed SW-based
algorithms as shown in Figures 1 and 2 (also as shown
in Figure S2 in the Additional File 1).

Heterogeneous GC x GC-MS pairwise peak alignment

Figure 3 summarizes the performance of the peak align-
ments when applied to the heterogeneous data. In order
to construct the pairs of the heterogeneous data, we
used the three chromatogram sets generated from the
different temperature gradients - 5°C/min (run id:
S$1~S10), 7°C/min (run id: S11~S12), and 10°C/min (run
id: S13~S16) - by considering one as a target sample
and the other as a reference sample. Similar to the
homogeneous data of a mixture of compound standards
analyzed at 5°C/min, the proposed methods outperform
against DISCO in terms of maximum F1 scores (maxi-
mum F1 score: SWRM = 0.8937 + 0.0032; SWRE =
0.8945 + 0.0036; SWRME = 0.8937 £ 0.0035; DISCO =
0.7505 + 0.0057) when p = 0.9 for SW-based algorithms
p = 0.7 for DISCO and as shown in Figure S2 (c) in the
Additional File 1. The F1 scores of DISCO are distribu-
ted in a smaller region than those of the proposed
methods as the peak alignment with homogeneous data.
Overall, the peak alignment of the heterogeneous data is

0.8
1

0.8
1

TPR

—e— SWRM
-&- SWRE A
-+ SWRME .
- - DISCO 02099 > %

T T T T T T T

070 075 080 085 020 0985 1.00

PPV

Figure 3 The effect of cut-off values, p, in case of
heterogeneous data (Compound standards data). The true
positive rates (TPR) versus the predictive positive values (PPV) are
plotted. The performances of four different methods, SWRM, SWRE,
SWRME, and DISCO, are compared according to the thirteen
different p values, (0.1, 0.2, 0.3, 04, 0.5, 0.6, 0.7, 0.8, 0.9, 0.93, 0.95,
0.97, 0.99). The maximum F1 scores are occurred at p = 0.9 for SW-
based methods and p = 0.7 for DISCO.

0.6
1
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improved by the proposed methods. It should be noted
that the proposed methods do not need landmark peaks
and retention time transformation for correcting the
position of the peaks, while DISCO uses a local linear
fitting method along with a z-score based transforma-
tion by the landmark peaks.

The likelihood-based optimal pairwise peak alignment

In order to optimize the peak alignment in terms of F1
score, two likelihood functions, the sum of all the simi-
larity scores of the aligned peak pairs (LS) and the pro-
duct of all the similarity scores (LP), were designed to
reflect the information of F1 score. LS and LP are
defined as follows:

k
(X YIpiq) = 3 S(iy);
k
Ip(X,Ylp,q) = H S(xi, yi)

where p is the cut-off value, ¢ is the index of the
method used: g = 1 for SWRM, ¢q = 2 for SWRE, and ¢
= 3 for SWRME, and x; and y; are the ith pair of the k
aligned peak pairs, 1 < i < k min (m, n), |X| = m, |Y| =
n given p and q.

To study which of these two likelihood functions has
the information enough to be an alternative measure of
F1 score, we calculated Pearson’s correlation coefficients
between these two likelihoods and the F1 scores esti-
mated from the homogeneous and heterogeneous data
using the proposed three peak alignment methods.
Table 2 and Figure 4 summarize these correlations as
well as their p-values. Theoretically, as the performance
of the peak alignment becomes better, LS and LP are
increased, suggesting that the correlation with F1 score
should be positive for both LS and LP. However, LP was
always negatively correlated with F1 score while LS was
positively correlated (Table 2 and Figure 4). For this rea-
son, the LS-based likelihood function was used as a sur-
rogate measure of F1 score.

An optimal version of the proposed peak alignment
methods was then implemented using the LS-based like-
lihood function. In detail, the optimal version first esti-
mates the optimal choice for the cut-off value and the
alignment method from the three proposed methods -
SWRM, SWRE, and SWRME - based on the likelihood
function, LS:

(p,q) = argmax, 41s(X, Y|p, q)

where p is the cut-off value; ¢ is the index of the
method; ¢ and g are the optimal version. Then the
pairwise alignment is rendered based on the optimal
cut-off value, g, and the selected alignment method, g.
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Table 2 The correlations between F1 score and the likelihood functions.

Homogeneous Heterogeneous
Compound standards Spiked-in Compound standards
LS LP LS LP LS LP
SWRM 0.5501 (0.0515 -0.9393 (0.0000) 04525 (0.1205) -0.5951 (0.0319) 0.6849 (0.0098) -0.7622 (0.0025)
SWRE 0.5537 (0. 0496) -0.9561 (0.0000) 0.6015 (0.0297) -04515 (0.1214) 0.6947 (0.0084) -0.7812 (0.0020)
WRME 0.5494 (0.0518) -0.9389 (0.0000) 0.7034 (0.0073) -0.3612 (0.2252) 0.6715 (0.0120) -0.7812 (0.0016)

The Pearson'’s correlation coefficients are calculated between F1 score and the two likelihood functions, the sum of the similarity scores (LS) and the product of
the similarity scores (LP), for each method of the proposed peak alignment algorithms, SWRM, SWRE, and SWRME, on two homogeneous data and one
heterogeneous data which were generated from a mixture of compound standards and the spiked-in data. The correlations in bold and italic are statistically
significant at 5% level (p-value < 0.05) and the values in parentheses are p-value.
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Figure 4 The scatter plots between F1 score and the likelihood functions. The upper row is the relationships between the sum of similarity
(LS) and F1 score and, in the bottom row, the product of similarity (LP) and F1 score are depicted using compound standards homogeneous
data (first column), spiked-in homogeneous data (second column), and compound standards heterogeneous data (last column). In each plot, the
black circle and solid line are for SWRM method, the red triangle and dashed line for SWRE method, and the green plus (+) and dotted line for
SWRME method. The lines represent the linear regression fitting.
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Based on the algorithm described above, we tested the
pairwise peak alignment for two homogeneous and one
heterogeneous data. Table 3 shows the maximum and
optimal F1 scores for the pairwise peak alignment to
compare the performance of the optimal versions. Com-
pared with the proposed SW-based methods, F1 scores
of the optimal versions are less but their differences are
small. Furthermore, the optimal versions significantly
outperform against DISCO as shown in Table 3.

Discussion

Our goal is to develop an improved peak alignment
algorithm for both homogeneous and heterogeneous GC
x GC-MS data. To achieve this, we adapted the Smith-
Waterman local alignment algorithm by modifying its
traceback procedure. In addition, we established an opti-
mal version of the SW-based peak alignment algorithms
using the sum or product of similarities of aligned peaks
as the likelihood function.

Comparing with the only published algorithm DISCO
for both homogeneous and heterogeneous peak align-
ment on the GC x GC-MS data, the proposed algo-
rithms have several differences on aligning the peaks.
First, the distance information is not utilized directly in
the proposed algorithms, while it plays an important
role in DISCO to find the best matched peak pairs.
Instead, the proposed approach assumes that the elution
order of compounds in the two dimension GC column
remains the same across different experiments. This
assumption can be a potential issue on the SW-based
algorithms since several studies addressed that relative
component elution may be affected by temperature and
temperature program used [27]. In fact, we observed
that when the SW-based methods were applied to the
spiked-in sample data, which are much more compli-
cated than the compound standards data, the perfor-
mance were decreased rapidly. Despite this potential
issue, the F1 scores of the SW-based methods even for
the spiked-in sample are greater than those of DISCO
as shown in Table 3. Nevertheless, some metabolite
peaks may not be aligned due to the assumption of con-
stant elution order in the two dimension GC columns.
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Recently, Mommers and his colleagues [28] introduced
the retention time locking (RTL) procedure for the GC
x GC-MS experiment, resulting in minimizing the
retention time shifts for both dimensions. The SW-
based algorithms may be less suffered from the modified
elution orders if the comprehensive two-dimensional
GC experiments are rendered together with RTL.

Second, DISCO needs to find the landmark peak for
estimation of the local linear fitting to correct the reten-
tion times. As a result, the quality of the landmark will
influence the performance of the peak alignment of
DISCO.

Third, no retention time transformation is required in
the SW-based peak alignment algorithms. In case of
DISCO, once the landmark peaks are selected, the local
linear fitting is estimated based on the selected land-
mark peaks. Therefore, if the retention time shift of the
landmark peaks could not accurately reflect the reten-
tion time shift of the other metabolites, the local linear
fitting will not be able to accurately determining the
true retention time shift and result in poor performance
of the peak alignment.

The proposed algorithms are free from these difficul-
ties since any transformation and the landmark peaks
are not involved. For instance, Figures S3 to S6 in the
Additional File 1 display the pairwise alignments for
homogeneous and heterogeneous chromatograms of the
compound standards data using the SW-based algo-
rithms and DISCO with the pairs of the peak list, (S,
S§10), (S1, S11), (S1, S13), and (S11, S13), where SN is
the run id as described in Table 1. While DISCO
aligned the peak pairs after correcting the retention
times in Figure S5, the SW-based methods aligned the
metabolite peaks without correcting the retention times
and employing any transformation. Nevertheless, the
proposed SW-based methods clearly performed better
than DISCO in terms of F1 scores, demonstrating the
advantage of the proposed approaches. The detailed
results of these peak alignments can be found in the
Additional File 3.

The proposed methods obviously prevail against
DISCO for both of homogeneous and heterogeneous

Table 3 The maximum and optimal F1 scores of the pairwise peak alignment

SW-based methods

SWRM SWRE SWRME DISCO Optimal version LS
Compound 0.9455 0.9457 0.9461 08777 0.9449
standards (0.0047) (0.0048) (0.0047) (0.0055) (0.0048)
Homogeneous Spiked-in 0.5512 0.5526 0.5404 04821 04437
(0.0236) (0.0184) (0.0320) (0.0121) (0.0130)
Heterogeneous Compound 0.8937 0.8945 0.8937 0.7505 0.8894
standards (0.0032) (0.0036) (0.0035) (0.0057) (0.0045)

The maximum F1 scores are estimated for three proposed SW-based methods (SWRM, SWRE, and SWRME) and DISCO, and the optimal F1 scores for the optimal
version (LS) of the proposed SW-based methods on two homogeneous and one heterogeneous data. The values in parentheses are standard errors.
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data in terms of the maximum F1 score as seen in Fig-
ures 1 to 3. DISCO seems to be less sensitive to the
cut-off values of the similarity than the SW-based algo-
rithms, however, since its TPR and PPV spanned a nar-
rower range. This is because the role of the cut-off
value is different for each method. That is, in DISCO,
the cut-off value is used to construct the similarity-
based window for the variation in the similarity. Then
the peak pair with the smallest distance is chosen as the
best matched peak. On the other hand, the SW-based
methods take advantage of the cut-off values for build-
ing the similarity function w(i, j) as shown in Equation
(2). Namely, as the cut-off value p decreases, the num-
ber of matched peak pairs increases since a peak pair is
considered as the peaks originated from the identical
compound if their spectral similarity score is greater
than p. That may be the reason that the SW-based
methods are much more sensitive to the cut-off value
than DISCO since the cut-off value of DISCO is used
only to construct the variation window.

In order to ensure the best performance of the align-
ment, users have to choose an optimal cut-off value for
the mass spectral similarity. In reality, it is not easy to
find the optimal cut-off value since the optimal value
can be data specific. For example, the optimal cut-off
value was 0.8 for the compound standards homogeneous
data and 0.9 for the spiked-in sample. To overcome this
limitation, an optimal version of the SW-based algo-
rithms was established for the automatic peak align-
ment, where the optimal alignment is established based
on the associated likelihood function. In general, the
optimal version has the similar performance to the pro-
posed SW-based algorithm and the better performance
than DISCO as depicted in Table 3. However, in case of
the spiked-in sample, DISCO performed better that the
optimal version although the SW-based methods pre-
vailed against DISCO. This may indicate that the likeli-
hood solely with the spectral similarity can recover only
partial information of F1 score. Therefore, we may need
to incorporate other information such as peak distance
into the likelihood for better performance.

Conclusions

We propose novel peak alignment algorithms capable of
aligning both homogeneous and heterogeneous metabo-
lite peaks from GC x GC-MS experiments. Furthermore,
we established an automated optimal peak alignment for
the proposed algorithms using the likelihood function
derived from the sum of the similarities of the aligned
peaks. We then demonstrated that the proposed
approaches performed better than the existing algorithm
DISCO. The main advantage of the proposed
approaches is that it can align metabolite peaks for both
homogeneous and heterogeneous GC x GC-MS data
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without the transformation of retention times and the
selection of landmark peaks.

Additional material

Additional file 1: Figures S1, S2, S3, S4, S5, and S6 are in this file.
The density and scatter plots of the two data are depicted in Figure S1.
Figure S2 displays F1 scores over the different cut-off value, p. The
homogenous and heterogeneous peak alignments are plotted for four
pairs of compound dataset in Figures S3, $4, S5, and S6 for each peak
alignment method.

Additional file 2: The results of the pairwise peak alignment for
each alignment method are in this file. The TPR, PPV, and F1 score are
reported for four peak alignment algorithms including DISCO according
to the different cut-off values applied on the homogeneous and
heterogeneous two-dimensional GC data.

Additional file 3: The compound names aligned by the proposed
methods and DISCO for Figures S3, S4, S5, and S6.
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