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Abstract

Background: Semantic Web Technology (SWT) makes it possible to integrate and search the large volume of life
science datasets in the public domain, as demonstrated by well-known linked data projects such as LODD,
Bio2RDF, and Chem2Bio2RDF. Integration of these sets creates large networks of information. We have previously
described a tool called WENDI for aggregating information pertaining to new chemical compounds, effectively
creating evidence paths relating the compounds to genes, diseases and so on. In this paper we examine the utility
of automatically inferring new compound-disease associations (and thus new links in the network) based on
semantically marked-up versions of these evidence paths, rule-sets and inference engines.

Results: Through the implementation of a semantic inference algorithm, rule set, Semantic Web methods (RDF,
OWL and SPARQL) and new interfaces, we have created a new tool called Chemogenomic Explorer that uses
networks of ontologically annotated RDF statements along with deductive reasoning tools to infer new
associations between the query structure and genes and diseases from WENDI results. The tool then permits
interactive clustering and filtering of these evidence paths.

Conclusions: We present a new aggregate approach to inferring links between chemical compounds and diseases
using semantic inference. This approach allows multiple evidence paths between compounds and diseases to be
identified using a rule-set and semantically annotated data, and for these evidence paths to be clustered to show
overall evidence linking the compound to a disease. We believe this is a powerful approach, because it allows
compound-disease relationships to be ranked by the amount of evidence supporting them.

Background
Recent advances in chemical & biological sciences have
led to an incredible increase in the volume of informa-
tion about known chemical compounds, genes, diseases,
and assays. Statistical data from the PubChem Substance
Database of chemical structures, shows an increase from
35,379,748 structures in 2007 to 69,088,100 in 2010; the
number of PubChem Bioassays increased from around
1000 in 2008 to 434,635 in 2010 [1], and there are
726,872 compound records and 2,925,588 activities in
the chemogenomic ChEMBL [2] dataset. Numerous
other chemical, chemogenomic, and biological data
(including data extracted from the scholarly literature)
are also available including ChEBI [3], CTD [4], KEGG

[5] and Medline [6] inter alia. Many well-known search
engines for these data resources have been developed
like PubChem, which provides chemical structure search
and bioassay search. This search engine returns an
abundant supply of chemical information and bioactive
information based on PubChem Bioassay data. Chem-
Spider [7] links together compound information across
the Web and provides free text and structure search
access to millions of chemical structures. It offers multi-
ple search modes to do chemical information searching
on the basis of hundreds of data vendors.
We can imagine all these information resources as

buckets for pieces of a very large jigsaw puzzle, each
bucket containing only pieces of a certain color. To
assemble the full picture we need to be able to search
and apply algorithms that span across different buckets
seamlessly. There are many technologies of utility for
this, most recently from the Semantic Web Technology
(SWT) community, like XML (for describing data),
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OWL (for describing ontologies and taxonomies), and
RDF (for describing relationships) are allowing data
aggregation and the representation of meaning and rela-
tionships in the data, and are now being quite widely
applied for life science data. LODD [8], Bio2RDF [9],
Chem2Bio2RDF [10] demonstrate not only how SWT
can enable integration of multiple sources, but also
complex query processing using the SPARQL language.
Our resource, Chem2Bio2RDF, integrates six categories
of data based on the kinds of biological and chemical
concepts and relationships they represent: chemical &
drug, protein & gene, chemogenomics, systems (i.e., PPI
and pathway), phenotype (i.e., disease and side effect)
and literature. However, the current version of Chem2-
Bio2RDF lacks a formal ontology so it is hard for users
to read and understand the meaning of the metadata
and harder to do further inference. Once an integrated
network of compounds, genes, diseases, etc. is in place
(with an appropriate ontology), as PharmGKB [11]
establishes knowledge about the relationships among
drugs, diseases and genes, including their variations and
gene products, it becomes possible to semantically infer
new links in the network (i.e. identify new associations)
via sets of rules, and inference engines that use these
rules. For example, we might have a rule that if a che-
mical compound A is highly similar to a drug D that is
known to be active against a protein target T, we infer
an association (and thus a network link) between A and
T (possibly annotated with a confidence value). Seman-
tic inference has been used in various applications
including knowledge-based recommender systems [12]
and human-machine communication [13], but there
have few applications in the life sciences, Neurocom-
mons [14] uses SWT for assembling and querying bio-
medical knowledge from multiple sources and
disciplines. With this system, scientists will be able to
load in lists of genes that come off the lab robots, and
get back those lists of genes with relevant information
around them based on the public knowledge [15]. Sci-
NetS Search [16] is an inference search over integrated
life science databases using SWT. It can implement
cross-domain search and use statistical scoring. All the
metadata of databases are described as a set of triples
consisting of two bio-items and relationships between
these items. GoRouter [17] is building an RDF model to
do semantic query and inference, but the inference is
restricted to the Gene Ontology and its related
associations.
In our previous paper [18], we introduced a novel

tool, WENDI (Web Engine for Non-Obvious Drug
Information), for aggregating information related to a
compound to identify relationships. WENDI probes the
potential biological properties of the compound using
predictive models, databases, and the scholarly literature,

in particular, to find non-obvious relationships between
the compound and assays, genes, and diseases, which
cross over different types of data sources. The purpose
of WENDI is not just to return data about a compound
(such as in a database search): rather it allows a
researcher to understand the context in which a com-
pound operates, and to find clues which help them
understand properties of the compound that they might
not otherwise have discovered. WENDI does data inte-
gration for particular query compounds and represents
its result graph in XML. WENDI architecture is shown
in Figure 1.
WENDI has good performance on data integration, but

it relies on the user manually find associations among the
kinds of results presented. At this point, we thus
extended WENDI work to use semantic inference and
rules to automatically infer new associations based on the
WENDI XML results. These new associations in aggre-
gate form clusters of association that build evidence of an
association between compounds and diseases via multiple
sources or evidence paths. We have implemented this in
a tool called Chemogenomic Explorer that uses networks
of ontologically-enabled RDF statements (e.g. the query
compound C is similar to compound D, drug D is active
in assay A, assay A is associated with gene G) along with
deductive reasoning tools to infer relationships between
the query compound and genes and diseases, this will
allow us to cluster insights by disease, and then prioritize
the output based on the amount of evidence linking a
compound to a disease.

Methods
The WENDI web service is used to create an initial set
of relational paths in XML. CE adds to the previously
reported capabilities of WENDI through (i) the applica-
tion and inference engine and rule set to enable new
associations to be inferred; (ii) clustering and filtering of
inferred evidence paths in a completely new interface
and (iii) the application of Semantic Web languages and
methods (RDF, SPARQL, OWL) to enable a much
broader range of capabilities including creation and
mining of evidence paths, and the annotation of rela-
tionships using the ontology. These new methods are
described below.
WENDI XML includes the direct relationships

between similar compounds and bioassays, similar com-
pounds and literature references, bioassays and genes/
diseases, and so on. The process of importing this infor-
mation into CE is as follows: 1. Data preparation as
described in section 2.1; 2. Semantic representation
using a CE ontology and presentation in RDF format,
described in section 2.2; 3. Rule-based Inference
described in 2.3; and 4. Path ranking based on the num-
ber of properties for each disease described in 2.4.
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Data preparation
WENDI aggregates information from diverse data
sources and predictive models including PubChem
Compound, PubChem Bioassay, PubChem3D [19],
DrugBank [20], MRTD [21], CTD [4], ChEMBL [3],
HuGEpedia [22], KEGG [5], and Medline [6]. Because
not all of these sources have gene/disease terms related,
we first extract the data with gene/disease information,
such as PubChem Bioassay, CTD, ChEMBL, HuGEpedia
and Medline. We employed different approaches accord-
ing to the different datasets: for CTD, which already has
compound-disease relation information, we extract such
relationships directly; but for other data, the links
between compounds and diseases are indirect. There are
two ways to mine this information in the data prepara-
tion section. PubChem bioassay as an example, (i)
implementing a SQL function “position” to find gene or
disease terms from Phenopred Matrix [23] occurring in
the description of the bioassay, then again based on the
Phenopred Matrix to find associations between gene
and disease, finally the link between bioassay-gene-dis-
ease can be established; (ii) using the GO ontology [24],
we performed the same SQL clause to find which GO
terms are noted in the description of bioassay, identified
the genes associated with the GO term on the basis of
GO annotation, then used the Phenopred matrix to find
which diseases are linked to these genes. More informa-
tion about this extraction can be found in our WENDI
paper [18].
We extracted the above information from WENDI

XML using XML DOM [25]. All the information is
extracted into 4 groups: Active-Bioassay, CTD, Chembl,
and Literature, which include compound, gene, disease,
or bioassay and journal information.

Data representation
In order to provide a formal description of concepts,
terms, and relationships within the WENDI knowledge
domain and to make semantic inference possible, we
use the Web Ontology Language (OWL) to build the
CE ontology and the Resource Description Framework
(RDF) in a variety of data interchange formats (e.g.
RDF/XML, N3, Turtle, N-Triples) to present CE data
based on the CE ontology.
CE OWL ontology is constrained for using in our sys-

tem: i.e., it is an ontology specific to the datasets used in
CE and is not a generalized chemogenomic ontology.
Within the ontology we use the following entity classes:
Chemical Compound, BioAssay, Journal Article, Gene,
and Disease. These entities can be associated by rela-
tional ontological terms as shown in Table 1. Also the
entity and relational terms can then be combined to
express entity-relationship-entity triples, which are suita-
ble for representation in RDF. Some triple examples are
given in Table 2.
Figure 2 shows the network of possible relationships

representing by above triples expressed in this system.
Classes listed in Table 1 are shown in yellow ovals, like
Journal Article, Chemical Compound, Gene, Disease,
Bioassay, instances are in white ovals, black arrows show
direct relationships mined from WENDI, and red arrows
show inferred relationships mined from CE, like
“Methysergide-Autistic_Disorder-HTR1B”, “Methyser-
gide-Lymphoma-CYP1A2” that can be derived from our
rule base.

Inference and the Rule Base
Inference [26], in the context of SWT, is the discovery
of new relationships from the known data modelled as a

Figure 1 WENDI Architecture. WENDI main web interface is show at the upper right corner.
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set of (named) relationships between resources and a set
of rules automatically. In a mathematical sense, querying
is a form of inference (being able to infer some search
results from a mass of data, for example) [27]. We make
inference to find new inferred relationships between
compound and disease.
Once the CE RDF triples are generated, they are

loaded into Ont Model Class [28] in Jena [29], a Java
Semantic Web Platform. We are performing the rule-
based reasoner and forward chaining over RDF graphs.
A rule for the rule-based reasoner is defined by a Java
Rule object with a list of body terms (premises), a list of
head terms (conclusions) and an optional name and
optional direction. Each term or ClauseEntry is either a
triple pattern, an extended triple pattern or a call to a
built-in primitive [29]. Total 8 rules have been defined
in the CE system [30], 3 of them with explanations are
listed below:
[Rule 1: (?QueryCompound WO:isSimiliarTo ?

CompoundID),
(?CompoundID WO:isActiveIn ?Bioassay),
(?Bioassay WO:isAssociatedWith ?Disease)
-> (?QueryCompound WO:mightHasDisease ?

Disease)]
Explanation: A relationship is inferred between a com-

pound and a disease if the query compound is similar to

another compound that is active against a PubChem
Bioassay, and that Bioassay is associated with a disease.
[Rule 2: (?CompoundID WO:isContainedIn ?Journal),
(?Journal WO:hasGene ?Gene),
(?Gene WO:isAssociatedWith ?Disease)
-> (?CompoundID WO:mightHasDisease ?Disease)]
Explanation: A new compound-disease relationship is

inferred if there a similar compound and a gene co-
occur in a paper abstract, and the gene and disease co-
occur in another paper abstract.
[Rule 3: (?CompoundID WO:isActiveIn ?Bioassay),
(?Bioassay WO:hasGene ?Gene),
(?Gene WO:isAssociatedWith ?Disease)
-> (?CompoundID WO:mightHasDisease ?Disease)]
Explanation: A new compound-disease relationship is

inferred if a similar compound is active against a bioas-
say, the bioassay is associated with a gene, and the gene
co-occurs in a paper abstract with the disease.
We selected Methysergide [31] as an example query

compound for the following steps. Methysergide is che-
mically similar to LSD [32], and it antagonizes the
effects of serotonin in blood vessels and gastrointestinal
smooth muscle, but has few of the properties of other
ergot alkaloids.
Table 3 shows three RDF statements of Methysergide

taken from CE RDF network. Based on that, we got
inferred evidence paths by using above rules. Each state-
ment along with explanation can be found in this Table 3.
Methysergide as the query compound, we got a total

of 63 evidence paths with different diseases, genes, and
journal information. Individual evidence paths can be
examined to get to the root data or publications that
constitute them. For instance, the Autism link is
demonstrated is interesting as the publications identify
the link of the compound with HTR1B and the link of
HTR1B with Autism. LSD is known to affect the out-
come of Autism [33,34] and thus Methysergide is a rea-
sonable candidate for investigation.

Table 1 Examples of Object Properties and Classes for the CE Ontology

Properties Classes Explanation

isSimilarTo Chemical Compound,
Chemical Compound

Chemical Compound is similar to Chemical Compound

isActiveIn Chemical Compound,
PubChem BioAssay

Chemical is tested active in the bioassay

isContainedIn Chemical Compound,
Journal Article

Chemical is contained in the article

hasGenes Pubchem BioAssay/Drug/Journal Article, Gene Bioassay/Drug/Article has found the gene term related the corresponding text;
Bioassay/Drug/Article has a reference to the gene

hasDisease Pubchem BioAssay/Drug/Journal Article, Disease Bioassay/Drug/Article has found the disease term related the corresponding text;
Bioassay/Drug/Article has a reference to the disease

isAssociatedWith Gene, Disease Gene and disease is associated

hasSimilarity Chemical Compound, Similarity Chemical has similarity value based on Tanimoto coefficient.

Table 2 CE triple examples based on CE Ontology

CE Triple Examples

WO:querycmpd WO:isSimilarTo WO:cid24871487.

WO:cid24871487 rdf:type WO:ChemicalCompound;
WO:isActiveIn WO:aid1469.

WO:aid1469 rdf:type WO:BioAssay;
WO:hasGenes WO:COL4A4.

WO:COL4A4 rdf:type WO:Gene;
WO:isAssociatedWith WO:Nephritis.
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Browsing RDF is clearly difficult, we have thus built an
interface that allows the results to be examined and fil-
tered in a user-friendly fashion, more details about the
interface shows in the next section. Specifically, evidence
paths are clustered by disease, and can be filtered via
disease, compounds, assays, genes, gene families, or
journal titles. Part of the results for Methysergide are
shown in Figure 3, using “Autistic_Disorder” as the fil-
ter, two similar compounds including Methysergide
itself are related “Autistic_Disorder” with HTRB1 and a
journal article. The results with AID “410” as the filter
are shown in Figure 4. Total 20 entries associating with
different similar compounds/diseases/genes/references
are related the PubChem Bioassay (AID = 410).

Path Ranking
The above process results are often in many evidence
paths linking compounds and diseases. With a large
number of results, we need some way to organize and
prioritize these evidence paths. We cluster all the paths
based on the different disease terms and then rank the

clusters based on the number of evidence paths linking
them. Whilst evidence paths are not necessarily fully
independent, they do constitute different collections of
evidence for the same relationship, and thus strengthen
the chances of the relationship being significant.
We employ the following SPARQL query clause to

implement this ranking process based on the inferred
RDF. It counts the number of properties (?pc) related to
each disease first, and then return disease terms (?dis)
as descend order on the basis of (?pc).
Select ?dis (count(?p) as ?pc)
WHERE {?dis a wo:Disease; ?p ?o}
GROUP BY ?dis ORDER BY DESC(?pc)

Results and discussion
The architecture for CE is shown in Figure 5. CE does
data retrieval, data process, and data visualization.
When query compound submitted to “Data Controller”,
a servlet communicating with client and server, Data
Controller sends the request to WENDI web service,
after that, WENDI XML will be passed to “RDF Model

Figure 2 RDF Network for CE.
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Table 3 CE RDF statement examples

RDF Statements Explanation

wo:ctdcid9681 rdf:type wo:ChemicalCompound.
wo:querycmpd wo:isSimilarTo wo:ctdcid9681;

wo:hasSimilarity “1.000”.
wo:ctdcid9681 wo:hasName “Methysergide”.

wo:HTR1B rdf:type wo:Gene;
wo:isrelatedTo wo:cid9681;

wo:isInferredFrom “pubmedid8743744”.
wo:Autistic_Disorder rdf:type wo:Disease;

wo:isAssociatedWith wo:HTR1B;
wo:isInferredFrom “pubmedid19038234”.

A Methysergide-Autistic Disorder relationship is inferred via rule 2 (gene HTR1B). The similar
compound (cid = 9681) is Methysergide itself with similarity = 1, it co-occurs with gene
HTR1B in a same paper (pubmed id = 8743744), and HTR1B and Autistic_Disorder are co-
occurring in another same paper (pubmed id = 19038234). Then we use rule 2 to establish

such relations;

wo:ctdcid11865408 rdf:type wo:ChemicalCompound.
wo:querycmpd wo:isSimilarTo wo:ctdcid11865408;

wo:hasSimilarity “0.774”.
wo:ctdcid11865408 wo:hasName “Metergoline”.

wo:HTR1B rdf:type wo:Gene;
wo:isrelatedTo wo:cid11865408;

wo:isInferredFrom “pubmedid1330643”.
wo:Autistic_Disorder rdf:type wo:Disease;

wo:isAssociatedWith wo:HTR1B;
wo:isInferredFrom “pubmedid19038234”.

A Methysergide-Autistic Disorder relationship is also inferred via rule 2 (again via HTR1B).
Although this is the same relationship, a different evidence path considered (we will do path

ranking on these evidence paths later);

wo:cid5486180 rdf:type wo:ChemicalCompound.
wo:querycmpd wo:isSimilarTo wo:cid5486180;

wo:hasSimilarity “0.929”.
wo:cid5486180 wo:isActiveIn wo:aid410.

wo:aid410 rdf:type wo:BioAssay;
wo:hasName “p450-cyp1a2”.
wo:CYP1A2 rdf:type wo:Gene.

wo:aid410 wo:hasGene wo:CYP1A2.
wo:CYP1A2 wo:isAssociatedWith wo:Lymphoma.

wo:Lymphoma rdf:type wo:Disease.

A Methysergide-Lymphoma relationship is inferred by rule1 (via CYP1A2).

Figure 3 Results related to “Autistic_Disorder” for Methysergide shown in the CE Faced Browser by using Disease filter.
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Builder”, which handles: CE ontology generation, RDF
converting, RDF inference, and path ranking. Ranked
paths will be sent back to Data Controller to convert to
RDF based JSON file for visualization by using the
Faceted Browser. SPARQL query builder, is an addi-
tional CE user platform to make customized SPARQL
queries based on CE RDF sent back from Data
Controller.

Faceted Browser for CE
CE provides a main web interface, shown in Figure 6. In
the Figure, Methysergide is drawn using the JME mole-
cular editor, and its SMILES is transferred to the input
box. And the results will be displayed in the Faceted
Browser based on an existing tool [35] and allowing
multiple filters to be applied.

SPARQL Query Builder for CE
After XML to RDF conversion, CE has RDF triples
based on CE ontology. We therefore saw the utility of
allowing the direct querying of this RDF data. Since
SPARQL is a complex language, we implemented a
SPARQL Query Builder to semi-automate this process.
The SPARQL query builder for CE is built based on the

Sesame triple store [36]. The interface is shown in
Figure 7. Starting with a class, the user can add data
and object properties associated with it through
prompted drop-down boxes. Step by step, the SPARQL
query builder provides an intuitive way to translate user
question into graph pattern, and then encode it into a
SPARQL query.
As an example, given the relationship of Methyser-

gide [31] with HTR1B, LSD and Autism discussed, so
we can explore the relationship of similar compounds
with the serotonin 5-HT1B receptor (the LSD recep-
tor) with a SPARQL query. We make the SPARQL
query in the builder with the following 2 steps to get
journal papers including information about “5-HT”
receptor:
1) Find similar compounds to Methysergide from the

literatures,
Subject: wo:ChemicalCompound
Predict: wo:isContainedIn
Object: wo:journalArticle
2) The titles of the papers should include “5-HT”,
Subject: wo: journalArticle
Predict: wo:hasTitle
Object: “5-HT”

Figure 4 Results related to AID “410” for Methysergide shown in the CE Faced Browser by using AID filter.
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Figure 5 CE Architecture and Path Ranking Flowchart.

Figure 6 CE main Web Interface.
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The implementation of this query is shown in
Figure 7, and the list of journal titles including “5-HT”
is shown in the result page of SPARQL Query Builder,
in Table 4.

Identification of potential gene targets and diseases for
Clozapine
In order to validate CE, we tested it with well-known
drugs as queries, to see how the ordering of the clus-
ters of evidence paths related to known uses and side-
effects for these drugs. For example Clozapine [37] has
been shown to have superior efficacy when compared
to olanzapine [38] in the treatment of schizophrenia
[39]. Some known side effects of Clozapine, are cardio-
myopathy (deterioration of the function of the myocar-
dium), and cardiac hypertrophy. For this drug, CE
indeed predominately returns compound-disease paths
that relate to schizophrenia (i.e. schizophrenia has
more evidence paths than any other disease). It also
identifies side effects of the drug correctly as hyper-
trophic cardiomyopathy, and cardiovascular system dis-
ease, both of which are supported by the literature
[40,41]. This is shown in Figure 8.

Exploring newly submitted compounds from PubChem
Pubchem is a popular public database of chemical com-
pounds and their activities against biological assays.
Since CE is designed for use with “new” compounds as
queries (i.e. compounds for which there is not a lot of
data available), we chose a set of very recently-added
compounds in PubChem which had no or little asso-
ciated bioactivity information recorded. This was done
using a constrained search in PubChem [42] to return
compounds submitted only in 2011.
For example, as shown in Figure 9, the compound

with CID 49835692 [43] has no associated bioactivity
data recorded. However, through its analysis of similar
structures, some significant potential bioactivities and
disease associations are suggested by CE.
We were using RDF network to make inference

between compounds and diseases. As the experiments
discussed before, not only the most related diseases
could be sorted out, but also general guideline will be
generated to conduct new compounds analysis. The
power of the methodology has been clearly demon-
strated to retrieve pertinent information in particular
domain without any difficulties engendering by the data

Figure 7 Main Web Interface of CE SPARQL Query Builder.

Table 4 List of Journal Titles including “5-HT” receptor

Journal Titles

First Pharmacophoric Hypothesis for 5-HT7 Antagonism

Novel, Potent, and Selective 5-HT3 Receptor Antagonists Based on the Arylpiperazine Skeleton: Synthesis, Structure, Biological Activity, and
Comparative Molecular Field Analysis Studies

Synthesis of 2-Piperazinylbenzothiazole and 2-Piperazinylbenzoxazole Derivatives with 5-HT3 Antagonist and 5-HT4 Agonist Properties

Novel and Highly Potent 5-HT3 Receptor Agonists Based on a Pyrroloquinoxaline Structure
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Figure 8 CE results for Clozapine.

Figure 9 More Chemogenomic information for New Compound from PubChem.
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tsunami. In addition, it expands the possible usages/lin-
kages within the limited volumes of disease information
regarding to a specific compound.

Conclusions
We present a new approach to the association search of
chemical compounds and diseases using semantic infer-
ence in this work. Semantic inference produces evidence
paths relating compounds and diseases via genes, publi-
cation, bioassays and drugs. We previously released an
aggregative data-mining tool, WENDI, for drug discov-
ery using aggregate web services. In this paper, we have
shown how the application of Semantic Web methods
(RDF, SPARQL and OWL ontologies) along with rule-
based inference, path ranking and a faceted browse, can
produce a tool for exploring new compound-disease
associations based on evidence paths from WENDI.

Future work
The current version of CE explores the chemogenomic
information of chemical compounds. In the future, we
will consider more efficient ways to mine compound-
gene, compound-disease links from more chemoge-
nomic data, and plan to aggregate additional data and
inference rules, also increase collaboration with Chem2-
Bio2RDF in order to enable CE to link with more
diverse data. We also intend to expand beyond Chem2-
Bio2RDF to chemical biology, where we can consider
other relations like chemical-gene, chemical-pathway,
chemical-side effect, etc. In addition, we would like to
add the functionality to process batches of molecules.
For this case, we will consider the issues of information
summarization and visualization, i.e. how to organize
more data in a readable way. Because of the increased
volume of data and results, some current algorithms will
become out of date. We will also take other ranking
algorithms into account such as evidence importance.
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