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Abstract

communities to aid in their research.

Background: The ability to search for and precisely compare similar phenotypic appearances within and across
species has vast potential in plant science and genetic research. The difficulty in doing so lies in the fact that many
visual phenotypic data, especially visually observed phenotypes that often times cannot be directly measured
quantitatively, are in the form of text annotations, and these descriptions are plagued by semantic ambiguity,
heterogeneity, and low granularity. Though several bio-ontologies have been developed to standardize phenotypic
(and genotypic) information and permit comparisons across species, these semantic issues persist and prevent
precise analysis and retrieval of information. A framework suitable for the modeling and analysis of precise
computable representations of such phenotypic appearances is needed.

Results: We have developed a new framework called the Computable Visually Observed Phenotype Ontological
Framework for plants. This work provides a novel quantitative view of descriptions of plant phenotypes that
leverages existing bio-ontologies and utilizes a computational approach to capture and represent domain
knowledge in a machine-interpretable form. This is accomplished by means of a robust and accurate semantic
mapping module that automatically maps high-level semantics to low-level measurements computed from
phenotype imagery. The framework was applied to two different plant species with semantic rules mined and an
ontology constructed. Rule quality was evaluated and showed high quality rules for most semantics. This
framework also facilitates automatic annotation of phenotype images and can be adopted by different plant

Conclusions: The Computable Visually Observed Phenotype Ontological Framework for plants has been developed
for more efficient and accurate management of visually observed phenotypes, which play a significant role in plant
genomics research. The uniqueness of this framework is its ability to bridge the knowledge of informaticians and
plant science researchers by translating descriptions of visually observed phenotypes into standardized, machine-
understandable representations, thus enabling the development of advanced information retrieval and phenotype
annotation analysis tools for the plant science community.

Background

In recent years, the biology community has been increas-
ingly focused on locating genes and identifying their func-
tions. Advances in technology have allowed a vast amount
of biological data to be collected, including the sequencing
and annotation of rapidly growing numbers of genomes,
the generation of genetic and physical maps, and the
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description of both mutant and wild type phenotypes/
traits. Each data collection, however, has its own scope,
terminology, and descriptions, which vary not only across
domains but also within domains by research group and
individual. To unify the vocabulary and descriptions within
a domain, and also to serve as a bridge among various
sub-domains, many bio-ontologies have been developed.
In fact, there has been enormous effort put forth by the
biology community towards the development of various
ontologies [1-8] with a significant contribution being
made thereby to plant science research. For example, the
Gene Ontology (GO) [9,10] contains terms and definitions
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used to describe biological processes, cellular components,
and molecular functions. This ontology has been devel-
oped to allow ready access to gene function knowledge
across different species. Other relevant ontology examples
include the Plant Ontology (PO) [11-13], an umbrella
ontology covering various sub-domains in the plant realm
including growth/developmental stages, plant structure
[8], and the Trait Ontology (TO), a sub-ontology that
describes characteristics of a plant such as height, leaf
color, and disease resistance [14-17]; and the Phenotype
and Trait Ontology (PATO), which is an ontology of phe-
notypic qualities defined “to be used in conjunction with
ontologies of ‘quality-bearing entities” [18]. PATO con-
tains descriptions of many general phenotypic qualities,
including both qualitative and quantitative characteristics,
and some groups have expressed interest in using PATO
for phenotype descriptions [19,20].

Phenotype annotations are often recorded based on the
Entity-Quality (EQ) model, in which the entity (or trait,
in this case) is defined in terms of concepts from one or
more ontologies, e.g. PO or GO, and the quality (or value
of the trait) is assigned to a concept from an ontology of
qualities, e.g. PATO. As an example, consider the repre-
sentation of a “green maize leaf” using the EQ model.
One would have to specify the taxon (maize, NCBI Tax-
onomy ID: 381124), the PO plant structure (leaf,
P0O:0009025), the TO trait (leaf color, TO:0000299), and
the PATO identifier (green, PATO:00003-20). Annota-
tions recorded in this way are said to facilitate compari-
sons of phenotype descriptions within and across species.
By manually translating free-text phenotype descriptions
to the EQ model, Washington [21] demonstrated the
ability to compare human and animal disease phenotypes
utilizing the hierarchical structure of the ontology as well
as the annotation frequency. A similar approach for com-
paring phenotype annotations within and across plant
structure and species could be applied.

Because phenotype annotation and curation remain
very time-consuming tasks, various tools have been cre-
ated to help with annotation. Phenote [22] is one such
tool that describes phenotypes using the EQ model, and
this tool was utilized by Washington in [21]. In addition,
the Solanaceae community has developed and imple-
mented a user-friendly annotation utility that exploits
bio-ontologies [23]. Even with the help of annotating
software, it is still overwhelming for curators to annotate
all the available phenotype images. Automatic annota-
tion methods are needed, and there has been some
work on this topic already. Beck [24] successfully
mapped the output from two phenotyping pipelines in
mice to both the Mammalian Phenotype ontology as
well as the EQ model, which facilitated automatic anno-
tation of mouse phenotype data generated using these
pipelines. The approach mainly relies on standardized
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and measurable phenotypes of mice, such as body
weight and average pulse rate, which is different from
the subjective descriptions often used to annotate plant
phenotypes, such as “small irregular chlorotic lesions on
a maize leaf.”

Although textual descriptions of phenotypes seem to
be clear to human understanding, they are subject to
various semantic issues when handled in a computa-
tional manner. Despite the tremendous amount of time
and effort put forth in their construction and mainte-
nance, current ontologies remain plagued by issues
related to semantic ambiguity, granularity, and heteroge-
neity. Ambiguity occurs when a single term has different
meanings, though sometimes the differences are very
subtle. Consider the various yellow plant structures in
Figure 1. One would like the term “yellow” to represent
the same quantitative hue across all phenotypes, body
parts, and taxa. However, the “yellow” describing a
maize leaf (Figure 1 (a)) is obviously different from that
which describes a maize ear, kernel, or tassel (Figure 1
(b, ¢, d)), and the differences are even more striking
when one ventures into other taxa (Figure 1 (a, e, f)).
Though detailed color names do exist for these yellow
variations, phenotype annotators typically use very
coarse descriptors for colors, like “yellow”, as a soft qua-
litative description, even though these terms lack the
specificity of more specific color names or the rigor of
quantitative color measures.

Granularity refers to the level of detail used in the defi-
nition of an ontological term. With regard to visually
observed phenotypes, the terms present in existing ontol-
ogies have an insufficient amount of detail to provide
precise phenotypic descriptions. For example, the
description of a necrotic lesion can be coarsely described
in terms of color as “brown”. Also, leaf color, as used in
PATO, is considered coarse because no guidelines exist
for differentiating subtle differences in color, which may
be biologically significant, e.g. “green”, “light green”, and
“lemon green”.

Heterogeneity refers to the situation where the same
visually observed phenotype is described with different
terms. For example, “yellowish” and “yellow” may be
used to describe the same color. A less obvious form of
heterogeneity arises when individual image curators have
different representations of the same semantics based on
their level of expertise and individual specialties [25]; a
“green” leaf for one expert may be “light green” for
another, or one curator might describe viviparous kernels
as “lemon yellow” while another might use “light yellow.”

It is not difficult to see the complexity of describing
visually observed phenotypes when trying to minimize
these semantic issues. Therefore, an ontological frame-
work has been developed for standardizing visual pheno-
typic information and making that information readily
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(f) yellow tomatoes (courtesy of SGN).

Figure 1 Example variety of “yellow” phenotypic appearances. When describing color, annotators tend to use soft, qualitative semantics, e.
g. "yellow"; however, these contain significant semantic heterogeneity, as can be seen in the examples of (a) a yellowish corn leaf, (b) a yellow
versus green corn tassel (courtesy of MaizeGDB), (c) a yellow corn cob, (d) yellow kernels, (e) a yellowish Arabidopsis leaf (courtesy of TAIR), and

exchangeable within the plant science community. Our
proposed framework, the Computable Visually Observed
Phenotype Ontological Framework (CVOPOF) for
plants, not only attempts to solve the abovementioned
problems, but also aims to facilitate automatic phenotype
image annotation and to improve the precision and accu-
racy of visually observed phenotype searches. The pur-
pose of this framework is not to develop a complete
ontology for any species; instead, the goal is to provide a
skeleton for the plant community to follow when defin-
ing their traits of interest. Two real-world case studies
are included to demonstrate the use of the framework.

Methods
Quantitative View of Descriptions of Visually Observed
Phenotypes
In this section, we introduce textual annotations of
visually observed phenotypes using examples from Zea
mays (maize) for two purposes. First, we would like to
identify the prevailing characteristics described in these
annotations to ensure that these are modeled by our fra-
mework. Second, and more importantly, we would like
to demonstrate the capability and necessity of using
computational algorithms for accurate, objective, and
comprehensive measurement of these characteristics.

The sample annotations for maize are taken from two
sources: (1) Neuffer's Mutants of Maize [26], which pro-
vides descriptions of several lesion mimic mutants, and
(2) descriptions of Southern Leaf Blight (SLB) infections,
based on the scoring rubric mentioned in [27]. Though
these sample annotations clearly do not cover every
aspect of every known plant phenotype, they do illus-
trate how the framework can be applied and imply how
it can be extended to cover other visually observed phe-
notypes in these and other plant taxa.

To reduce semantic ambiguity and heterogeneity and
achieve finer granularity, very specific definitions for
ontology terms need to be provided. Though in some

cases, devices or gauges are available that can make
these specific definitions, most semantic concepts
related to visually observed phenotypes are either diffi-
cult or tedious to manually quantify (e.g. color, disease
resistance) or easy to measure but difficult to partition
measurements into semantic terms. For example, plant
height is an easy trait to measure; however, partitioning
the continuum of heights for a specific kind of plant
into terms like “dwarf”, “short”, “average”, “tall” can be
more difficult, especially in cases where there are no
clear boundaries. How does one decide the quantitative
boundary between these semantic terms?

Our approach, which utilizes a training set of pheno-
type imagery annotated with semantic labels in conjunc-
tion with data mining techniques, facilitates both the
determination of very specific definitions of these vague
semantic concepts and, in doing so, allows the computer
to learn the quantitative boundary between concepts
within the same semantic class. Imagery was chosen
because many of the relevant semantic terms, which may
or may not be included in existing bio-ontologies, can be
accurately quantified using computer vision and image
processing (CV/IP) algorithms. In order to show the uti-
lity of computational algorithms for measuring a variety
of semantic concepts, we provide below sample measure-
ments for each characteristic discussed to illustrate the
capability and necessity of CV/IP algorithms as part of
the ontological framework. This work is not intended to
introduce novel or improved algorithms for phenotype
quantification, but rather to illustrate the power of com-
putational methods for quantifying phenotypic appear-
ances and to use the measurements from these methods
to better define semantic concepts.

Maize is used as the primary prototype for the develop-
ment and demonstration of this framework. After study-
ing and categorizing descriptions of maize lesion mimic
mutants and corn plants afflicted with SLB, the prevailing
characteristics in these descriptions were determined.
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These characteristics include color, size, shape, fre-
quency/distribution, and spatial/anatomic relationships.
We discuss the importance of each of these characteris-
tics with respect to our example maize phenotypes
below. Figures 2 shows a summary of the various maize
phenotypes and some example measurements that can be
captured by image processing algorithms.
Color
Color is very important in the characterization of many
plant traits (e.g. leaf color, stem color, seed coat color,
fruit color), the analysis of several diseases, as well as the
description of mutants. For maize lesion mimic mutants
(les mutants), color can be used to determine whether a
lesion is necrotic (brown) or chlorotic (green, yellow, or
white) and, more importantly, can be used to differentiate
mutants, since different mutants produce different colored
lesions. Furthermore, color can play an important role in
separating normal tissue from abnormal tissue, as evi-
denced in the SLB scoring annotations. As an illustration,
consider the first row of Figure 2, which shows a leaf with
a light SLB infection, a leaf from one of the les mutants,
and a leaf with a heavy SLB infection consisting of predo-
minantly green, yellow, and brown tissues, respectively.
Color specification and quantification are both plagued
by semantic ambiguity and heterogeneity. Our framework
minimizes these semantic issues by precisely describing
color using quantitative color profiles rather than semantic
terms. For example, consider the different leaves (a, b, c)
in the top row of Figure 2. The color variations have been
captured computationally using a normalized hue histo-
gram [28,29] (Figure 2 (d)) consisting of 10 equi-width
bins. We decided to use the Hue Saturation Value (HSV)
color space as it more closely represents the way humans
perceive color than the traditional Red Green Blue (RGB)
color space. The open-source CV/IP library OpenCV
[30,31] was utilized to determine hue values from the
images. In this chart, the horizontal axis corresponds to 10
discrete ranges of the hue component, and the vertical
axis shows the normalized frequency of each hue range.
HO represents the lowest values of hue, while H9 repre-
sents the highest values. The hue histogram shows that
the green leaf (a) has significantly higher frequencies in
low hue ranges (HO-H3), with a peak in H7 resulting from
the brown lesion expression on the leaf. The yellow leaf
(b) has values in the middle hue ranges (H3-H7), and the
brown leaf (c) in the high hue values (H7-H9). This type
of CV/IP algorithm can be used to quantify color in any
phenotype.
Shape
Shape is an important characteristic that is used to cate-
gorize various plant-related structures. This may include
the shape of more obvious structures like leaves and
fruit, but can also refer to the shape of substructures, e.g.
any lesions on the maize leaf surface. The semantics used
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to describe shape also suffer from semantic vagueness.
Consider again the set of maize /es mutants. The shapes
of the lesions in the mutant descriptions in (Figure 2e, f,
g) are described as round, elliptical, and irregular, respec-
tively, in [26]. To precisely describe these shapes, one of
many shape algorithms can be applied. As a simple
example, one could use roundness to help define the
shape of a lesion (of maximum diameter d), which is
defined as the ratio of the area of a lesion to the area of
the circle with diameter d. The closer the ratio is to one,
the closer the shape of the lesion approaches a perfect
circle. (Figure 2h) shows the roundness histogram, also
partitioned into 10 equi-width bins, for the les mutants
in the second row. Roundness bins R0-R9 represent dif-
ferent ranges of roundness from low to high. The leaf
with mostly small, round shapes (e) has higher values in
the high-roundness bins (R7-R9) than the other two
leaves. However, this leaf (e) also has some less round
lesions, which produce signals in the low-roundness
ranges (R0O-R6). The leaf with fewer round lesions (f) has
significantly lower values in the high-roundness parti-
tions (R8-R9) and higher values in the low-roundness
partitions (R1-R2) than leaf (e). The leaf with many irre-
gular shapes (g) has the highest values in R0-R3. These
profiles can be used as an aggregate measure of lesion
shape on a leaf.

Size

The concept of size is well recognized and established in
the existing ontologies and is used in various phenotype
descriptions. For maize /es mutants and SLB infections,
the sizes of lesions are typically described as being small,
medium, or large. For example, a les] mutant is more
likely to have large necrotic spots on its leaves, while les2
mutants typically have small necrotic spots. Again, compu-
tational methods can be used to minimize semantic vague-
ness by accurately capturing and representing size terms.
To quantify a les mutant with respect to size, one would
like to measure and record the sizes of all the lesions on a
leaf and describe the phenotype as a distribution or aggre-
gation of individual lesion sizes. (Figure 24, j, k) shows,
from left to right, maize leaves with small, medium, and
large lesions as well as a chart (1) showing the differences
in the lesion size for each of these leaves, with Z0 repre-
senting the smallest-sized lesions and Z9 the largest-sized
lesions. Each leaf shows higher signals in the area of the
histogram corresponding to the size of lesions it contains.
It should be noted that the visualized differences in the
profile of lesion sizes imply boundaries between the con-
cepts in this semantic class using this computational
measure.

Frequency and Distribution

Current ontologies like TO and PATO contain some
terms related to the frequencies and distributions of var-
ious characteristics of plant structures. In addition to
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Figure 2 Example measurements of lesion characteristics in Zea mays using imagery and computer algorithms. Many useful phenotypic
attributes can be quantified via calculations from phenotype imagery. Here, we show a variety of phenotype appearances in maize as well as
corresponding measurements to demonstrate the capability of algorithms in differentiating these appearances. Each section of the figure
contains a series of images that vary by some characteristic as well as a chart showing the differences in the measurements (features) of this
characteristic from the images. The top left section contains images of leaves that are (a) green, (b) yellow, and (c) brown. The color differences
are clearly visible in the (d) chart of corresponding histograms based on the hue of the leaves. Similarly, the top right section contains leaves
with lesions of varying shape: (e) tiny round lesions, (f) elliptical lesions, and (g) irregularly shaped lesions. A (h) histogram of lesion roundness
shows how shape can be measured in a way to differentiate these lesion shapes. In the middle left section, leaves with (i) small, (j) medium, and
(k) large lesions are shown, along with () a histogram of lesion size. The right middle section attempts to capture lesion distribution in leaves
with lesions ranging from sparse to dense (m)-(0). An algorithm that plots a (p) histogram of the distance to the nearest neighboring lesion is
used to provide a measure of lesion distribution. Finally, the bottom section contains (g)-(s) leaves with lesions in various spatial arrangements.
By vertically partitioning a leaf into sections of equal width, the spatial configuration of lesions can be measured by counting the number of
lesions in each partition, and this histogram is shown in ().
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these, terms related to the frequency of lesion expres-
sion (e.g. “very few”, “a few”, “moderate”, or “many”)
and the distribution of objects (e.g. “uniform”, “clus-
tered”, “dense”, and “sparse”) are necessary to fully
describe complex visual traits. In [26], mutants are often
defined by the frequency or distribution of lesions: “les5
plants are like les2 but lesions are more frequent”, or
“les7 plants have evenly distributed spots on the leaf
blade” [26].

Because of the subjectivity in human perception, these
characteristics are particularly difficult to manually mea-
sure and are especially suited for quantification via com-
putational approaches. A simple approach to represent
frequency and distribution information is a histogram of
distances from a lesion to its nearest neighbor (NN).
(Figure 2m, n, o) show three /les mutants with very dif-
ferent frequencies and distributions of lesions, along
with the corresponding NN distance histograms (p).
Each partition of the histogram represents a range of
NN distances with DO containing the shortest distances
and D9 the largest distances. Histograms with high
values in the shorter distance bins (o) are said to have
dense expression, whereas sparse expression is repre-
sented by higher values in the larger distance bins (m).
If a leaf has many lesions, the area under the corre-
sponding plot is larger than the plot of a leaf with fewer
lesions. Using measurements such as these, distribution
characteristics can be more precisely quantified.

Spatial Relationship

Spatial relationships can also be important when describ-
ing visual phenotypes and can be expressed in two ways:
(1) relative to other objects (e.g. objects are “concentric”)
or (2) relative to a particular plant structure or landmark
(e.g. an object is “2.3 cm from the midrib” or “on the
third of the leaf closest to the tip”). PATO contains
descriptions of spatial terms from the first category,
under the accession PAT0:0001631; terms from the sec-
ond category could be obtained by pre-composing [32]
terms from the plant structure ontology (PO) and the
spatial (BSPO) ontology from the OBO Foundry [33].

To illustrate how algorithms can be used with these
types of terms, consider (Figure 2q, r, s), which contains
three leaves whose phenotypes are described with spatial
relationships: (q) a leaf with moderate expression on the
third of the leaf closest to the stem, no expression on the
middle third of the leaf, and some expression on the third
of the leaf closest to the tip, (r) a leaf that has small lesions
throughout the leaf with particularly high expression on
the fourth of the leaf closest to the tip, and (s) a leaf with
quite uniform expression on the entire length of the leaf.
By dividing the leaf into different partitions, we can more
precisely quantify some of the different spatial characteris-
tics found in these leaves. For example, (Figure 2t) con-
tains a histogram of the number of lesions in each
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partition. Note that the image characteristics described
above can be clearly seen in this plot.

The Computable Visually Observed Phenotype
Ontological Framework

In order to formalize the modeling, representation, and
quantification of high-level semantic concepts used in
phenotype descriptions, the Computable Visually
Observed Phenotype Ontology Framework (CVOPOF) for
plants has been designed. This framework maintains inter-
operability with existing bio-ontologies by interfacing spe-
cies-specific characteristics, anatomical structures,
phenotypes, and trait concepts with the bio-ontologies
PO, TO, and PATO. Because the qualitative terms of the
current bio-ontologies suffer from ambiguity, heterogene-
ity, and granularity problems, CVOPOF links them to
low-level quantitative measurements in a computational
way, by evaluating imagery content of visually observed
phenotypes. CVOPOF increases the utility of bio-ontolo-
gies, especially in terms of information retrieval (IR). As
indicated in Figure 3, the framework is divided into four
components: a visual phenotype ontology (VPhenoO), an
ontology for imagery and computer algorithms, an anno-
tated computational pipeline, and a semantic mapping
interface to link the ontologies together.

Visual Phenotype Ontology

In this first portion of the CVOPOF framework, we intro-
duce the structure for a new ontology skeleton called
VPhenoO. This aspect of the framework is constructed to
relate and organize the terms used in phenotype descrip-
tions and annotations. This is accomplished by leveraging
well-established bio-ontologies and including additional
terms where necessary. A VPhenoO can be divided into
the following five layers, which define the domain for the
ontology, the first four of which are formed by interfacing
to other established ontologies/terminologies:

» The Plant Taxon layer is linked to the plant taxon-
omy classification http://www.ncbi.nlm.nih.gov/Tax-
onomy/taxonomyhome.html/.

+ The Plant Structure layer is linked to plant struc-
ture identifiers in the Plant Ontology http://www.
plantontology.org. This connects to the Plant Taxon
layer using “part of” relationships.

« The Plant Abnormality layer is linked to correspond-
ing species-specific information such as disease, muta-
tion, etc. Maize lesion mimic mutants (MaizeGDB,
http://www.maizegdb.org), for example, represent a
class of mutations. The ontological relationship used
to connect a plant abnormality to the Plant Structure
layer is an “expressed on” relationship.

« The Phenotype Expression layer contains semantic
concepts found in phenotype descriptions, many of
which can be linked to TO and PATO, which
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Figure 3 The four components of the CVOPOF and the
relationships between them. The first component is the VPhenoO
(in green), which is the organization of semantic concepts related to
phenotype descriptions. This includes everything from species
identifiers to qualitative descriptors to quantitative measurements.
The quantitative measurements correspond to sets of ranges of
measurements, and the linkages between these layers are
computed via the semantic mapping interface (in yellow). The
imagery and algorithm ontology (in blue) hierarchically relates terms
related to images, algorithms, and measurements. The final
component, the computational pipeline (in black), defines the
imaging protocol and processing plan for phenotype images. It is
constructed using terms from the imagery and algorithms ontology,
and the measurements it produces provides the input that allows
the semantic mapping interface to compute association rules
linking measurements to semantic concepts.

identify quality bearing traits and qualitative values
for those traits http://www.gramene.org/plant_ontol-
ogy/; http://bioontology.org/wiki/index.php/PATO:
Main_Page. An “expressed by” relationship is used
to join this layer to the Plant Abnormality layer.

« The Phenotype Quantification layer contains more
precise quantitative values for the semantics in the
layer above. This layer, which uses a “describes” rela-
tionship to connect to the Phenotype Expression
layer, will be discussed in more detail after the
semantic mapping interface.

In Figure 4, the conceptual schema for the first four
layers of a sample VPhenoO for lesion mimic mutants
in maize are shown. The included semantics in this
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figure are not meant to represent the complete set of
relevant terms, but rather just a sample of a VPhenoO’s
structure.

Ontology of Imagery and Computer Algorithms

Since imagery is used in CVOPOF to computationally
determine the correspondence between semantic con-
cepts and quantification of these concepts, an ontology
to organize the information related to imagery and com-
puter algorithms used to process imagery was included in
the framework. The rationale is twofold. First, it provides
a listing of the types of measurements that can be made
from image content using computer algorithms. Second,
by providing this listing, the ontology helps a user group
construct an imaging pipeline (see the next section) for
standardized imaging and processing of phenotype
images. This also ensures that measurements taken from
these images are comparable, which is a prerequisite for
utilization of our semantic mapping module.

The semantics in an ontology of imagery and algorithms
can be divided into three layers, as depicted in Figure 3.
The Imagery layer is the top layer (see the bottom of
Figure 3) and contains semantics related to imagery.
Images may be categorized by their adherence to certain
imaging protocols. These protocols facilitate the use of
certain normalization algorithms to transform them to
baselines where the images become comparable. An ima-
ging protocol may correspond to the inclusion of a color
or size standard placed in the field of view or the use of a
certain background type or color when imaging a pheno-
type. Images may also be classified by whether they exist
on their own or as part of a series of images to capture a
temporal phenotype. Semantics also exist to describe
image transformations that occur during image preproces-
sing, which may include segmentation or isolation of
important aspects of the image. The middle layer in this
ontology, the Algorithms layer, contains algorithms that
produce measurements (features) from imagery. As dis-
cussed previously, these features are the low-level quanti-
tative components that are crucial for resolving semantic
heterogeneity, facilitating more advanced phenotype
searches, and future development of automatic annotation
utilities. The algorithms in this layer are classified by the
type of information they extract and also by the number of
images that are used to produce the information. Finally,
the lowest layer is the Machine Representation layer,
which describes any post-processing transformations done
on the output of the algorithms from the layer above, spe-
cifically normalization. An example ontology correspond-
ing to the images and algorithms used during the
processing of the maize leaf images is shown in Figure 5.

It should be noted that the values of any input para-
meters for these algorithms are not included in the
ontology, as that would add unnecessary complications.
Since the values of these parameters determine the


http://www.gramene.org/plant_ontology/
http://www.gramene.org/plant_ontology/
http://bioontology.org/wiki/index.php/PATO:Main_Page
http://bioontology.org/wiki/index.php/PATO:Main_Page
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Figure 4 Hierarchical structure of a partial Visual Phenotype Ontology (VPhenoO). A snapshot of the top four layers (separated by dotted
lines) of a sample VPhenoO is displayed, showing how semantics related to maize lesion mimic mutants might be organized in the ontology.
The top two layers also contain additional species and structures, respectively, demonstrating the entry points where phenotype semantics
related to these would be located. The terms highlighted in green indicate terms that have been expanded.
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Figure 5 Sample of an imagery and algorithms ontology. The ontology covers imagery and algorithms through the steps in computational
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in green) categorizes imagery transformations during the preprocessing stage. This includes image standardization, segmentation, and grouping.
The algorithm portion (middle, in blue) covers the algorithms involved in feature extraction. Each of these algorithms produces vectors, or
measurements, as output. The algorithms are categorized by the number of input images and by the trait being measured. Finally, the vector
portion (right, in orange) of the ontology handles postprocessing of the measurement vectors.
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quality of the output features, the appropriate parameter
values will need to be determined and annotated to a
computational pipeline.

Computational Pipeline

The consistent and accurate quantification of classes of
phenotypes from imagery necessitates the construction of
a standard computational pipeline that determines an
imaging standard for capture of these phenotypes as well
as the set of algorithms used to produce the required fea-
tures for representing specific phenotypic traits. The ben-
efit of such a pipeline is that all phenotype images
adhering to the standard and processed using the pipe-
line will be comparable in terms of high-level semantic
descriptions as well as low-level computational features.
This is an essential aspect of the semantic mapping pro-
cedure discussed in the next section, as images are not
computationally comparable if (1) they cannot be trans-
formed to a common baseline, i.e. if they do not adhere
to some imaging standard, or (2) there is a not a common
set of features collected for the entire set. The pipeline
will guide image processing from an un-standardized,
raw image through pre-processing, feature extraction,
and post-processing (which includes feature normaliza-
tion), all of which are covered components of an ontology
of imagery and algorithms. The pipeline can be annotated
with the described ontology and extended so that the
appropriate input parameters for each algorithm are
stored.

As a concrete example, consider the annotated compu-
tational pipeline in Figure 6 constructed for capturing
and processing maize leaf phenotypes. The input and
output to each step in the processing pipeline correspond
to a value in the imagery and algorithms ontology, and
these terms have been supplemented with parameter
information to provide additional algorithmic detail.
Semantic Mapping
The most critical part of the framework is the semantic
mapping interface, which is the computational module
that utilizes a data mining approach to automatically
learn the quantitative boundaries between semantic con-
cepts. Input to this module consists of a set of phenotype
images that have been (1) processed using the computa-
tional pipeline to measure the desired phenotypic charac-
teristics (i.e. image features extracted) and (2) manually
annotated (by one or more curators) with the semantic
concepts of interest. For example, Table 1 shows selected
features extracted for the Anna Russian tomato variety
(labeled by SGN as medium in size and oxheart in shape)
using Tomato Analyzer. Once all this information for all
the tomato fruits for which we have measurements and
semantic labels has been amassed, it is passed to this
module for processing.

Our semantic mapping module is a knowledge discov-
ery process that determines complex and flexible
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Figure 6 Sample computational pipeline for the maize leaf
imagery. This flow chart illustrates the entire process from raw
phenotype image to phenotype measurement extraction. The input
image indicates the required imaging protocol for use of this
pipeline, namely the use of a color checker and a standard solid
background color. The inputs of the pipeline (through feature
extraction) are all images, with the boxes corresponding to
algorithms applied to the input images. The postprocessing boxes
indicate transformations of the raw measurements to their final
form. It should be noted that each step is annotated with terms
from the imagery and algorithms ontology and augmented with
additional necessary parameters. This pipeline provides a standard
processing path for phenotype imagery and also provides the
necessary input for the semantic mapping module.

association rules among a sufficiently large training set
of visual semantics and machine-readable features from
plant images. Our approach emphasizes the use of flex-
ible semantics to address the heterogeneous semantic
assignments that are inherent in the descriptions of
plant phenotypes. A key to the success of the predictive
power of our algorithm is to identify a training dataset
that would return accurate models while being minimal
in size to reduce the burden on those imaging and
manually annotating the phenotypic appearances. While
some approaches suggest large amounts of training data
[34] to compensate for poor training data choice, other
research [35] shows that prediction gain decreases with
adding more data to the training and eventually reaches
a plateau where adding more training data does not
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Table 1 Example of extracted features for the Anna Russian tomato variety
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Num  Perimeter Area Max Width  Max Height = Curved Height  Shape Index 1 Shape Index 2 Curved Shape Index
01 787.2 41884 228 237 2523 1.04 0.98 112
02 813.1 43809 230 245 268.6 1.07 1.04 122
03 7194 34326 192 237 2614 123 1.23 137
04 7194 34807 189 238 2629 1.26 1.27 142
05 7624 39612 218 248 2769 1.14 1.14 1.28
06 7936 41503 221 256 286.0 1.16 1.15 133
07 753.1 37440 221 224 2664 1.01 0.98 122
08 746.7 38172 220 220 2639 1.00 0.99 123

This tomato variety is labeled by SGN as being “medium” in size with an “oxheart” shape. The features were extracted using the Tomato Analyzer software.

bring any improvements in performance. In our
approach we capitalize on the tradeoff between size and
quality of training data. We choose the training data to
contain representative examples from all semantic
assignments.

We model the mapping between semantic and
machine-readable features by creating a set of association
rules [36,37] via data mining. The association rules in our
model are mined using the Total-From-Partial tree struc-
ture [38] over the entire image database with semantic
assignment for phenotypic expressions. Each association
rule r (A—C) has a set of feature value ranges as its ante-
cedent (A) and a semantic as its consequent (C). An
example rule is {F006 € [0.09, 0.16] A F399 € [0.12,
0.21]}— ellipticallesion. This rule maps the semantic
“Elliptical Lesions” into a two-dimensional feature sub-
space of low-level features FO06 and F399 (see Table 2
for feature explanations). A new image is considered

relevant to the semantic “elliptical lesion” if its feature
measurements fall in the specified range. To make the
rules more flexible, after the association rules are discov-
ered, the antecedents are refined through fuzzification;
the crisp feature intervals in the antecedents are replaced
with possibility distributions that model the relevance of
the individual feature subspace. The following equation is
the asymmetric possibility function used to model the
semantic assignment for a feature subspace 9 of a feature
f. The shape of this function is controlled by three para-
meters: center - 1%, width - 1%, and slope - A°.

2

form <A}
1+ olGi=m)/32)

A
g(m) = form € [A}, Ap]

or m < Al
1+ e(“}lz—m)/'\fz)xz’* f =

Table 2 All features extracted for the maize leaf phenotypes, a total of 452 features

Features Feature Class Relevant Pixels of the Leaf Number of Features
001 - 048 RGB histogram Entire leaf 48 (16, 16, 16)
049 - 096 RGB histogram Necrotic lesions 48 (16, 16, 16)
097 - 144 RGB histogram Chlorotic lesions 48 (16, 16, 16)
145 - 192 RGB histogram Non-lesions 48 (16, 16, 16)
193 - 239 HSV histogram Entire leaf 47 (15, 16, 16)
240 - 286 HSV histogram Necrotic lesions 47 (15, 16, 16)
287 - 333 HSV histogram Non-lesions 47 (15, 16, 16)
334 - 380 HSV histogram Chlorotic lesions 47 (15, 16, 16)
381 - 392 Size histogram Necrotic lesions 12

393 - 404 Size histogram Chlorotic lesions 12

405 - 416 Roundness histogram Necrotic lesions 12

417 - 428 Roundness histogram Chlorotic lesions 12

429 - 440 NN distance histogram Necrotic lesions 12

441 - 452 NN distance histogram Chlorotic lesions 12

All color features (red, green, blue, hue, saturation, and value) were generated using equi-width binning, and all lesion features (size, roundness, nearest neighbor
(NN) distance) were generated using equi-area binning. The numbers in parenthesis in the Number of Features column show the total number of features as well

as the number per channel for the RGB and HSV histograms.
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Figure 7 shows the sigmoid mapping of the semantic
“elliptical lesion” into a two-dimensional space formed
by the low-level features FO06 and F399. According to
this chart, an image having feature values between 0.107
and 0.196 for F399 as well as between 0.08 and 0.14 for
F006 has a high probability of being relevant to the
“elliptical lesion” semantic. When feature measurements
are further away from this interval, the relevance of an
image to this semantic decreases. For example, an image
with feature values of 0.96 for F399 and 0.94 for F006
has a very low probability to be relevant to “elliptical
lesion”. The association rules are then indexed and
linked to the proper nodes in the ontology. For more
details regarding the construction of such a semantic
map, the reader is referred to [39]. It should be noted
that the accuracy of this semantic mapping, and hence
the accuracy of any applications utilizing this frame-
work, will rely heavily on a sufficiently number of phe-
notype images/descriptions annotated using the
framework.

The rules from the semantic mapping module become
the concepts in the fifth and final layer of a VPhenoO,
the Plant Quantification layer. Figure 8 shows three
rules that were derived from the semantic mapping
module for our maize leaf image collection (full results
on this collection are given in the next section) in addi-
tion to the encoding of these rules into the sample
VPhenoO. The linkage of the semantic categories to
these rules provides the concrete tie between the mea-
surements extracted from the phenotype image content
and the meaning of the semantic concepts. Representing
this layer in this way has the added benefit of providing
implicit linkages between the Plant Quantification layer
and the computational pipeline, as each feature

Relevance

Figure 7 Visualization of an example fuzzified association rule
that maps the semantic “elliptical lesion” into a 2D feature
space. A crisp association rule generated from data mining has
been transformed so that images relevant to this semantic can be
measured more continuously, instead of in a binary fashion with the
crisp rule.
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represented in a rule’s antecedent is linked to the algo-
rithm that generated that feature.

Results

Maize Lesion Mimic Mutant Phenotypes

The framework was first applied to leaf phenotypes in
Zea mays. The dataset consists of 310 leaf images cover-
ing 15 different lesion mimic mutants taken from a
genetics maize field at the University of Missouri. Three
different curators assigned semantic labels to each
image, and consensus was used to determine the final
labels. Semantic categories assigned to the images
included terms related to lesion coverage, lesion size
(“small”, “medium”, “large”), lesion shape ("elliptical”,
“irregular”), and lesion color (“brown”, “yellow”). Each
semantic label assigned to each image was coded by the
curator in terms of degree of appearance, as either
“none”, “few”, “moderate”, or “extensive.” As an exam-
ple, Figure 9 shows the consensus labeling for one of
the 310 images.

In addition to semantic labeling, each of the maize leaf
images was also processed using the computational
pipeline in Figure 6. This pipeline consists of a series of
C++ computer programs developed in-house for mea-
suring various characteristics of lesion mimic mutant
phenotypes. These programs utilize function calls from
the open source CV/IP library OpenCV. As a result of
this pipeline, a total of 452 features was obtained for
each image. Table 2 describes the entire set of features.

The semantic labels and image features were passed to
the semantic mapping module. To avoid problems stem-
ming from the curse of dimensionality, this module auto-
matically performs feature selection (genetic, best first,
exhaustive search, or greedy stepwise) to statistically
determine which measurements are best able to distin-
guish individual semantics; those features that are not
helpful or that are highly correlated with other useful fea-
tures are excluded before mapping begins. Semantic
mapping was performed individually on each class of
semantics (e.g. lesion size). Multiple rules were generated
for each semantic term, and a summary of the outputted
rules are shown in Table 3. The full set of generated
rules from this dataset can be found in Additional File 1.

We also conducted experiments on the generated rules
to evaluate how well the rules were able to predict the
chosen semantic labels. To determine the quality of the
generated rules, a resubstitution experiment was carried
out. The mean average precision (MAP) for each of the
semantic categories as well as the average MAP for each
semantic class are shown in Table 4. Precision-recall
curves were also generated (see Figure 10). Inspection of
these results shows highly accurate results for lesion cov-
erage and lesion color with decreasing quality of results
for lesion shape and lesion size. The reason for the
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Rule 01:{0.0 < F406 < 0.333 AND 0.0 < F391 < 0.199 2 “Large”
Rule 02:{0.0< F242< 0.487AND 0.57 < F088 < 1.0} 2 “Brown”
Rule 03:{0.0 <F262 <0.578 AND 0.017 < F213 <.651 AND 0.47 <F011< 1.0 } = “Brown”
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Computational Pipeline Outputs

specific images.

Figure 8 Embedding association rules from semantic mapping into a VPhenoO. Three example association rules obtained from semantic
mapping are shown in the table above. Each rule contains a region of feature space (sets of ranges of phenotype measurements) as the
antecedent and a semantic concept from the Plant Expression layer as the consequent. These rules become the Plant Quantification layer in a
VVPhenoO and are linked by the consequent to the layer above. There are also implicit links between the Plant Quantification layer in a VPhenoO
and the computational pipeline, as the measurements in each antecedent are linked to specific vectors obtained using specific algorithms from

decline of results in these latter two semantic classes
becomes obvious when one looks more closely at lesion
segmentation in many of these images. Though human
perception is able to project boundaries between indivi-
dual lesions in images like Figure 11, upon closer inspec-
tion of the image (and evidenced by the segmentation
algorithm) many of these so-called individual lesions are
in fact touching and should be treated as a “single” larger
lesion. While this visual illusion will not have an effect
on the lesion coverage or color semantics, it will defi-
nitely have an effect on lesion sizes and shapes.

Tomato Fruit Phenotypes
In addition to Zea mays, the framework was applied to
some fruit phenotypes in a second species, Solanum

lycoperiscum. This dataset consisted of 20 tomato fruit
images, each of which contained 2 to 16 individual
fruits, from 19 different tomato varieties. Table 5 pro-
vides the number of fruits from each tomato variety.
These images in addition to the semantic labels asso-
ciated with the different tomato varieties were obtained
from SGN. The semantic labels indicated the shape and
the size of the tomato fruit.

In this case study, instead of developing a brand new
set of algorithms, as was required for the maize case
study, an available tool from the plant community, the
Tomato Analyzer [6,40], was used for processing the
images. A total of 56 features was extracted from each
tomato fruit using this software, and Table 6 provides a
listing of those features. The semantic module was again
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Lesion Coverage Moderate [ A ]
Small Lesions Few [ A
Medium-Size Lesions Moderate A
Large Lesions None A
Elliptical Lesions Few A
Irregular Lesion Moderate [ A
Brown Lesions Moderate T A
Yellow Lesions None A
White Lesions None [ a
Green Lesions None

-

Figure 9 Example of the set of semantic labels assigned to a maize leaf image. The curator was asked to assign a degree of relevance to
each semantic concept. This figure shows a screenshot of our web-based semantic labeling tool that uses slider bars to simplify the labeling.

applied to these semantic labels and image features. A
summary of the generated rules is provided for this
dataset in Table 7, and the complete details about all
the mined rules can be found in Additional File 1.

The same resubstitution experiment was conducted on
this dataset to once again verify the quality of the image
features and generated rules. The MAP values (see
Table 8) and precision-recall plots (see Figure 12) again
show high quality results for all semantic categories. It
is noteworthy to compare the MAP results between
maize and tomato. The rules for the tomato fruit have
higher precision results than those rules for maize
leaves. This is because, in the current collection, the
maize leaf phenotype expression is more complicated, in
terms of appearance, measurement, and semantic label-
ing, than the tomato fruit phenotype expression. This is
evidenced by the increased number of rules linked in
the ontology for maize leaves.

Table 3 Summary of the number of mined rules for each
semantic concept for the maize leaf phenotypes

Merged VPheno Ontology for Multiple Species

A VPheno Ontology containing semantics from maize
leaf lesion phenotypes and tomato fruit phenotypes was
constructed from the two case studies presented above.
This ontology contains semantics in all five of the
described layers in a VPhenoO, from taxonomic classifi-
cation to semantics describing phenotypic appearance to
automatically determined association rules linking
semantic concepts to measurements of these phenotypes
from imagery. The maize portion of the ontology con-
tains 162 nodes - 40 of which are high-level semantics
with 122 corresponding to the generated semantic rules
for the maize leaf. The remaining part of the ontology is
related to the tomato fruit phenotypes and consists of
68 nodes - 19 high-level semantics and 49 generated
rules. This ontology is available, in Web Ontology Lan-
guage (OWL) format, in Additional File 2.

These case studies explicitly demonstrate how CVO-
POF utilizes a variety of established ontologies including
PO, TO, and PATO, and also the framework’s flexibility
in being able to accommodate both customized

Semantic Class Semantic # of Rules Table 4 Mean average precision (MAP) of maize leaf
Lesion Color Brown Lesions 13 semantic assignment
Lesion Color Yellow Lesions 14 Color Semantics MAP Shape Semantics MAP
Lesion Shape Elliptical Lesions 5 Brown Lesions 1.000 Irregular Lesions 1.000
Lesion Shape Irregular Lesions 11 Yellow Lesions 0.962 Elliptical Lesions 0.727
Lesion Coverage Extensive 17 Color Average 0.981 Shape Average 0.864
Lesion Coverage Moderate 19 Size Semantics MAP Coverage Semantics MAP
Lesion Coverage Few 12 Large Lesions 0970 Few 0.986
Lesion Size Large Lesions 17 Medium-Size Lesions 0432 Moderate 0.993
Lesion Size Medium-Size Lesions 3 Small Lesions 0.582 Extensive 0.998
Lesion Size Small Lesions 10 Size Average 0.661 Coverage Average 0.992
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Figure 10 Precision-recall curves for the mined results for the maize leaf phenotypes. The curves are separated by semantic class: lesion
color (top left), lesion size (top right), lesion shape (bottom left), and lesion coverage (bottom right).

algorithms as well as publically available computational
tools (e.g. Tomato Analyzer).

Discussion

Applications

The semantic mapping module provides the ground-
work for two advanced phenotype applications: retrieval
and annotation. Combining a VPhenoO with content-
based image retrieval (CBIR) makes efficient querying of
visually similar phenotypes from semantics tractable

Figure 11 Example maize leaf image along with an image
showing the segmented lesions. Two examples are shown (in the
red circles) where necrotic lesions appear to be separate by human
eye, but the lesion segmentation algorithm merges them into a
single lesion since the areas of necrosis are actually touching. White
pixels in the segmented image correspond to areas of necrosis, and
gray pixels to areas of chlorosis.

[41,42]. Semantic searches use canonical semantics and/
or phenotype annotations as queries. An example sys-
tem, illustrated in Figure 13, shows a semantic search
for maize lesion mimics. In this example, a user selects
a combination of two semantic terms (“Medium Size
Lesions” and “Brown Lesions®) to search for relevant
phenotype images from the database. For each semantic
term, a list of the most relevant images is formed. The
image lists are fused together to create a ranked list of
images that best match all semantics and are returned
for the user to consult.

Table 5 Number of tomatoes for each variety

Name # of Fruits Name # of Fruits
Anna Russian 8 Galatino 16
Banana Leg 8 Goliath 10
Belmonte 6 Grape 16
Black Plum 16 Green Grape 8
Borgo Cellano 12 Grushovka 2
Corbarino 12 Guajito 8
Cuban Yellow Grape 16 LA1312 12
Determinato Tondino 8 LA2294 12
Druzba 8 LYC1891 6

Fiascetto 10
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Table 6 Features selected and extracted for tomato fruit
phenotypes from Tomato Analyzer
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Table 8 Mean average precision (MAP) for tomato fruit
semantic assignment

Features Description # of Features Shape Semantics MAP Size Semantics MAP
1 Fruit Perimeter 1 Oxheart shape 0.985 Small size 1.000
2 Fruit Area 1 Long shape 1.000 Medium size 0.999
3 Width at Middle of Height of Fruit 1 Ellipsoid shape 1.000 Large size 0.998
4 Maximum Width of Fruit 1 Round shape 0.988 Size Average 0.999
5 Height at Middle of Width of Fruit 1 Obovoid shape 1.000
6 Maximum Height of Fruit 1 Heart shape 0.998
7 Curved Height of Fruit 1 Flat shape 1.000
8-10 Shape Index of Fruit 3 Rectangular shape 1.000
11-13 Average RGB values 3 Shape Average 0.996
14 Average Luminosity 1
15-17 Average L*a*b* values 3 Potential Applications
18 Average Hue 1 Use of the CVOPOF framework makes possible the devel-
19 Average Chromatic 1 opment of a number of more advanced applications and
20-56 HCL histogram 37 utilities for analysis and annotation. First, when images

In addition to semantic search, the semantic map-
ping module also facilitates an annotation utility. With
this application, a user could submit an image to the
system, which would generate a feature vector using
the devised computational pipeline. Feature values
would be matched to antecedents to find applicable
association rules, and then through probabilistic
means, those rules would be used determine the rele-
vance of each semantic to the image. This is also part
of the application shown in Figure 13. For the result
image shown in the middle pane, the list of semantics
with non-zero relevance to this image is displayed in
the bar chart to the left of the image. The height of
each bar corresponds to the relevance of the corre-
sponding semantic.

Table 7 Summary of number of mined rules for each
semantic concept for the tomato fruit phenotypes

Semantic Class Semantics # of Rules
Fruit Shape Flat shape 8
Fruit Shape Heart shape 5
Fruit Shape Long shape 2
Fruit Shape Obovoid shape 1
Fruit Shape Oxheart shape 2
Fruit Shape Rectangular shape 1
Fruit Shape Round shape 1
Fruit Shape Ellipsoid shape 13

Fruit Size Small size 5
Fruit Size Medium size
Fruit Size Large size

have corresponding descriptions annotated using a VPhe-
noQ, CBIR searches could be used to facilitate studies of
the similarities and differences in semantic terms used to
describe visually similar phenotypes, perhaps across anato-
mical structure and even taxa. In addition, one could con-
sider using the semantic mapping module to generate
association rules for each of several individual curators.
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Figure 12 Precision-recall curves for the mined results for the
tomato fruit phenotypes. The curves are separated by semantic
class: fruit size (top) and fruit shape (bottom).
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Figure 13 Screenshot of an example semantic search result page. Using the CVOPOF framework, advanced search mechanisms, like the
semantic search above, can be constructed. In VPhenoDBS http://phenomicsworld.org, the semantic search feature allows a user to search for
relevant phenotype images by querying with a list of semantic terms; in this example, the user is searching for “Medium Lesions” and “Brown
Lesions.” The images searched are not physically tagged with semantic labels; rather, the framework allows the semantics (via the semantic
mapping module) to be converted and searched in the phenotype feature (measurement) space. The result page shows (bottom pane) the top
ranked results; (middle pane) information about the currently selected result image including the image itself, any textual metadata, and all
semantics with non-zero relevance extracted for this image; and (top right) the distribution of les mutants in the top ranked results.
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lesi7
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With the generated rules, one could quantify and perform
statistical analyses on the similarities and differences
between individual curators’ perceptions. Once the system
learned the annotation style for an individual, the system
could then allow database curators to detect inconsisten-
cies or possible errors in annotation so as to maintain high
levels of repository integrity. Alternatively, the rules from
individual curators could be combined to form “consen-
sus” rules, which could represent a standard for annota-
tion of particular phenotypes.

The framework could also be used for training pur-
poses. A trainee could use the system to become

familiar with the semantics of phenotype descriptions by
examining annotated descriptions in conjunction with
phenotype imagery. The training should improve the
consistency of newly assigned phenotype descriptions as
well as human perception regarding plant phenotypes.

Utilization of the Framework

In order to fully benefit from this framework, a great
deal of collaboration, commitment, and careful planning
by the plant community are required. This includes
everything from construction of the ontologies and
labeling of image examples by a central administrative
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group to utilization of the unified information system by
more peripheral end users in that plant phenotype’s
domain.

To start the process, an administrative group must be
formed. This group should contain experts from the
particular taxon/phenotype community as well as CV/IP
experts. This collaboration will be vital to the success of
the framework, as both groups bring expertise that is
essential for correctly identifying and measuring pheno-
type expression. The administrative group will first iden-
tify those phenotypes of interest that can be captured
and represented through imagery. The distinguishing
characteristics of these phenotypes must then be deter-
mined, and, with the aid of computer vision experts, the
algorithms and parameters necessary to quantify those
traits need to be selected.

Once these items are determined, attention can be
turned to ontology creation. The top layers in the VPhe-
noO can be constructed with either semantic terms pre-
sent in existing ontologies or by new terms. Though
ontology construction will be tedious, the realized bene-
fit of minimizing semantic vagueness in the descriptions
should be worth the effort.

In parallel with ontology construction, a pipeline for
processing the phenotype images can be built. This can
be constructed and annotated using terms from an
ontology of imagery and algorithms. The pipeline will
ensure that appropriate phenotype measurements will
be made for each image submitted to the system. It may
also ensure that an image adheres to the defined ima-
ging protocol.

Following these steps, a set of training image examples
will need to be constructed and annotated. Multiple
example images representing each of the various con-
cepts in the VPheno Ontology should be collected and
annotated. These training images should also be pro-
cessed using the pipeline to obtain phenotype measure-
ments from the image content itself.

After these training data are compiled, the semantic
mapping module can be executed to determine the cor-
respondences between high-level semantics (ontology
concepts) and low-level features (measurements made
from phenotype image content). The last step in the
initial construction phase of the system is to add the
generated rules to the VPheno Ontology.

After the administrative group has created a VPhenoO
and computational pipeline and after the semantic map-
ping module has been trained with the training data,
users can begin to take full advantage of the ontological
framework. They may submit un-annotated images of
their phenotypes to the system. Phenotype measure-
ments will be obtained from the pipeline appropriate to
the type of image submitted, and these will be used to
automatically generate a list of semantic terms relevant
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to the image. The list of terms can be reviewed by cura-
tors and edited appropriately.

The initial construction phase is only the beginning, as
the system is intended to evolve. A number of events will
likely occur that the system must be able to accommo-
date. For example, what will be the process when users
request more semantic terms to be added to the ontol-
ogy? How does the system handle additional training
data provided by users who collect, manually annotate,
and wish to submit additional phenotype data to the sys-
tem? If there is additional data for training the semantic
mapping module, when is retraining performed? Compu-
ter scientists will undoubtedly continue to develop algo-
rithms for measuring various phenotypic characteristics
or they may make improvements to existing algorithms.
How will the system accommodate inclusion of these
algorithms into the processing pipelines?

Figure 14 illustrates the general tasks and processes
involved in handling all of these situations. The starting
point for each process appears in red. Submission of a
new algorithm to the system is a rather simple process.
After approval, the administrative group should obtain
an implementation of the algorithm and evaluate its per-
formance to verify its ability and accuracy in measuring
the claimed phenotype characteristic. Once this has
been done, the algorithm can simply be added to the
ontology of imagery and algorithms.

The most complicated task is the addition of a new
semantic concept. After a request for a new semantic
concept has been approved by the central administrative
group, the first step will be to include that semantic
concept into the VPhenoO. This may simply be adding
a related semantic in an existing part of the ontology or
it may require an extensive addition to the ontology
(adding a new species, plant structure, etc). After this
step, the administrative group will need to evaluate
whether the semantic can be measured from images in
the training data and using algorithms in the pipeline. If
the answer is no to either question, the group will need
to define the imaging protocol, select CV/IP algorithms,
create (or modify) the existing computational pipeline,
and make any necessary modifications to the ontology
of imagery and algorithms. Once features are decided
upon, a sufficient training set will need to be con-
structed. It is quite difficult to provide specifics on the
exact size of a sufficient training set, as it is dependent
on several factors including the quality of the image
labels and the ease with which the semantic labels in
the class can be separated quantitatively. With a good
training set, semantic mapping can be performed. The
MAP scores and precision-recall curves can be exam-
ined to determine the quality of the outputted rules. If
the rules show unsatisfactory performance, adjustments
to the training set (in terms of size or labels) can be
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Figure 14 Flowchart for building the CVOPOF framework. An instance of the CVOPOF framework represents an evolving system that must
be able to accommodate the inclusion of new semantic concepts, algorithms, and training data. The work flow for each of these processes is

made. If, on the other hand, the rules are of adequate
quality, they can be added to the VPheno Ontology in
the Plant Quantification layer.

Users may also submit new training data to the sys-
tem. Approval should be received on the quality of the
submitted images and the manual annotations. After-
wards, the image can be added to the training set data-
base and processed by the appropriate pipeline. Using
the features extracted from the image, the current set of
semantic rules can be applied to the image, which will
generate a list of relevant semantic terms. These terms
can be compared to the manual annotations, and statis-
tics maintained on the quality of the current rule set
can be updated based on this assessment.

Retraining of the semantic mapping module can be
initiated in one of two ways. First, if the updated

statistics from the added data cause the rule quality to
fall below a specified threshold, this could be used to
initiate a retraining of the system. Alternatively, an
assessment of rule quality could be performed on a reg-
ular basis. If the size of the new data is large enough,
retraining of the associated rules could be performed.
After retraining is accomplished, the updated rules
could be included in the VPheno Ontology. The rules
that are being replaced could be deleted, deprecated, or
made obsolete. Deprecating the old rules would have
the benefit of allowing an analysis of the changes in the
rules.

While the most extensive and comprehensive benefits
from the framework are achievable through widespread
collaboration by plant communities, adoption of
the framework by smaller cohorts of researchers or even
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individual research groups can still provide the noted
advantages, though on a smaller scale. In this case, the
interoperability of phenotypic information modeled by the
framework would be limited to only those groups utilizing
the framework, which would notably include utilization of
the same imaging protocol for phenotype capture. It is
noteworthy to mention, however, that any automatic
annotations generated through the use of the framework,
though not directly comparable, could still be of use to the
rest of the plant community.

Framework Limitations

Though there are many benefits for using the CVOPOF
for organization, quantification, and annotation of plant
phenotypes, the framework is not without limitations.
First, the framework requires a means to make direct or
indirect measurements of relevant phenotype characteris-
tics, specifically through phenotype images (though adop-
tion of measurements from other sources would be
straightforward). The phenotype images must follow a
defined imaging protocol so as to facilitate processing by
computer algorithms, and computer algorithms need to
exist that can measure the semantics of interest. Second,
the semantic mapping module requires sufficient training
examples for each semantic concept it is to be trained
on. Though it is difficult to specify precisely how many
training images are needed per semantic concept, the
general rule of thumb is the more training examples the
better. Too few training examples can result in no out-
putted rules from the semantic mapping module, or at
the very least rules of poor quality. The MAP scores and
precision-recall curves reported above provide evidence
of the quality of the generated rules. Implicit in a suffi-
ciently large training set of images is the requirement for
semantic labels for each of the submitted phenotype
images. This could be problematic as semantic labeling
can be a very laborious task. It can also be difficult for
humans to label images in an objective and consistent
manner. Finally, a potentially major limitation of the fra-
mework is that optimal use of the framework will require
extensive time, effort, and resources from the plant com-
munity to decide upon the species and phenotypes to
image, to obtain high-quality phenotype images, to find
or develop robust algorithms for measuring phenotypic
appearances, to provide consistent and objective labels,
and to train and retrain the system as more training data,
computer algorithms, and semantic concepts are
included. There will also need to be an understanding
that this system’s accuracy will evolve over time. Despite
these limitations, high throughput phenotyping, analysis,
and annotation are expected to be critical to ensure rig-
orous scientific discovery in plant genomic research.
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Conclusions

We have proposed a new ontological framework for
visual phenotype semantics that leverages several exist-
ing ontologies (e.g. PO, TO, PATO) and expands them,
through phenotype imagery and computational proces-
sing, to include a robust low-level computational level
that facilitates the linkages of high-level semantic con-
cepts found in qualitative observations to quantitative
measurements of these concepts from phenotype
images. The computational processing aspect of the fra-
mework is highly flexible in that it can utilize measure-
ments from existing publically available computational
tools (when such tools exist) or from customized algo-
rithms (when public tools do not exist). The linkages
are computed by a semantic mapping module that uti-
lizes data mining techniques. The by-product of this fra-
mework is the ability to more precisely define
phenotypic conceptual semantics in individual plant
domains, which leads to a reduction in semantic ambi-
guity and heterogeneity and improvement in semantic
granularity.

This framework facilitates the development of a num-
ber of phenotype-related applications. Next generation
information retrieval tools like semantic search in addi-
tion to automatic semantic extraction from phenotype
images have already been demonstrated. With integra-
tion of multiple plant structures and species, the frame-
work also has the potential to facilitate phenotype
retrievals across plant structure and species, though
more investigation is required. In addition, advanced
and comprehensive phenotype annotation analysis could
be performed by applying various data mining and
knowledge discovery tools to a repository of images
annotated using the framework.

Additional material

Additional file 1: This file contains two Excel sheets. The first
contains a listing of generated rules for the maize leaf and tomato fruit
phenotypes. The second sheet has detailed information about the
antecedents of each rule. Each antecedent is connected to its rule by
the value in the “RulelD" column.

Additional file 2: This file contains the complete sample ontologies
in the common format (OWL) for our constructed VPheno Ontology
for maize lesion mimic mutants and our ontology of imagery and
computer algorithms. It can be loaded into Protégé for viewing.
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