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Abstract

Background: The binding between the major histocompatibility complex and the presented peptide is an
indispensable prerequisite for the adaptive immune response. There is a plethora of different in silico techniques
for the prediction of the peptide binding affinity to major histocompatibility complexes. Most studies screen a set
of peptides for promising candidates to predict possible T cell epitopes. In this study we ask the question vice
versa: Which peptides do have highest binding affinities to a given major histocompatibility complex according to
certain in silico scoring functions?

Results: Since a full screening of all possible peptides is not feasible in reasonable runtime, we introduce a
heuristic approach. We developed a framework for Genetic Algorithms to optimize peptides for the binding to
major histocompatibility complexes. In an extensive benchmark we tested various operator combinations. We
found that (1) selection operators have a strong influence on the convergence of the population while
recombination operators have minor influence and (2) that five different binding prediction methods lead to five
different sets of “optimal” peptides for the same major histocompatibility complex. The consensus peptides were
experimentally verified as high affinity binders.

Conclusion: We provide a generalized framework to calculate sets of high affinity binders based on different
previously published scoring functions in reasonable runtime. Furthermore we give insight into the different
behaviours of operators and scoring functions of the Genetic Algorithm.

Background
Antigen presenting cells (APCs) present peptides via
their major histocompatibility complex (MHC) to T cell
receptors (TCRs) of T cells which play an essential role
in the adaptive immune system [1]. Before any recogni-
tion between T cell and APC can take place the pep-
tides need to be processed within the APC and
afterwards presented in a stable way on the cell surface
of the APC. For most of these steps ample prediction
methods exist [2-5]. In this context the binding predic-
tion between MHC and the presented peptides is usually
referred as T cell epitope prediction. In a usual work-
flow one wants to test different peptides or even possi-
ble fragments of a whole protein for its binding affinity
to a given MHC. After this rough pre-selection step the

most promising candidates are then tested in wet-lab
experiments for their definitive binding affinity and
applicability. The success rate of these approaches is dis-
cussed abundantly in the literature: While it is known
that there is still much space for improvement of B cell
epitope prediction methods [6] and that MHC class I T
cell epitope prediction works quite well [2,7-9], the
opinions on the success of MHC class II T cell epitope
prediction differ. Various reviews conclude that it lacks
reliability [10-13], though others are more enthusiastic
about the results obtainable with MHC class II predic-
tion tools [3].
While most methods are sequence-based and it is gen-

erally believed that sequence-based approaches are more
successful [8], there were also some structure-based
approaches reported [14]. They range from molecular
dynamics (MD) methods [15-17] over quantitative struc-
ture-activity relationship (QSAR) [18] methods to
empirical scoring methods [19-21].
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By contrast, when asking the question vice versa the
scientific challenge changes: One does not want to test a
specific set of peptides for their binding affinities, but
knows a specific MHC allele and wants to determine a
set of peptides which have a very high binding affinity
to this MHC allele. Applications could be found for
example in peptide immunotherapy (PIT), in allergy
[22-24], cancer therapy [25], or peptide vaccines [26] by
indentifying altered peptide ligands with favourable
properties for the respective purpose.
Given the fact that for MHC class I 209 and for MHC

class II 2018 or even more different peptides exist, it is
obvious that not each individual peptide can be tested.
This limitation also includes in silico techniques since
even if we assume that modern computers can test 10
peptides per second it would still take more than 1 600
years (209/(10×60×60×24×365)) to predict the binding
affinity for all theoretically possible peptides binding to
one single MHC class I allele. The runtime would
further increase if the effect on the interaction between
peptide/MHC (pMHC) and TCR would additionally be
predicted.
Several approaches to address the challenge of optimi-

zation for pMHC/TCR interaction were reported: In
early methods Alexander et al. employed the main
HLA-DR anchors to increase the peptide/MHC binding
affinity as well as the use of bulky and charged residues
to increase T cell recognition [27,28]. Shang et al. used
computational alanine scanning to indentify hotspots
which were then systematically substituted and scored
to optimize a tumor immunodominant epitope [29].
Also for the peptide and MHC interaction several
approaches were reported: Reche et al. published a web-
server for the formulation of multi-epitope vaccines
[30]. Toussaint et al. developed a mathematical frame-
work on the basis of integer linear programming to
obtain good candidates for epitope-based vaccines. In
this context they define good as a combination of muta-
tion tolerance, allele coverage, antigen coverage, and
antigen processing [31]. Contrary, Parker et al. imple-
mented an optimization algorithm to find point muta-
tions to reduce the immunogenicity of a protein while
maintaining stability and function [32]. Lazar et al. pre-
sented an optimization approach for antibody humani-
zation [33]. Bhasin et al. reported quantitative matrices
on the basis of binding and non binding peptides sets
[34]. Similarly, in the studies of Doytchinova et al. and
Walshe et al. the preferred amino acids for peptide posi-
tions were selected based on experimental data sets.
This leads to a set of a few hundred peptides which
were then evaluated in silico and experimentally [35,36].
Guan et al. reported amino acid descriptors to charac-
terize the interaction between peptide and MHC. On

this basis of the defined binding model high-affinity bin-
ders were designed [37].
However, in these approaches the search space for

optimal binders is frequently reduced by an initial
selection of preferred amino acids for several positions.
Given this limitation and the fact that the total search
space would be 209 combinations we propose the use
of a Genetic Algorithm (GA) to be able to investigate
the whole search space in justifiable runtime. Hereby
the task reformulates to finding the most efficient and
reliable modes of GAs. Hence, we implemented a fra-
mework “PeptX” for optimizing GAs for the prediction
of sets of peptides with high binding affinities within
reasonable runtime. By means of the framework
“PeptX” we evaluated which combination of para-
meters and operators yields the most rapid conver-
gence of the GA towards a set of high binding affinity
peptides.
It is not the major aim of this study to compare differ-

ent scoring functions since this issue was already
addressed several times in the recent literature e.g.
MHC class I [9,38-41] and MHC class II [3,10-13]. Even
a “machine learning in immunology competition” was
organized for this purpose (http://www.kios.org.cy/
ICANN09/MLI.html). Since there is already a plethora
of benchmarks for prediction methods our study is
focused on a generalized approach on how to predict
huge sets of high affinity binders on the basis of these
previously published methods.

Methods
We implemented the C++ framework “PeptX” for GAs
to optimize a set of peptides for MHC binding and
tested it for HLA-A*02:01. We implemented the whole
framework in an object-oriented way which makes it
easily maintainable and extendable. The workflow of the
GA is illustrated in Figure 1 and described in detail in
the subsequent sections.

Initialization of random start generation and removal
of identical individuals
We generated a random set of peptides as initial genera-
tion. Each individual consisted of a string of 9 charac-
ters, each of them representing one position in the
peptide. Therefore, we randomly selected for each posi-
tion in the peptide one of the 20 essential amino acids.
To avoid too dominant individuals (genetic drift) we
purged the whole population from identical peptides at
each generation. The removed individuals were replaced
by new random ones. This purging step ensures that the
algorithm will not get stuck in a local optimum and the
genetic diversity will remain over the whole runtime of
the GA.
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Fitness evaluation of the individuals
In the next step we assigned a fitness value to each of
the peptides by employing a scoring function for pep-
tide/MHC binding. We utilized the following sequence-
based scoring functions: Immune Epitope Database
(IEDB) [42], SYFPEITHI [43], SVMHC [44], SVRMHC
[45]. Additionally, we employed the structure-based
scoring function XScore [46] in combination with the
threading technique of SCATD [47] for the construction
of the 3D peptide/MHC model. This combination was
found most appropriate for structural peptide/MHC
binding predictions [40,48].

Selection of parent individuals
Individuals were selected as parents for the next genera-
tion based on the previously described fitness evaluation.
We implemented 7 different selection methods accord-
ing to the literature which are briefly summarized in the
following. For details of the single algorithms we refer
to [49-51]:

1. Proportional (roulette wheel) selection: To each
individual an area on a roulette wheel is assigned
depending on its fitness value. Individuals with
higher value have a higher probability to be selected
than individuals with lower fitness value.

2. Linear rank selection: The individuals obtain a
rank in correspondence to their fitness value. The
selection is performed on the basis of this rank.
3. Binary tournament selection: Two randomly
selected individuals compete for their selection
where the one with the higher fitness value wins
without any other stochastic influences.
4. Random selection: The individuals are selected in
a completely random way.
5. Best percent selection: The n best percent of the
population are chosen straight forwardly.
6. Q-tournament selection: All individuals participate
in q tournaments, where the individuals with the
most victories are selected.
7. Stochastic universal sampling: Similar to the pro-
portional selection, every individual obtains a seg-
ment on a roulette wheel according to its fitness
value. However, it is turned only one time with n-
balls where n is the number of individuals in the
population.

Recombination (crossover) of parent individuals
To recombine the previously selected parent individuals
we implemented 6 different crossover operators accord-
ing to [51,52]:

1. Single point crossover: The amino acid sequence
of parent 1 (P1) and parent 2 (P2) are cleaved at one
randomly chosen position. The four parts of P1 and
P2 are recombined at the cleavage point in a way
that each child contains one part of P1 and the
other part of P2.
2. Double point crossover: P1 and P2 are recom-
bined at two randomly chosen positions.
3. Distance bisector crossover: P1 and P2 are recom-
bined in the middle (e.g. for MHC class I: position 5
of the peptide).
4. Multi point crossover: P1 and P2 are recombined
at r randomly chosen positions where r itself is also
a random number (r ≤ 9).
5. Uniform crossover: Related to the multi-point
crossover, however, each position within the
sequence obtains a randomly assigned probability for
recombination. If this probability exceeds a certain
threshold, a recombination at this position occurs.
6. Shuffle crossover: Similar to the double point
crossover P1 and P2 are recombined at two ran-
domly selected positions. However, before recombi-
nation the amino acids are shuffled in both
parents. After recombination the amino acids are
unshuffled.

Figure 1 Workflow of the GA.
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Mutations in the offspring
To maintain genetic diversity we performed mutations
on each offspring generation. For this purpose we
implemented 2 different operators [51]:

1. “Single point amino acid mutation": One amino
acid is substituted randomly by another amino acid
which belongs to another amino acid class (unpolar,
polar, basic, or acid).
2. “Single point nucleobase mutation": A mutation is
introduced in the triplet of the genetic code. Stop
codons are avoided.

We applied the mutation with a probability of 3% for
each amino acid position.

Stop criterion
Although it turned out that the most reasonable combi-
nations of parameters let the GA converge much earlier
(see result section) we always simulated 50 generations,
so as to allow for comparability between the different
parameterizations.

Results and Discussion
Operators and their combinations
In total we evaluated 7 selection operators, 6 recombi-
nation operators, 5 fitness functions, and 2 mutation
operators in all possible combinations. This yields 420
(7 × 6 × 5 × 2) independent runs of the GA. In each
run we calculated 50 generations, each generation con-
sisting of 100 individuals (peptides). Therefore, in total
we performed 2 100 000 (420 × 50 × 100) different pep-
tide evaluations. The results are illustrated in Figure 2
and will be summarized in the subsequent sections
grouped by selection operator, recombination operator
and scoring function. Since Figure 2 contains a plethora
of data we additionally depict several numerical details
of these data in additional file 1.

Selection operators have a strong influence on the
convergence
It can be seen that most operator combinations work well
and converge within the first 10 to 20 generations. How-
ever, there are a few exceptions: Obviously, a random
selection does not improve fitness in an evolutionary

Figure 2 Median fitness score of the individuals over generations. For each generation we calculate the median of the fitness scores of the
100 individuals per generation. At generation 1 the individuals are random while at generation 50 the individuals should be optimized according
to the corresponding scoring function: (a) IEDB, (b) SYFPEITHI, (c) SVRMHC, (d) SVMHC and, (e) XSCORE. For all scoring functions except IEDB the
optimum is a maximum (higher values indicate a higher binding affinity, e.g. pIC50-value). In IEDB the optimum is a minimum (lower values
indicate a higher binding affinity, e.g. IC50-value). The selection operators are grouped by colour while the recombination operators are grouped
by marker symbols. Only the data for the “single point amino acid mutation” is shown.
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process. We included this operator only as negative
control. Additionally, the roulette wheel selection
operator is, in its basic implementation, not able to
generate enough evolutionary pressure to lead the
population to convergence. This can be explained by
the fact that, in the present setting, the whole roulette
wheel was divided into small sections for each indivi-
dual where the area of the section is proportional to
the fitness value. The theoretical maximum for IC50
values is at around 50 000 while binding peptides
usually have IC50 values below 500. Therefore, the
area for a binding individual is not much larger than
for non binders closely above 500. These proportions
of the roulette wheel seem to hamper the evolutionally
pressure on the population. A possibility to improve
the performance of the roulette wheel selection opera-
tor would be a transformation of the distribution of
the IC50 values. In contrast, the best percent selection
usually converges fastest, however, it seems that the
genetic pressure is too strong and the population loses
the genetic diversity after reaching a certain optimum
and cannot deal with the random mutations and
removal of identical individuals anymore. Therefore,
after a very fast convergence of the best percent selec-
tion between generation 1 and 10 the results are
becoming worse between generations 10 and 20. Quite
good results are usually achieved by the tournament
selection operators. Although they are converging
slightly slower than the best percent selection, they
reach a better and more stable optimum.

Recombination operators have minor influence on the
convergence
The influence of recombination operators on the con-
vergence of the population is limited. The results
strongly depend on the interaction with the selection
operator. There are examples for a good convergence as
well for a bad one for nearly each of the recombination
operators. The only exception is the distance bisector
cross over whose convergence is never among the top
performers. This result was to be expected since if the
peptide is always cleaved exactly in the middle it takes
much longer to find the global optimum.

Different mutation operators did not have a significant
influence on the population
The usage of “single point amino acid mutation” versus
“single point nucleobase mutation” method did not
influence the convergence of the populations. Operators
converging with the “single point amino acid mutation”
did also converge with the “single point nucleobase
mutation”. The same also applies for non converging
operators. Hence, we show only the data for the “single
point amino acid mutation” in Figure 2.

Different scoring functions lead to diverse sets of
optimized peptides
The most severe influence is created by the scoring
function used for the calculation of the fitness values.
Although it is not purposeful to compare the conver-
gence between different scoring functions, it is interest-
ing to investigate individuals which are predicted as
optimal for HLA-A*02:01 by different scoring functions
(see Figure 3). In the subsequent paragraphs they are
discussed and compared to experimentally known
anchor residues determined by Falk et al. [53]. These
residues are described in the SYFPEITHI [43] database
as L or M for position 2, L or V for position 9, and V as
auxiliary anchor for position 6.
IEDB
At positions 1, 7, 8 and 9 the scoring function exhibits a
clear preference for one specific amino acid. The pre-
ferred residues for the anchor positions 2 and 9 are in
agreement with the experimental data. In contrast, the
algorithm also proposed Q, a rather polar amino acid,
for position 2. Furthermore, it is noteworthy that there
is a tendency towards amino acids with a higher Van-
der-Waals volume. The consensus sequence would exhi-
bit a volume of 1 194 Å3.
SYFPEITHI
The SYFPEITHI scoring function tends to prefer small,
polar, and apolar amino acids while retaining a rather
low background noise. The anchors at positions 2, 6
and 9 are clearly the same as described in the literature,
however, this is not surprising since the SYFPEITHI
database is partly based on the data of Falk et al. [53].
The Van-der-Waals volume of the consensus sequence
is 877 Å3.
SVRMHC
This scoring function exhibits a rather promiscuous
impression. There is no strong preference for a single
residue. However, also here L and M are strong at posi-
tion 2 while L and V are present in position 9. Besides,
most of the remaining top performing residues for posi-
tion 9 fall into the same class as V or L. The Van-der-
Waals volume of the consensus sequence is 1 066 Å3.
SVMHC
While most of the time the SVMHC scoring function
prefers one single very dominant amino acid per posi-
tion, the algorithm shows almost never a clear “second
place”. One residue dominates and the remaining ones
are more or less random. Interesting is that at position
3, the algorithm mixes an apolar (W) residue with a
charged one (H). Despite this fact, there arises a pattern,
because both amino acids carry aromatic residues that
seem to be important for position 3 according to
SVMHC. Also the other algorithms, with the exception
of SYFPEITHI, support this preference. The consensus
sequence of SVMHC matches the experimental anchor
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residues. However, V at position 6 is not present. The
Van-der-Waals volume of the consensus sequence is 1
017 Å3.
XSCORE
XSCORE shows a strong tendency to assert high scores
to big, hydrophobic amino acids. The dominating resi-
due at position 1, 2, 3, 5, and 9 is W, whereas at posi-
tion 5 and 7 F and Y are preferred. The corresponding
consensus sequence would be repetitive and the prob-
ability of occurrence in the genetic code would be very
low. The consensus sequence yields a Van-der-Waals
volume of 1 331 Å3. The theoretical maximum (poly W-
peptide) for a nonamer would only be slightly above at
1 467 Å3. One explanation for this exceptional beha-
viour could be the fact that XSCORE is the only struc-
tural scoring function used. Results suggest that
XSCORE tries to fill the MHC binding groove as tightly
as possible.

Comparison of the optimized peptides with public
experimental data
One question which arises when having a look at the
optimized peptides is: Are the predicted peptides related
to training sets used by the respective scoring functions?
While this is an interesting question, it is hard to give a
definitive answer since even if the training data set is
given in the publication of the scoring function, it is
likely that the scoring function was re-calibrated with
new data in the meantime since publication. For this
reason we compared the resulting top 210 peptides
(7×6×5) with the 14828 experimental peptide binding
affinities available from the IEDB [54]. Interestingly, no
peptide was identical. Only 2 peptides had a Levensh-
tein-distance of 2. Those 2 peptides are experimentally
determined high affinity binders. All other peptides are
more different from the public data. This would suggest
that the scoring functions predict novel peptides by the

Figure 3 Sequence logos of the best individuals. Logos created by WebLogo [56] on the basis of the best individuals of generation number
50 of each operator combination grouped by scoring function: (a) IEDB, (b) SYFPEITHI, (c) SVRMHC, (d) SVMHC and, (e) XSCORE.
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use of the GA. However, as already mentioned above we
cannot guarantee that the scoring functions were not
trained on further “private” datasets.

Validation of the 5 consensus peptides via experimental
binding assays
Since a validation on the basis of existing public experi-
mental data was not possible we were able to find a co-
operation partner who tested our consensus peptides for
experimental peptide/MHC binding affinity. This was
done at the revision level of the manuscript hence it is
evident that the whole prediction was validated.
Although at first sight it seemed that the consensus

peptides will be difficult to synthesise because of the
multiple W and M residues, all peptides could be
synthesised experimentally. All 5 consensus peptides are
high affinity binders. The detailed results are shown in
Table 1.

Conclusion
We developed the framework “PeptX” for the evaluation
of different operators for GAs in the context of peptide/
MHC binding optimization. At the current time the
focus of this study is mainly on the information theore-
tical part and may not be directly applicable in the wet-
lab e.g. for questions like “what is the set of peptides
(from a relevant pathogen), that bind an MHC with
high affinity”. However, in a next step further applica-
tions can be found in peptide immunotherapy: One
wants to find high affinity binding peptides, but with
certain constraints in the sequence to avoid allergic
reactions (see Introduction).To be further able to
address this issue we evaluated different parameter-sets
of Genetic Algorithms in relation to MHC. On this
basis further studies with direct relation to the wet-lab
can be carried out.
The work most similar to our study was published by

Wisniewska and co-workers. They combined an ant col-
ony optimization algorithm with an artificial neural net-
work classifier to iteratively adapt octapeptides for MHC
class I stabilization [55]. However, to our knowledge our
study is the first study which investigates the operators

of a GA in relation to maximizing peptide/MHC bind-
ing affinity.
On the basis of our study we found two remarkable

characteristics in the evolutionary process of the indivi-
duals (peptides). Firstly, it is intriguing that although
selection operators have a strong influence on the con-
vergence of the population while recombination opera-
tors have only minor influence, most reasonable
operator combinations lead to convergence of the popu-
lation. Long before generation 50 an optimum for most
of the populations is found (see Figure 2). The fastest
convergence is usually achieved by the best percent
selection; however, the tournament selections often pro-
vide a slightly better optimized median score. Secondly,
the most crucial step is the choice of a scoring function
appropriate for the particular investigation. All other
operators have minor influence on what is finally found
optimal for binding to a specific MHC. Although there
are similarities between the consensus sequences of the
scoring functions (see Figure 3), one obtains different
sets of optimal peptides by each scoring function.
Hence, choosing a scoring function which is suboptimal
for the purpose of the respective study renders almost
all other parameters of the GA irrelevant. One should
choose the employed scoring function with caution on
the basis of previously published benchmarks (see Intro-
duction). However, the GA itself can be utilized with an
arbitrary scoring function and the convergence will
mainly depend on the parameters evaluated in this
study.
The PeptX framework is available for download

including C++ source code for Linux at http://www.
meduniwien.ac.at/msi/md/sourceCodes/peptX/peptX.
htm The download and usage is for free for academic
researchers.

Additional material

Additional file 1: Numerical details of individual operator
combinations. This file contains the numerical details of Figure 2. The
median value over the first 10 generations, the median value over the
last 10 generations, the maximum median, and the minimum median is
shown.
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