Intosalmi et al. BMC Bioinformatics 2011, 12:252
http://www.biomedcentral.com/1471-2105/12/252

BMC
Bioinformatics

Computational study of noise in a large signal

transduction network

Jukka Intosalmi'*", Tiina Manninen?, Keijo Ruohonen' and Marja-Leena Linne?"

Abstract

Background: Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random
manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In
order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational
analysis and modeling play an essential role in this demanding endeavor.

Results: We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-
activated protein kinase, phospholipase A2, and B isoform of phospholipase C networks. We simulated the network
in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results
in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern
parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on
the system volume. The simulation results also indicated that there are several kinds of noise processes in the
network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of
noise decreased on all frequencies when the system volume was increased.

Conclusions: We concluded that basic frequency domain techniques can be applied to the analysis of simulation
results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of
fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical
systems and its properties can be numerically studied by simulating the reacting system in different cellular
volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and,
as a result, accurate statistics can be obtained from computational studies.

Background

Noise plays an essential role in nearly all biochemical
systems. It derives from reaction events that are discrete
and occur at random times. The structure of a particular
biochemical reaction network (BRN) determines the way
the system evolves and defines the quality of noise
accordingly. Consequently, there exist several types of
noise processes which occur in these systems. Noise
induced effects can have both a quantitative and qualita-
tive impact on the behavior of a biochemical system [1].
Knowing the characteristics of noise processes would
help develop better models and understand the underly-
ing principles of the biological phenomena better.
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The effects of noise in biochemical systems have been
studied to some extent but the understanding of noise is
still rather deficient. A common misconception is that
noise is always a disturbing factor in a biological system.
Contrary to this popular belief, noise might in some
cases be the factor which keeps the system functioning
properly [2]. Noise can, for example, make the system
more robust to external perturbations or it might lead to
a specific behavior like noise-induced bistability with
oscillations [3]. The importance of noise has been
emphasized especially when the focus has been on the
signaling networks related to memory and learning or
gene regulatory networks (see e.g. [4-6]). The frequency
content of noise and its relation to the structure of gene
regulatory networks have also been studied recently
[7-9]. Computational methods and models are outstand-
ingly useful when stochastic effects and noise in BRNs
are studied. There exist several stochastic modeling
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formalisms that enable the time-evolution of BRNs to be
studied in theory and using computer simulations [10].
In the field of computational systems biology, the exact
Gillespie stochastic simulation algorithm (SSA) [11,12]
and its several variants are the most commonly used
stochastic simulation procedures. The drawback of the
Gillespie SSA is the computational burden that increases
when the number of interacting chemical particles in the
system increases. Several approximative simulation
approaches have been developed to decrease computing
times (see e.g. [13-15]). The conditions in which the
approximations are valid are, however, often hard to spe-
cify and this makes the selection of the simulation
method a demanding task. The computing times of exact
simulation procedures, such as the Gillespie SSA, can
also be decreased by applying parallel computing (see e.g.
[16]). This approach is especially attractive if, for exam-
ple, the statistical characteristics of a biochemical process
need to be estimated via simulation. In addition to simu-
lation procedures, there exist also non-simulative
approaches which can be used, for example, to numeri-
cally estimate noise levels (see e.g. [17]).

Besides the stochastic modeling and simulation of BRNSs,
computational methods are invaluable in the analysis of
biochemical data. The data, obtained from time-series
simulations or from laboratory experiments, can be
numerically studied both in the time and frequency
domain. Out of these two, the time domain analysis is the
traditional approach. Typical time domain statistics are
the mean, variance, autocorrelation, etc. which can be
used to characterize the behavior of time-series. Frequency
domain analysis, often used by engineers and physicists,
provides other kind of information about the system.
Using the frequency domain approach it is possible
to decompose a biochemical signal into its frequency
components and to study the magnitude of fluctuations at
different frequencies. Fluctuations, both random and
deterministic, are important in the functioning of biologi-
cal systems. Even simple BRNs can be selectively respon-
sive to specific frequency ranges [18,19]. The importance
of periodic changes in chemical concentrations being
widely known, it is surprising to notice that most simula-
tion studies do not provide even a rough survey of fre-
quency domain behavior. Some studies present analytical
results for the signal processing properties of BRNs (see
e.g. [18,19]) and the frequency domain characterization of
biochemical noise (see e.g. [8,9,20]). These approaches,
however, are often suitable only for linear or small net-
works, require an unbearable amount of calculations, or
have other restrictions.

In this study, we utilize a straightforward numerical
approach to explore noise in a biologically realistic BRN
using simulated data. We implement a large nonlinear
signal transduction network combining protein kinase C
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(PKC), mitogen-activated protein kinase (MAPK), phos-
pholipase A2 (PLA2), and 8 isoform of phospholipase C
(PLCP) networks. This BRN consists of 66 chemical spe-
cies and 110 one-way reactions. In general, stochastic
simulation of large networks of this kind is challenging
and thus several technical aspects have had to be taken
into account when implementing the network. The net-
work is originally published by Bhalla and Iyengar in
1999 [21] and its parts have been studied to some extent
using both deterministic and stochastic modeling meth-
ods [15,21-26]. In this study, we perform massive Monte
Carlo simulations for the large network by applying
parallel computing. As a stochastic simulation method
we use the exact Gillespie SSA. We run simulations alto-
gether in 300 different cellular volumes and compute the
time and frequency domain characteristics of the noise
processes for each volume. This kind of approach pro-
vides us with an overall picture of the noise in the system
as a function of system volume. We show how basic
frequency domain methods can be applied and what
advantages they have compared to the time domain
methods.

Methods

Stochastic modeling of BRNs

BRNs can be modeled using numerous different formal-
isms. To the modeler, a biochemical system can be per-
ceived as a container full of particles that have certain
sizes and velocities. When these particles (chemical
species) collide, they react with some probability and pro-
duce other species [27]. The well-established theory of
molecular dynamics describes how these chemical reac-
tions occur at the molecular level and, in principle, we
are capable of describing the dynamics of reacting species
in detail [27]. In real systems, however, the amount of
particles is large and it is impossible to track each and
every molecule. Based on the theory of stochastic chemi-
cal kinetics, these systems can often be assumed to be
well-stirred. This means that the particles are uniformly
distributed over the volume and, in order to understand
the time-evolution of the system, we need to keep track
only of the numbers of particles of each species [27].
Gillespie has done pioneering work in describing the
time-evolution of a well-stirred chemical system in terms
of continuous-time discrete-state Markov processes
[11,12]. He has also developed the formalism which
enables us to simulate the Markov model as a straightfor-
ward computer algorithm, nowadays known as the Gille-
spie SSA. By means of the simulation algorithm we are
able to generate realizations of the underlying stochastic
process. A sufficient number of independent realizations
can then be used to compute accurate statistical charac-
teristics describing the process [28]. In most of the cases,
it is impossible to obtain these characteristics analytically
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and, thus, simulation algorithms like the Gillespie SSA
provide us with invaluable tools. In the following, we
briefly recapitulate the theory behind the continuous-
time discrete-state Markov model and Gillespie SSA.

Stochastic processes having the so-called Markov
property (i.e. Markov processes) are by far the most
important in physics and chemistry [29]. The Markov
property states that the future behavior of the process
depends only on the current state of the system. In the
context of biochemical systems, this assumption can
often (but not always) be accepted and Markov pro-
cesses provide us with a well-established modeling form-
alism. In order to construct a Markov model for a
biochemical system, we need to introduce some termi-
nology. Let us consider a biochemical system consisting
of n chemical species X;, i = 1, ..., n, and m reactions R;,
j =1, .., m, and let X(¢) be a stochastic process describ-
ing the time-evolution of the system. Each reaction R; in
the system can be characterized by a propensity function
a;(X) so that a;(X)At gives the probability that the reac-
tion R; will occur during the finite time interval Az [11].
The propensity functions depend only on the current
state of the system and thus the Markov property is
satisfied. With each reaction event we associate the so-
called stoichiometric vector v;, so that when the jth
reaction occurs, the state of the system is updated by X
+ v;. In addition, we assume that the initial state of the
system X(£), ¢t = 0 is known.

Using the notation above, the system can be fully
characterized by a continuous-time discrete-state Mar-
kov process. By denoting the probability that the system
is in the state x at time ¢ given the system is in the state
Xo at time £, by p(x, £|x¢, %p) and assuming that only one
reaction can occur during dt, we can write

p(x,t +dt|xo, tp) =

p(x tixo, to) | 1= Y aj(x)dt | +
j=1 1)

Z p(x —vj, tIxo, to)aj(x — v;)dt.

j=1

Consequently, the time evolution of the probabilities
can be described by a set of coupled differential equa-
tions which can be written in the form

3P(X, t|Xo, to)

ot = Z[ﬂj(x—vj)p(x—vj, t1Xo, to)

j=1 (2)
—a;(x)p(x t|xo, to)],

where p(x, t|xo, to), a;, and v; are as described above
[27]. This equation is called the chemical master equa-
tion (CME).
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Based on the formalism described above, we can con-
struct the CME for any BRN of interest. The problem is
that the CME is analytically and even numerically
intractable. Although the solution of CME can in some
cases be solved or approximated (using e.g. the finite
state projection algorithm [30]), the numerical simula-
tion of the underlying Markov process is often practical.
The Gillespie SSA [11,12] is the most popular procedure
for this purpose. It can be derived from the CME with-
out additional assumptions or approximations and is
exact in that sense. A detailed derivation of the Gillespie
SSA can be found in the references [11,12,27].

The Gillespie SSA has proven to be useful in several bio-
chemical simulation studies, ranging from studies of gene
expression to stochastic ion channel dynamics (see e.g.
[31,32]). In some cases, however, the algorithm becomes
computationally heavy. This is the case especially if the
size of the system is large (i.e. the number of particles in
the system is large) and reactions occur more frequently.
In such situations, we have to consider approximations
which are usually based on the time-discretization of the
continuous-time process [27]. In this study, we simulate a
reaction network in which the numbers of molecules in
some chemical species are relatively small and thus the
approximations are not valid. Consequently, our simula-
tions are carried out using the exact Gillespie SSA. To be
able to run massive simulations in a reasonable time, we
apply parallel computing techniques.

Deterministic modeling of BRNs

In the previous, we have described how biochemical sys-
tems containing only small numbers of molecules can be
modeled in detail. Sometimes, however, random effects
may be neglected and simpler, deterministic models can
be used. When large chemical systems which contain
huge numbers of molecules are concerned, random fluc-
tuations tend to average out and the time-evolution of
the system can be modeled using a continuous-time con-
tinuous-state deterministic ordinary differential equation
(ODE) model. The traditional ODE model is based on
the law of mass action, and like Gillespie [27] has shown,
the model is asymptotically equivalent to the stochastic
model when the volume of system is increased. Accord-
ing to the law of mass action the dynamics of a chemi-
cally reacting system can be described by the equation

ax (1) _

3
it Su, (3)

where S is the stoichiometric matrix containing the
stoichiometric vectors as columns and the state-depen-
dent vector u describes the reaction rates. In this study,
the deterministic ODE model is used to determine the
deterministic steady-state of the system.
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Analyzing simulation results in time domain

Simulation results are traditionally analyzed in the time-
domain by computing the time-dependent sample mean
and sample standard deviation of a stochastic process
(see e.g. [15]). These characteristics are indeed useful as
we are dealing with stochastic processes related to bio-
chemical applications. Another useful statistical number
is the coefficient of variation which we use in this work.
The coefficient of variation can be computed using the
formula

o(t)

Vi = n()’

(4)

where o(¢) is the (sample) standard deviation of the
process and p(¢) is the sample mean. If the stochastic
process is stationary (i.e. its statistical properties do not
change in time), we can leave the time variable ¢ out.
The coefficient of variation provides us with the infor-
mation of how strong the noise is compared to the
mean level of the signal. In addition to the characteris-
tics mentioned above it is sometimes useful to study the
distribution of the process. Similar to the estimates for
the mean, variance, and coefficient of variation, the dis-
tribution of the process can also be approximated using
a large number of independent realizations. The
approximated distribution can then be illustrated for
example using histograms.

Analyzing simulation results in frequency domain
Although the time domain analysis often provides
important information about the biochemical system of
interest, it still gives quite a limited insight into the
(often non-linear) system. A broader view can be
obtained by combining the time domain analysis with
the frequency domain analysis. This approach provides
us with information about the fluctuations typical for
the particular system and the quality of noise arising
from molecular interactions in general. In the following,
we discuss frequency domain analysis, define terminol-
ogy, and present a straightforward way of obtaining a
rough approximation of the frequency domain behavior
of a biochemical system through numerical frequency
domain analysis.

The starting point for numerical frequency domain
analysis is sampling. This means that a continuous-time
signal c(f), o < t < oo, is sampled at discrete time points
nAt,n =0, £ 1, £ 2, .., and, as a result, we have a dis-
crete signal c[n]. The choice of the time step At (s)
determines how frequently the signal is sampled. The
reciprocal of the time step is called the sampling fre-
quency (denoted by F) and, in order to capture all
details of the original signal, it should be twice as much
as the fastest oscillation in the signal [33]. However, this
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requirement is difficult to fulfill when realizations gener-
ated by the Gillespie SSA are analyzed. The realizations
often contain rapid changes and thus the sampling fre-
quency would have to be unreasonably high. Based on
our numerical tests, however, the fastest changes usually
do not seem to have a lot of power and, as an approxi-
mation, we can content ourselves with a lower sampling
frequency. Pseudocode for our sampling algorithm is
given in Figure 1 and the operation of the algorithm is
exemplified in Figure 2. The algorithm enables us to
sample the signal so that the most rapid changes are
neglected.

After sampling, the signal is often down-sampled by
some factor in order to adjust the frequency range of the
frequency domain representation to the desired level. By
altering the sampling frequency and the length of the
time window (which is used to define a finite sequence
from the infinite signal), it is possible to extract different
kind of information from the signal. As biochemical sys-
tems often operate on various time scales, it is natural to
pay attention to the selection of frequency range. If low
frequencies are of interest, down-sampling of the signal
is required. Before down-sampling, the signal must be
low-pass filtered. Otherwise the high frequency fluctua-
tions will aliase on the other frequencies in the frequency
domain representation (for details see e.g. [33]). The fil-
tering can be carried out using any available low-pass fil-
ter. The MATLAB® function ‘decimate’ practically

Initialize a vector for samples
Y =[y1,Y2, -, Ynt1l;
Initialize indices
n=0;1=1;
Sample the signal z(t) and store values in y
while n < N do
Find the most recent change in concentration
before the current sample
while t; < T + nAt do
temp = x;;
1=1+1;
12:  end while
132 n=n+1;
14: y, = temp;
15: end while

© NSO R b

—
=]

Figure 1 Pseudocode for sampling algorithm. A biochemical
signal x(t) obtained from Gillespie SSA simulation can be
characterized using two vectors X = [y, X5, .., Xy ] and t = [ty, t5, ..,

ty 1. Time points t, i = 1, 2, .., M, define when the concentration has
changed and x;, i = 1, 2, .., M, describe the concentration within the
interval [t;, t+1), i=1,2, .., M -1. These vectors, as well as the

starting time for sampling (7), the number of samples (N), and the

time step (At), are given as parameters for the algorithm.
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Figure 2 Operation of sampling algorithm. The continuous-time signal representing the concentration of chemical species P is sampled using
the time step of 0.05 s (red dots) and of 0.25 s (blue circles). The small time step detects all details of the signal whereas the large time step
neglects rapid changes.
.

combines filtering and down-sampling and we highly
recommend it.

The most essential part of the frequency domain analy-
sis is the estimation of the actual frequency content of
the signal. The frequency content can be estimated using
a wide variety of methods. The methods include, for
example, the standard periodogram method, Blackman-
Tukey method, autoregressive model, maximum likeli-
hood method, etc. (for a review, see [34]). In this study,
we use the standard periodogram method as it is straight-
forward to implement and use. The standard periodo-
gram approach can also be easily modified to fit for
different kind of systems and it gives a good overall pic-
ture of the frequency domain behavior. If a more detailed
time-frequency representation of a chemical system is of
interest, one should use more advanced, non-stationary
data processing methods (for a review, see e.g. [35]).
Although these methods are more complicated to imple-
ment and use, they are in some cases required. The stan-
dard periodogram method is well-applicable if we are
dealing with a process which is approximately stationary
(at least within a suitably short time window).

The standard periodogram method is based on the
discrete Fourier transform (DFT). The DFT for a finite
discrete signal c[j], j = 0, ..., N - 1, is mathematically
defined by

N-1
Co= Y cljle >N, k=0,...,N—1. (5)
j=0

In practice, the DFT is computed using the fast Four-
ier transform (FFT) algorithm. A weighting window (e.g.
Blackman window, Hamming window) is often applied
to the signal to be transformed before computing the
DFT to prevent the bias caused by the finite length of
the signal [36]. The actual (one-sided) power spectral
density (PSD) estimates can then be computed using the
equation

1 N
[ICe]> + ICn—il?] k=1,....(, = 1)
P(fi) = 4 N N 2 (6)
LG, k=
N 2

where we assume that N is always chosen to be even
and each f; = Fk/N , k = 1, ..., N/2, presents a positive
frequency [37].

Parallel computing

The basic idea of parallel computing is to divide a com-
putationally intensive routine into independent subtasks
and execute them in parallel on multiple processors [38].
When computationally heavy Monte Carlo procedures,
such as the Gillespie SSA, are used, carefully
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implemented parallelism can be used to reduce comput-
ing times significantly. In this study, we simulate the
large network in 300 different cellular volumes. The
serial execution of these simulations would be in practice
impossible but the parallel simulation of all volumes can
be carried out in a few days. We implement parallelism
using the parallel computing platform (PC Grid) pro-
vided by Techila Technologies Ltd.
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Results

Simulation setup

In this study, we simulated a large nonlinear signal
transduction network that combines the PKC, MAPK,
PLA2, and PLCP networks and analyzed the simulation
results in both the time and frequency domain. The
reactions of the network are presented in Figure 3.
From now on, we refer to this network as the large

Reaction kg ky kecat
1 PKCi=PKCbasal® 1] 50 ]

2 AA + PKCi=AAPKC* 100 1, 0.1}

3 CaPKC=CaPKCmemb* 1.2705} 3.5026 !

4 AA + CaPKC=AACaPKC* 1200 7, 0.1}

5 DAGCaPKC=DAGPKCmemb* 1 ; 0.1 ;

6 AADAGPKC=AADAGPKC"* 21 0.2}

7 Ca®t 4 PKCi=CaPKC 600000 ,L, 05!

8 DAG + CaPKC=DAGCaPKC 8000y 8.6348 !

9 DAG + PKCi=DAGPKC 600 \i. 0.1}

10 AA + DAGPKC=AADAGPKC 18000 y 2!

11 PKCa + crafl==PKCactraf — PKCa + crafl™ 299999.85 1\}:. 16 i 4 i

12 MAPK* + crafl* =MAPK"feedback — MAPK* + craf1** 1950001.95 ;. | 40! 10}
13 PPh2A + crafl*=crafdeph — PPh2A + crafl 1979996.93 I\}S 25.00002 ; 6:

14 PPh2A + crafl**=craf**deph — PPh2A + crafl™ 1979996.93 I\}S 25.00002 ; 6:

15 crafl® + GTPRas=RafGTPRas™ 24000000 I\L 0.5 i

16 RafGTPRas"* + MAPKK=RafGTPRas"1 — RafGTPRas” + MAPKKser 3299998.1 1 0.42! 0.105!
17 RafGTPRas* + MAPKKser==RafGTPRas*2 — RafGTPRas* + MAPKK" 3299998.1 1 0.42! 0.105}
18 PPh2A + MAPKKser==MAPKKdephser — PPh2A + MAPKK 1979996.93 1. | 25.00002% | 6!

19 PPh2A + MAPKK*=MAPKKdeph — PPh2A + MAPKKser 1979996.93 1. | 25.00002! | 6!

20 MAPKK* + MAPK=MAPKKtyr - MAPKK" + MAPKtyr 16199998.7 1. | 0.6} 0.15}
21 MAPKK* + MAPKtyr=MAPKKthr - MAPKK* + MAPK* 16199998.7 1. | 0.6} 0.15}
22 MKP1 + MAPKtyr==MKP1tyrdeph — MKP1 + MAPK 74999962.5 1 | 4! 1l

23 MKP1 + MAPK*=MKP1thrdeph — MKP1 + MAPKtyr 74999962.5 1 | 4! 1!
24 Ca®t + PLC=CaPLC 3000000 1 1!

25 G*GTP + PLC=GqPLC 2520000 1, 1!

26 Ca’t + GqPLC=GqCaPLC 30000000 4} 1!

27 G*GTP + CaPLC=GqCaPLC 25200000 , 1 1!

28 GqCaPLC=G*GDP + CaPLC 0.01331 0 0ts

29 CaPLC + PIP2=CaPLCcomplex — CaPLC + DAG + IP3 2519996.2 I\L 40i 10 i
30 GqCaPLC + PIP2=GqCaPLCbcomplex — GqCaPLC + DAG + IP3 48000000 1\}:. 192 i 48 i
31 DAG=PC 0.02] 0!

32 IP3=Inositol 1 ; 0 ;

33 tempPIP2 + PLA2cytosolic2PIP2PLA2* 1200 I\L 0.5 i

34 PIP2PLA2" + APC=kenzl — PIP2PLA2" 4+ AA 2760000 1 44.16! 11.04}
35 Cat + PLA2cytosolicePLA2Ca™ 1000000 1\/}5 0.1 i

36 PLA2Ca* + APC=kenz2 — PLA2Ca* + AA 1350000 y, 21.61 5.4
37 tempPIP2 + PLA2Ca” 2PIP2CaPLA2" 12000 1, 0.1}

38 PIP2CaPLA2* + APC=kenz3 — PIP2CaPLA2" + AA 9000000 144! 36
39 DAG + PLA2Ca*=2DAGCaPLA2" 3000 41, 4!

40 DAGCaPLA2* + APC=kenzd — DAGCaPLA2" + AA 15000000 41, 240! 60!
41 MAPK* + PLA2cytosolice MAPK* complex — MAPK* + PLA2* 3900003.9 1 801 20}
42 PLA2*=PLA2cytosolic 0.17} 0}l

43 Ca®* 4 PLA2*=CaPLA2" 6000000 1 0.1!

44 CaPLA2* + APC=kenz5 — CaPLA2* + AA 30000000 4 4801 120!
45 AA=APC 0.4! 0!

Figure 3 Biochemical reaction network combining PKC, MAPK, PLA2, and PLCf networks. Reaction network combining PKC, MAPK, PLA2,
and PLCB networks. The forward, backward, and catalyzing reaction constants are given by k¢, k,, and k., respectively. The species APC,
tempPIP2, Inositol, PC, and PIP2 are treated as constant model inputs and have the concentrations 30 x 10° M, 2.5 x 10% M, 0 M, 0 M, and 2.5
x 10° M, respectively. The other 61 species are treated as model variables.
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network. We implemented all simulation procedures as
well as analyzed the results in MATLAB®. In order to
run the simulations in a reasonable time, we used the
parallel computing platform (PC Grid) provided by
Techila Technologies Ltd.

In the simulations, we first used the ODE model to
determine the deterministic steady-state of the system and
then simulated the actual noise processes around the
steady-state in 300 different cellular volumes. As a sto-
chastic simulation algorithm we used the Gillespie SSA.
The simulated volumes were equidistantly spaced between
5 x 107 1 (comparable, for example, to the volume of the
dentritic spine) and 102 1 (comparable, for example, to
the volume of a cell). We sampled the simulated noise
processes using the sampling algorithm presented in
Figure 1. The sampling frequencies were 10° - 10° Hz.
They were chosen depending on the properties of the
sampled signal so that at least 95 percent of the power of
the original signal was captured. The resulting signals
were then filtered and down-sampled to obtain the desired
frequency range. In the estimation of PSDs, we simply
used a rectangular window. The PSDs were smoothed by
summing adjacent frequency bins.

Time domain characteristics of noise

Biochemical information processing occurs in various
cell organelles, all of them having different volumes. In
order to learn how noise changes as a function of
volume, we simulated the large network in different
volumes. The network includes 61 non-input chemical
species and in order to get an overall understanding of
the behavior of these species, we computed the coeffi-
cients of variation and the frequencies of change for
each species in each volume. The frequency of change
(FC) is defined to be the number of changes in the
molecular concentration within a certain time period.
These characteristics were estimated using 100 second
realizations and they are computed over time. The
results are shown in Figure 4. The gray areas in the heat
maps indicate that certain species maintain either a zero
concentration (craf**deph, GqCaPLCbcomplex, GqPLC,
GqCaPLC, G*GTP, cRafl**) or a constant concentration
(G*GDP) in all studied volumes. The non-active role of
GoGDP (G*GDP, Ge is a subunit of G protein, GDP is
guanosine diphosphate) can be explained by the fact
that the concentration of the activated form of enzyme
PLCPB (GqCaPLC, PLCS is the B isoform of phospholi-
pase C) remains at zero concentration in all simulated
volumes. This and other non-active species seem a bit
suspicious from the biological point of view but, on the
other hand, we have to keep in mind that this network
is a subnetwork that has been extracted from a larger
network and thus some parts of the network do not
necessarily produce the natural level of activity. The
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rows (species) in Figure 4 are sorted in an ascending
order according to the initial concentrations of species.
It is important to notice that in the smallest volume 39
species have a zero concentration as an initial value. In
the largest volume, the number of initial concentrations
equal to zero is 18. The most of the species however
seem to be active in all volumes even though the initial
concentration was zero. When the molecular concentra-
tion is low, the discrete nature of chemical reactions is
emphasized and consequently also the noise level is
fairly high when compared to the average signal level.
This can also be concluded from the coefficients of var-
iation in small volumes (Figure 4A).

To pick up an interesting species producing irregular
behavior, we consider the active form of mitogen-acti-
vated protein kinase (MAPK*) and discuss its behavior
in small and intermediate volumes. In these volumes,
the MAPK* concentration is very low or zero, as we can
see in Figure 4. There are simulation runs during which
the concentration stays at zero and, on the other hand,
there are irregularly occurring realizations showing
activity. The MAPK* thus represents some kind of non-
stationary behavior and it would be interesting to see
how its behavior reacts to different kinds of external sti-
muli in different volumes. We however leave this for a
future work and do not try to make any biological con-
clusions based on the current results.

In general, the strength of noise seems to decrease and
the frequency of change increase when the volume
increases. This of course fits well to the theory of sto-
chastic chemical kinetics. When the numbers of mole-
cules increase in the system, the reactions occur at a
higher rate and stochastic effects tend to average out.
Most of the noise processes in the model behave rela-
tively well and the noise is attenuated when the volume
increases. It is however important to note that the
strength of noise changes in a different manner for differ-
ent species. For example, the noise strength in inositol
trisphosphate (IP3) seems to decrease much faster com-
pared to the strength of noise in protein phosphatase 2A
(PPhosphatase2A) concentration (Figure 4A). Similar dif-
ferences can also be observed between different species
when comparing how FC changes as a function of
volume (Figure 4B).

The molecules that are present in low numbers seem
to produce the most irregular and unpredictable beha-
vior. Heavy stochastic fluctuations can however be
observed also in species that are present in higher con-
centrations. For example, arachidonic acid (AA) and dia-
cylglycerol (DAG) have high concentrations compared
to the other model species but they still produce notable
fluctuations especially in small volumes. In the reaction
network, AA and DAG are linked to the species that are
present in low concentrations and it is likely that the
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Figure 4 Normalized coefficients of variation and normalized frequencies of change. (A) Normalized coefficient of variation (CV) and (B)
normalized frequency of change (FC) for all model species in different volumes are illustrated by color coding (heat map). The CV describes the
strength of noise and FC tells how many times the concentration changes on average in a given time period. The values for CV and FC were
estimated using 100 second signals (simulated noise processes). The simulated volumes were equidistantly spaced between 5 x 107 |
(comparable, for example, to the volume of the dentritic spine) and 107 (comparable, for example, to the volume of a cell). The rows in the
heat maps are sorted in an ascending order according to the initial concentrations of species. The CV and FC values are normalized by their
maximum values. The intensities in the heat maps vary from values close to zero (dark blue) to 1 (dark red). The zero CV and FC values are
mapped to gray points. The large network includes species that stay at zero concentration in all studied volumes (craf**deph,
GgCaPLChcomplex, GPLC, GgCaPLC, G*GTP, cRaf1**) as well as a species remaining at a constant concentration (G*GDP). As supposed, the
strength of noise seems to decrease and the frequency of change increase when the volume is increased.

heavy fluctuations in small volumes are due to these more impact on the behavior of the system when the
interactions. To track down the source of these fluctua-  system volume is small. The coefficients of variation
tions is another interesting question that we will leave = computed in different volumes show that the random
for further studies. fluctuations are notably stronger in small volumes than
Although we have observed irregular behavior and in larger volumes. Therefore, the use of stochastic mod-
heavy fluctuations besides nicely behaving noise pro- eling and simulation methods is especially important if
cesses in the network, it seems that none of the model ~ we are modeling biochemical systems in small volumes.
species deviates far away from the deterministic steady-
state. This seems to tell something about the robustness  Estimating frequency domain behavior
of the network, although we did not perform inclusive ~ The dependence between the system volume and the
analysis of the model dynamics (e.g. bifurcation analy-  quality of noise can also be studied in the frequency
sis). Noise seems, according to our analysis, to have  domain. In general, the frequency domain analysis of the
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simulation results shows that most of the power in these
noise processes is on the low frequencies. The quality of
the PSD estimates depends somewhat on the stationarity
of the noise processes studied. In order to illustrate the
volume dependence of the quality of noise in the fre-
quency domain, we have selected two model species:
phospholipase C (PLC), and calcium phospholipase C
complex (CaPLCcomplex). Illustrative realizations of
these species are shown in (Figure 5A and 5B). The reali-
zations are simulated in four different system volumes,
5 x 107'° 1 (blue), 3.5 x 10° 1 (red), 107'*1 (green), and
10713 1 (black). The realizations show how the discrete
nature of reactions plays an important role in the smal-
lest volume and how the strength of noise gets smaller
when the system volume increases. The effects of noise
are however still detectable also in the largest volume. By
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taking a look at the PLC and CaPLCcomplex noise pro-
cesses in (Figure 5A and 5B), it is easy to conclude that
they are somewhat different. Therefore it is interesting to
see how their behavior differs in the frequency domain.
We estimated PSDs of the noise in the PLC and CaPLC-
complex concentrations using 10 second realizations
of these processes. The frequency content of these
noise processes as a function of volume can be seen in
(Figure 5C and 5D). The noise in both species seems to
have most of its power on the lower frequencies. Similar
behavior was also observed in other species in the net-
work. The PSDs for PLC and CaPLCcomplex seem to
have different shapes (see Figure 5C and 5D). The noise
in PLC realizations clearly has the dominating power on
very low frequencies whereas the frequency content of
noise in CaPLCcomplex realizations is distributed more

A

[PLC] (M)

b N
ooN oo w

-

[CaPLCcomplex] (M)

Frequency (Hz)

@w
a1

40r

4 6
Volume (1) x 107"

frequencies than higher frequencies.

Figure 5 Behavior of PLC and CaPLCcomplex, realizations and estimated PSDs. (A) Realizations for PLC. (B) Realizations for CaPLCcomplex.
The realizations are simulated using the Gillespie SSA in four different system volumes, 5 x 107° | (blue), 3.5 x 107° | (red), 10" | (green), and
103 | (black). The discrete nature of reactions can be easily seen in the smallest volume. In larger volumes, the strength of noise is smaller but
still detectable. (C) Frequency domain behavior for PLC. (D) Frequency domain behavior for CaPLCcomplex. The estimated PSDs for PLC and
CaPLCcomplex in different volumes (5 x 10° - 107'% I) are illustrated by representing the frequency content of signals by color coding (heat
map). The PSDs were estimated using 10 second signals (simulated noise processes). The noise in both species has more power on lower
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uniformly on low frequencies. An interesting observation
also is that the shapes of PSDs for species PLC and
CaPLCcomplex seem to be same in all studied volumes.
This can be seen clearly in Figure 6, where four PSDs in
different volumes for PLC and CaPLCcomplex are
plotted using the log-log-scale.

When low frequency noise is observed, it usually raises
specific questions about the quality of noise. The shape
of the PSDs in Figure 6A is similar to the kind of beha-
vior that is typical for power law or 1/f*-noise processes.
When these processes are studied in the frequency
domain, the shape of the spectrum is determined by the
power law £ where fis the frequency. 1//*-noise pro-
cesses have been found in several physical systems and
they have been extensively studied [39]. A special case of
these noise processes is the so-called 1/f-noise which
cannot be characterized in the time domain. This makes
1/f-noise extremely hard to model and identify. In our
simulations, the Gillespie SSA which practically simulates
a Markov model produces a behavior for the noise in
PLC concentration that clearly resembles some kind of
1/f*-noise. Although a Markov model is not capable of
producing pure 1/f-noise, it is still of interest to study the
quality of the noise processes in the context of power law
noises. The slopes of the log-log-scaled spectra in Figure
6A are in the range [-1.8, -1.7]. A pure 1/f-noise process
would have a slope of -1. This means that the behavior of
the behavior of noise in PLC concentration is closer to
the behavior of a random walk process (slope of -2) than
1/f-noise. It is still unclear if there exists 1/f-noise in real
biochemical systems. Computational models and
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methods will play a crucial role in studying this issue in
the future.

We conclude that the frequency domain analysis is a
workable approach when studying noise in biochemical
reaction networks. We showed that even the simple
methodology that we used in this study can be success-
fully applied to assess these features. We propose that
the frequency domain analysis for noise should always
be performed when BRNs are modeled using stochastic
approaches.

Discussion

Biochemical noise and computational techniques

In this study, we investigated noise processes occurring
in a large biochemical network. The analysis was carried
out in both the time and frequency domain. The numeri-
cal frequency domain analysis of this kind has been
applied also in other simulation studies where periodic or
quasi-periodic oscillations obtained from Gillespie SSA
simulations have been of interest (see e.g. [25,40,41]). In
this study, however, we concentrated on the quality of
noise in pure noise processes instead of oscillations. Our
results (on time and frequency domain) were in agree-
ment with previous studies: the high-frequency noise is
attenuated by the system structure [2], in small volumes
discrete reaction events become more important [19],
and when the volume is increased, the importance of
noise slowly diminishes but does not disappear [27]. In
addition to the previously presented results, we showed
how the frequency content of a biochemical noise pro-
cess changes as a function of volume. To our best

A~ B™
-40
-42
-42
-44
-44
~
g
= -46 -46
o
&
50 -48 -48
2
-50
-50
-52
-52
-54
-56 : : : : : : ‘ -54 : : : : ‘
-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4
log(Frequency) log(Frequency)
Figure 6 PSDs in log-log-scale for PLC and CaPLCcomplex. The estimated PSDs in the log-log-scale for PLC and CaPLCcomplex in four
volumes. (A) PSDs for PLC. (B) PSDs for CaPLCcomplex. The color coding of the PSDs as well as the volumes used are the same as in Figure 5
(A and B).
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knowledge, this kind of analysis has not been done before
and we believe that our approach could be applicable in
other studies as well. Especially it might shed light on the
question of the quality of noise in different kinds of mod-
eling approaches and it could be applied for example
when benchmarking new approximate simulation
approaches. To make the computational techniques used
in this study easily accessible, we introduced a straight-
forward sampling algorithm for Gillespie SSA simulation
results (see Figure 1). It is also obvious that the methods
presented in this study are easy to implement and use.
Therefore, the kind of analysis we present here could be
carried out for example as a starting point for a more
advanced frequency domain analysis.

Although our emphasis was on the frequency domain
analysis, the time domain results of our study were of
interest as well. We noted that the noise processes simu-
lated using the stochastic Gillespie SSA do not deviate far
from the ODE response. This kind of behavior shows the
robustness of the network: although the environment
and reaction events are noisy, the network still performs
the same task. In addition, the coefficient of variation was
used to describe the dependency between the strength of
noise and volume in the time domain. Although the most
of the simulated noise processes behave rather well, the
large network also includes noise processes representing
more unpredictable and irregular behavior.

Besides the methodological aspects of this study, the par-
allel computing proved to be an indispensable technique
when massive BRNs simulations were performed. Without
parallel computing, the simulation of 300 different volumes
would have been impossible and we would have had to
content ourselves with less inclusive results. Although the
implementation of parallelism takes time, the benefits are
so notable that the parallelization is unquestionably worth
doing. We believe that the application of parallel computing
will increase explosively in the field of computational
systems biology and its subfields in the near future.

Insights and future work

The results presented in this article give new insight to
the quality of noise in one signal transduction network.
In addition, the methodology can in principle be applied
to the characterization of noise processes in any other
similar system. The methods presented in this paper are
widely applicable because almost all biological processes
inherently represent some kind of variability. Without a
proper analysis it is impossible to know if noise has any
practical meaning. When we are dealing with data pro-
duced by computer simulations, we are able to fully con-
trol the whole process of data production. In order to
extract all possible information from the results, new
methodology should be developed and applied. Fre-
quency domain analysis is widely applied in science in
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general and, as we have shown, it can, with minor modifi-
cations, be applied also to the analysis of Gillespie SSA
simulation results. Frequency domain analysis is, how-
ever, just one of the numerous ways of analyzing stochas-
tic simulation results from a new perspective. Basically all
kind of methods that can be used to extract information
from time-series data are potential tools in this particular
area and we hope that this area of research will attain
more attention. There still exist numerous challenges in
the analysis of noise in BRNs. Our future work includes,
for example, the testing and development of new analysis
methods for examination of noise in subcellular systems.
We are especially interested in noise processes represent-
ing 1/f-noise which we also discussed in this study. Our
further interests include, for example, new modeling
approaches such as non-Markovian models including
delays and their capability of producing biologically rea-
listic noise processes.

Conclusions

In this study, we discussed how noise arising from mole-
cular interactions in biochemical reaction networks can
be examined using simulations and numerical frequency
domain analysis. Biochemical reaction networks form the
basic information processing mechanisms in biological
systems and, in order to understand these mechanisms,
we have to understand the stochastic phenomena affect-
ing molecular dynamics. Stochastic modeling is an
invaluable tool in this endeavor. We implemented a sto-
chastic model for a large, realistic biochemical reaction
network, performed massive parallel simulations, and
analyzed the simulation results both in the time and fre-
quency domain. We concentrated on the characterization
of intrinsic noise appearing in a specific network. The
simulation results showed that there are several kinds of
noise processes in the network, all of them representing
different kind of low-frequency fluctuations. The fre-
quency domain behavior of biochemical noise processes
was presented as a function of an altering system volume.
The low-frequency nature of the noise processes in all
studied volumes could be deduced from the estimated
power spectral densities.
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