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algorithm based on a Dirichlet process prior and
comparison among Bayesian clustering methods
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Abstract

Background: A Bayesian approach based on a Dirichlet process (DP) prior is useful for inferring genetic population
structures because it can infer the number of populations and the assignment of individuals simultaneously.
However, the properties of the DP prior method are not well understood, and therefore, the use of this method is
relatively uncommon. We characterized the DP prior method to increase its practical use.

Results: First, we evaluated the usefulness of the sequentially-allocated merge-split (SAMS) sampler, which is a
technique for improving the mixing of Markov chain Monte Carlo algorithms. Although this sampler has been
implemented in a preceding program, HWLER, its effectiveness has not been investigated. We showed that this
sampler was effective for population structure analysis. Implementation of this sampler was useful with regard to
the accuracy of inference and computational time. Second, we examined the effect of a hyperparameter for the
prior distribution of allele frequencies and showed that the specification of this parameter was important and
could be resolved by considering the parameter as a variable. Third, we compared the DP prior method with other
Bayesian clustering methods and showed that the DP prior method was suitable for data sets with unbalanced
sample sizes among populations. In contrast, although current popular algorithms for population structure analysis,
such as those implemented in STRUCTURE, were suitable for data sets with uniform sample sizes, inferences with
these algorithms for unbalanced sample sizes tended to be less accurate than those with the DP prior method.

Conclusions: The clustering method based on the DP prior was found to be useful because it can infer the
number of populations and simultaneously assign individuals into populations, and it is suitable for data sets with
unbalanced sample sizes among populations. Here we presented a novel program, DPART, that implements the
SAMS sampler and can consider the hyperparameter for the prior distribution of allele frequencies to be a variable.

Background
In population genetics, inference of population struc-
tures is important for various purposes such as assess-
ment of genetic diversity, detection of genetic
discontinuities in natural wildlife habitats, and correc-
tion for stratification in association studies. To infer
population structures without prior knowledge about
the population, various statistical approaches using neu-
tral molecular markers have been proposed [1-9].
Bayesian approaches using Markov chain Monte Carlo

(MCMC) methods have been widely used to infer popu-
lation structures since Pritchard et al. [1] proposed the

Bayesian clustering algorithms implemented in the well-
known program STRUCTURE. This program can infer
the assignment of individuals to populations or the
admixture proportions of individuals for a given number
of populations (K). Researchers have extended Bayesian
algorithms for various purposes such as to take advan-
tage of spatial information [10-14], estimate inbreeding
coefficients [15], allow for allele mutations [16], and
infer K values [10,17-19].
Pella and Masuda [18] used a Dirichlet process (DP)

to infer K values. DP is a stochastic process that was
proposed by Ferguson [20] to treat nonparametric pro-
blems in Bayesian frameworks. The merit of using DP
to infer K is that K can take any value between 1 and
the number of individuals (i.e., the maximum value for
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K), and thus, few assumptions about K are needed for
inference. Pella and Masuda [18] considered K and the
assignment of individuals to populations as random vari-
ables using DP as a prior distribution for K and allele
frequencies unique to populations. Huelsenbeck and
Andolfatto [19] also used the DP prior for the inference
of population structures, and Reich and Bondell [14]
proposed a clustering algorithm using the DP prior,
which can incorporate spatial information. Besides the
inference of population structures, DP priors have been
used to infer the number of ancestral haplotype blocks
[21], to model nonsynonymous/synonymous rate ratios
[22], and to model the selfing rates of individuals [15].
To date, two clustering programs that implement the

DP prior have been provided, HWLER [18] and STRUC-
TURAMA [19]. Both programs implement the Gibbs
sampling procedure to infer the posterior distribution.
These programs differ in their approach to improve the
mixing of MCMC algorithms. HWLER implements the
sequentially-allocated merge-split (SAMS) sampler,
which moves multiple observations simultaneously [23],
and STRUCTURAMA implements the Metropolis-
Coupled MCMC (MCMCMC) technique [24], which
runs multiple chains, some of which are closer to a uni-
form distribution than the target distribution, and
attempts to swap states among chains.
Although HWLER and STRUCTURAMA are useful

and have been used in some recent studies [25-30], their
application to real data sets has been less common com-
pared with that of STRUCTURE. This may be because
the properties of these methods have not been investi-
gated in detail. When results obtained with different
methods are inconsistent, it is difficult to interpret the
results. For example, HWLER and STRUCTURAMA
may provide inconsistent results. In addition, although
HWLER detects three populations, the result obtained
with STRUCTURE under the assumption that K is 3
may be different from that obtained with HWLER.
The purpose of this study was to characterize the

Bayesian method based on the DP prior and to provide
information that will be useful in practice. First, we eval-
uated the SAMS sampler because its effectiveness has
not been examined. Second, we investigated the effect of
a hyperparameter, named l, which defines the prior dis-
tribution of allele frequencies, on the performance of
this method. As described by Pella and Masuda [18],
HWLER set l to J−1

l where Jl is the number of alleles at
locus l for any loci. However, this specification resulted
in inaccurate inferences in some cases. Third, we com-
pared the DP prior method with other Bayesian meth-
ods that infer the assignment of individuals for a given
K value. We focused primarily on the effect of unba-
lanced sample sizes among populations on the behavior
of these methods because unbalanced sample sizes were

found to affect the behavior of these methods in our
preliminary study.

Methods
Assumption and goal
We assumed that a sampled data set consists of diploid
individuals derived from an unknown number of popu-
lations, which are defined by unique values of allele fre-
quencies. Although our novel program, named DPART,
can also analyze haploid populations, we assumed only
diploid individuals in this study for simplicity. Our goal
was to infer the number of populations and assign indi-
viduals to their populations based on their genotypes.
The estimation of admixture proportions was not of
interest.

DP prior
The mathematical details of DP can be found in studies
conducted by Ferguson [20], Antoniak [31], and Neal
[32]. Here we provided a brief description of the DP
prior. Approximately and intuitively, DP can be seen as
a stochastic process that converts a continuous distribu-
tion to a discrete distribution. We assumed that obser-
vations (genotypes) are generated from the following
model (for simplicity, in this paragraph, we considered a
situation where only one locus is involved). Let G0

denote the prior distribution of allele frequencies at the
locus, which is continuous. DP is defined by G0 and the
concentration parameter a (>0). DP divides G0 into a
number of classes, each of which is represented by a
single point and yields a discrete probability distribution,
G. The number of classes, which is determined by the
number of observations and a, can be infinite. A vector
of allele frequencies (i.e., frequencies for all alleles at the
locus) for each genotype is drawn from G instead of G0,
and genotypes are drawn from the corresponding allele
frequency vectors. This model can be written as follows:

xi|φi ∼ φi

φi ∼ G

G ∼ DP (G0,α)

(1)

where xi is the genotype of individual i, ji is the allele
frequency vector for genotype i, and DP (G0, a) is DP. This
model is known as the DP mixture model [31]. Because G
is discrete, allele frequency vectors for some genotypes
may have values in common, i.e., these genotypes can be
seen as members of the same population, which is charac-
terized by the shared allele frequency vectors.

Parameters
By integrating out G, we can obtain a simpler represen-
tation of the model. When G is integrated out, the pre-
dictive (posterior) distribution for the allele frequency

Onogi et al. BMC Bioinformatics 2011, 12:263
http://www.biomedcentral.com/1471-2105/12/263

Page 2 of 16



vector ji conditional on {j1, ..., ji-1} can be written as
follows:

φi ∼ G0 with probability
α

α + i − 1

φi = φj for some j < i with probability
nj

α + i − 1

(2)

where nj is the number of allele frequency vectors that
share values with jj. This sequence of predictive distri-
butions is known as a Polya urn scheme [33]. To repre-
sent the clustering property of the model more
explicitly, we let {j1,...,jk} denote allele frequency vec-
tors unique to populations {1,...,K}. In addition, we
introduced parameters that represent the partition of
individuals {1,...,n}, according to the parameterization of
Dahl [23]. We let h = {S1,...,SK} define a partition for

{1,...,n} such that
K⋃
i=1

Si = {1, . . . ,n}, Si ∩ Sj = ∅ for all i ≠

j, and Si ≠ ∅ for all i.
Eq. (2) includes the following two types of prior infor-

mation:

f (i ∈ Sj for Sj ∈ η<i|η<i) =
|Sj|

α + i − 1

f (i ∈ {i}|η<i) =
α

α + i − 1

(3)

where h<i is h before assigning the ith individual and |
Sj| is the number of individuals included in Sj, which is
the prior for the number of populations (K) and assign-
ment of individuals, and

φj for j = 1, . . . ,K ∼ G0,

which is the prior for allele frequencies for each popu-
lation. Now, we can rewrite Eq. (1) as follows:

X|η,φ ∼
n∏
i=1

f (Xi|φ1I{i ∈ S1}, . . . ,φKI{i ∈ SK})

φ|η ∼
K∏
i=1

G0

η ∼ f (η)

where X = {X1,...,Xn} is a vector of the genotypes of
the individuals {1,...,n}, I{i Î Sj} = 1 if i Î Sj, and other-
wise 0, and

f (η) =

αK
K∏
j=1

�(|Sj|)
n∏
i=1

(α + i − 1)

(4)

where Γ is the gamma function. Note that Eq. (4)
results from the products of Eq. (3).

Integration of allele frequencies
Although some clustering methods infer allele frequencies
(e.g., STRUCTURE), allele frequencies can be analytically
integrated out as in HWLER and STRUCTURAMA. Thus,
our goal is to infer not f (h, j | X) but f (h | X). By Bayes’
theorem, this can be written as follows:

f (η|X) ∝ L(X|η)f (η)
where

L(X|η) =
K∏
j=1

L(XSj)

=
K∏
j=1

∏
i∈Sj

∫
L(Xi|φ)H<i,Sj(φ)dφ

(5)

where Xsj denotes the genotypes of individuals
included in Sj and H<i,Sj(φ) is the posterior distribution
of jj updated from G0 on the basis of the genotypes of
individuals assigned to Sj preceding the ith individual.
G0 is assumed to be a flat Dirichlet distribution. The
prior probability density of j is given as follows:

G0(φ) =
L∏
l=1

�(Jlλl)
Jl∏

h=1

φ
λl−1
jlh

�(λl)

where L is the number of loci, Jl is the number of alleles
at locus l, ll is the hyperparameter for locus l, and jjlh is
the frequency of allele h at locus l of population j. Rannala
and Mountain [34] provided the following equation:

H<i,Sj(φ) =
L∏
l=1

�(Jlλl + yjl)
Jl∏

h=1

φ
λl+yjlh−1
jlh

�(λl + yjlh)

where yjlh is the number of copies of allele h at locus l in
individuals assigned to Sj preceding the ith individual and
yjl = ∑yjlh. L(Xi|j) in Eq. (5) can be rewritten as follows:

L(Xi|φ) =
L∏
l=1

2δ(xil)
Jl∏

h=1

φ
nilh
jlh

where δ(xil) = 1, if the genotype of individual i at locus
l is heterozygous and if not is 0, and nilh is the number
of copies of allele h at locus l in individual i. Now the
integral in Eq. (5) can be solved analytically (for an
example, see [19] or [34]) as follows:∫

L(Xi|φ)H<i,Sj(φ)dφ

=
L∏
l=1

[
2δ(xil)

(Jlλl + yjl + 1)(Jlλl + yjl)

Jl∏
h=1

�(λl + yjlh + nilh)

�(λl + yjlh)

]
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Gibbs sampler
Neal [35] and MacEachern [36] introduced the Gibbs
sampling procedure, which integrates out model para-
meters (here j). Let h-i denote h when only the ith indi-
vidual is removed. The conditional probability of the
assignment of individual i is given as follows:

f (i ∈ Sj for Sj ∈ η−i|η−i,X)

= b|Sj|
∫

L(Xi|φ)H<i,Sj(φ)dφ

f (i ∈ {i}|η−i,X)

= bα
∫

L(Xi|φ)G0(φ)dφ

(6)

where b is the normalizing constant. Because indivi-
duals are exchangeable, one can treat every individual as
the last observation. The integrals in Eq. (6) can be
solved analytically. The details of Gibbs sampling is
described in Endnote A. In our experiments, one
MCMC iteration consisted of one scan of the Gibbs
sampler. After burn-in, h is sampled in every predefined
number of MCMC iterations.

SAMS sampler
Because the Gibbs sampler moves only one observation, a
large change hardly ever occurs, and tends to stay at a
local mode. A remedy is to move multiple observations
simultaneously. Jain and Neal [37] proposed a split-
merge sampler, which proposes a new partition by split-
ting or merging components and accepts it with Metro-
polis-Hastings (MH) probability. When it splits a
component, the proposed assignment of observations in
the component is generated by repeating Gibbs sampling
only for these observations. This method can produce
more acceptable proposals than the random assignment
of observations. Dahl [23] improved the method in terms
of efficiency and proposed an alternative sampler, the
SAMS sampler, which generates proposals by one cycle
of allocation of observations instead of repeating Gibbs
sampling. The algorithm of the SAMS sampling is
described in Endnote B. In this study, the SAMS sam-
pling was performed once in an MCMC iteration. Four
iterations with the SAMS sampler were followed by one
iteration with the Gibbs sampler. This cycle was repeated
until the end of the iterations.

Inference of the hyperparameter
ll, which is the hyperparameter for the prior distribu-
tion of allele frequencies at locus l, can be inferred by
the MH method. The joint posterior probability of h
and l = {l1,...,lL} can be written as follows:

f (η,λ|X) ∝ L(X|η,λ)f (η)f (λ)

When the prior distribution for ll is assumed to be
uniform, equations in the Gibbs and SAMS samplers
can be used without modification. In this study, the
prior for ll was assumed to be uniform, U(0,10). The
proposal of ll, ll’, was generated from the normal distri-
bution N(ll, δ2), where δ is an arbitrary value, e.g., 0.02.
The proposal was accepted with the probability:

R = min
[
1,

L(X|η,λ−l,λl
′)

L(X|η,λ)
]

where l-l is l when ll is removed.
We can also assume that each locus shares a single

value, la. In this case the probability becomes the fol-
lowing:

R = min
[
1,

L(X|η,λa
′)

L(X|η,λa)

]

Prior distribution of the number of populations
As seen in Eq. (3) or (4), the prior distribution of K
depends on a and the number of individuals. We can
infer this prior distribution by the Monte Carlo method
(see Endnote C). For example, when n = 100 and a =
0.2, the expected K value is approximately 2.0. When a
increases to 0.43, K increases to approximately 3.0.
Although it is possible to infer a as well as l, in this
study, we fixed a through the MCMC iterations. The
effect of a has been thoroughly examined by Huelsen-
beck and Andolfatto [19]. The authors reported that the
misspecification of a (i.e., the expected K value) could
affect the results, especially when the number of loci
was small.

Summarizing the sampled partitions
Two methods were used to summarize the partitions
that were sampled from the posterior distribution of h.
For simulated data sets, we used the mean partition pro-
posed by Huelsenbeck and Andolfatto [19], which is
defined as follows:

u = augmin

v∑
i=1

d(ηi, u)

v

where v is the number of sampled partitions and d(hi,
u) is the partition distance between the sampled parti-
tion hi and mean partition. The partition distance
between hi and u is defined as the minimum number of
individuals that must be removed from both hi and u
such that the two partitions are the same [38]. The par-
tition distance was calculated using Eq. (16) of Konova-
lov et al. [39] to obtain the cost matrix, and we solved

Onogi et al. BMC Bioinformatics 2011, 12:263
http://www.biomedcentral.com/1471-2105/12/263

Page 4 of 16



this using the Hungarian algorithm. The algorithm for
calculating the mean partition is described in Endnote
D. This statistic is useful for evaluating the posterior
distribution of h automatically. We divided the partition
distances by the number of individuals. Thus, the parti-
tion distances ranged from 0 to 1.
For real data sets, we performed agglomerative hier-

archical clustering on the basis of co-assignment prob-
abilities. This method was introduced by Dawson and
Belkhir [2]. Briefly, after all samples were obtained, the
co-assignment probabilities for all individual pairs were
calculated from the sampled partitions. Next, complete
linkage clustering was performed on the basis of the
probabilities. We used the hclust function of the stats
package of R for complete linkage clustering [40]. An
example R code is provided in Additional file 1. Note
that neither the mean partition nor hierarchical cluster-
ing are affected by the label-switching problem that
often emerges in analyses using methods implementing
the DP prior.

Programs and MCMC parameters
We wrote the clustering programs in C. The program
implementing the DP prior is referred to as DPART. In
addition to DPART, we also produced two clustering
programs that infer only the assignment of individuals
under a given K value. These programs are based on
algorithms proposed by Pritchard et al. [1] and Falush
et al. [41]. In these algorithms, the prior probability that
an individual belongs to each population is equal among
the populations, and individuals are assigned to popula-
tions according to likelihood. These algorithms infer the
allele frequencies of populations that are integrated out
in DPART in addition to the assignment of individuals.
One program assumes that there is no correlation
among the allele frequencies of populations, and the
other assumes a correlation. Thus, the former is equiva-
lent to the “no admixture and no F model” setting of
STRUCTURE and the latter is equivalent to the “no
admixture and F model” setting. These programs are
referred to as Fixed K and Uncorrelated Model (FUM)
and Fixed K and Correlated Model (FCM), respectively.
STRUCTURE infers admixture proportions of indivi-
duals until burn-in is half completed even when no
admixture option is selected (see the source code of

STRUCTURE). Because this setting helps the program
to avoid the generation of an empty cluster, which has
no individuals, we followed the setting. In FCM, the
prior distribution of the drift parameter was assumed to
be U(0,1). The programs provided in this study are sum-
marized in Table 1. DPART is provided in Additional
files 2, 3, 4, 5, 6 and 7. FUM and FCM can be repro-
duced by STRUCTURE.
STRUCTURAMA was used for simulated data sets.

The expected K value was set equal to the true K
value. Four chains were run simultaneously and the
temperature was set to 0.2. We also used STRUCTURE
ver. 2.2 with its default setting, “admixture and F
model,” for the bull data set because it is a widely used
method for the inference of population structures,
although the estimation of admixture proportions was
not of interest.
For comparison between DPART and STRUCTUR-

AMA and examination of the effect of l, the number of
MCMC iterations was 20,000, and the first half of the
iterations was discarded as burn-in. Sampling was per-
formed every 10 iterations. For comparison among
DPART, FUM, and FCM, the number of iterations was
100,000, and the first half of the iterations was dis-
carded. Sampling was performed every 50 iterations. For
the real data sets, the number of iterations was 500,000
and the first 400,000 iterations were discarded. Sampling
was performed every 50 iterations.

Simulation method 1
This simulation method was used to compare among
clustering methods. EASYPOP was used to simulate
populations under the Wright-Fisher model [42]. The
island model was assumed. The number of populations
was 8 and the number of individuals per population
was 1,000. The number of generations, number of loci,
mutation rate, and possible number of alleles were
20,000, 50, 0.0005, and 10, respectively, for microsatel-
lites, and 5,000, 100, 5 × 10-7, and 2, respectively, for
single nucleotide polymorphisms (SNPs). New alleles
occurred in every possible allelic state with equal prob-
ability. Diploidy, random mating, one sex, and linkage
equilibrium were also assumed. The genotypes of the
first generation were generated by randomly assigning
alleles from the possible allelic states. Migration rates

Table 1 Programs provided in this study

Program Purpose Assumption Precedent software equivalent to the program

DPART Inference of K and assignment
of individuals

K and assignment of individuals follow the DP
prior

HWLER when l is fixed to J−1
l where Jl is the number

of alleles at locus l

FUM Assignment of individuals Allele frequencies of each population are
drawn independently

STRUCTURE (no admixture and no F model)

FCM Assignment of individuals Allele frequencies of populations are
correlated

STRUCTURE (no admixture and F model)
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were 0.005, 0.003, and 0.001 for microsatellites and
0.002 for SNPs. EASYPOP was run five times for each
scenario. The resulting data sets are referred to as base
population sets. Sampling was performed 20 times
from each base population set to obtain 100 data sets
per scenario. When two, three or four populations
were sampled from the base population sets, base
populations to be sampled were selected randomly.
Similarly, when 10 or 20 loci were sampled, the loci to
be sampled were also selected randomly. The pairwise
Fst values between the base populations for each
migration rate are summarized in Table 2. Typically,
the observed heterozygosities were approximately 0.81
for microsatellites and 0.36 for SNPs. The pairwise Fst
and heterozygosity values were calculated using
GENETIX [43].

Simulation method 2
This method was used to investigate the effect of l. The
variance of a Dirichlet distribution, Dirichlet (l,...,l),
decreases as l increases. When allele frequencies are
drawn from the Dirichlet distribution, it means that the
frequencies closely approach uniformity among alleles as
l increases. Thus, it was expected that l would affect
clustering behavior depending on the uniformity of fre-
quencies among alleles. To examine this hypothesis, we
devised a simulation method on the basis of the allele
frequency correlated model [41]. In this method, allele
frequencies were generated from the Dirichlet distribu-
tion

Dirichlet
(
Pa1 × (1 − F)

F
, . . . ,PaJa × (1 − F)

F

)

where Pa is the allele frequency of a virtual ancestral
population, F is the drift parameter, which is equivalent
to Wright’s Fst, and Ja is the number of ancestral alleles.
We can determine any level of uniformity of frequencies
among alleles by varying ancestral allele frequencies. We
assumed two marker types, microsatellites (Ja = 5) and
SNPs (Ja = 2). For microsatellites, the ancestral allele
frequencies were {0.8,0.05,...,0.05} or {0.2,0.2,...,0.2} and F
was 0.05, and for SNPs, the ancestral frequencies were
{0.8,0.2} or {0.5,0.5} and F was 0.07. K was assumed to
be 2 and the number of individuals was 25 per popula-
tion. Genotypes were generated from the allele frequen-
cies assuming random mating. If only one allele was

observed at a locus, then that locus was excluded. One
hundred data sets were generated for each scenario.

Comparison among methods for simulated data sets
To compare methods for simulated data sets, we used
the partition distance between the true and inferred par-
titions, which was denoted as d

(
ηT , η̂

)
. We calculated

average d
(
ηT , η̂

)
over the 100 simulated data sets and

counted the number of data sets in which d
(
ηT , η̂

)
was

0.1 or less. For DPART and STRUCTURAMA, we used
the mean partition as the inferred partition and calcu-
lated the average K values in the mean partitions. When
FUM and FCM were used, the inferred partition was
determined on the basis of the probabilities of assigning
individuals to populations, which were calculated from
the sampled partitions. Although FUM and FCM may
be evaluated with the mean partition, we used the parti-
tion that was based on the probabilities of assignment
because this is computationally more feasible than the
mean partition and label-switching occurs rarely in
STRUCTURE-like algorithms as indicated by Pritchard
et al. [1]. Both approaches provided almost the same
partitions in our preliminary study.
Note that d

(
ηT , η̂

)
can not be used for evaluation

without modification when unbalanced sample sizes are
present among populations. Suppose that two popula-
tions are included in a data set. If the sample sizes are
uniform between the populations and an analysis fails to
detect any population structures, i.e., all individuals are
assigned to one cluster, d

(
ηT , η̂

)
is 0.5. However, if the

sample sizes are 10 and 300 and an analysis fails simi-
larly, d

(
ηT , η̂

)
decreases to 0.032 (10/310). Thus, in such

cases, we calculated d
(
ηT , η̂

)
as if an individual in the

smaller subset was equivalent to 30 individuals in the
larger subset. For example, if the sample sizes are 10
and 300 and only one individual in the smaller subset is
incorrectly assigned to the larger subset, d

(
ηT , η̂

)
is 0.05

(30/600) but not 0.003 (1/310).

Chicken data set
This data set represents 600 chickens of 20 European
breeds, which were genotyped for 27 microsatellites by
Rosenberg et al. [44]. This data set was previously ana-
lyzed by Pella and Masuda [18] using HWLER. With
only one run of HWLER, Pella and Masuda were able to

Table 2 Pairwise Fst between base populations generated by simulation method 1

Microsatellite SNP

M = 0.005 M = 0.003 M = 0.001 M = 0.002

Pairwise Fst 0.0371 (± 0.0036) 0.0610 (± 0.0049) 0.1298 (± 0.0105) 0.0996 (± 0.0079)

M indicates the migration rate.
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obtain a result similar to that obtained by Rosenberg et
al. with multiple runs of STRUCTURE. Here we used
this data set to demonstrate the extent to which the
choice of l affects the behavior of the DP prior method.

Bull data set
This real data set consists of 427 bulls maintained in
Japan. These animals were born between 1984 and 2004
and had been genotyped for parentage testing. They
included some half sibs but excluded full sibs. The num-
ber of microsatellites was 31 and the mean observed
heterozygosity was 0.6463. This data set was used to
demonstrate how unbalanced sample sizes among popu-
lations affect the behavior of clustering methods. This
data set is provided in Additional file 8.

Results
Evaluation of the SAMS sampler
The SAMS sampler was implemented in HWLER to
improve the mixing of MCMC algorithms [18]. How-
ever, the effectiveness of this sampler in population
structure analysis was unknown. Therefore, we evaluated
the SAMS sampler with our program, DPART, using
simulated data sets generated by simulation method 1
and compared it with STRUCTURAMA. The number of
populations (K) was 2, 4, and 8, and the number of indi-
viduals per population was 25. For DPART, l was 1 for
all loci and a was set such that the expected K value
was equal to the true K value. Furthermore, we analyzed
the data sets using only the Gibbs sampler by DPART
for comparison. Although both DPART with the Gibbs
and SAMS samplers and STRUCTURAMA were super-
ior to Gibbs sampling alone, the former provided more
accurate results than the latter, and the difference
became prominent as K increased (Table 3). These
results showed that the SAMS sampler was effective in
population structure analysis. Note that the SAMS sam-
pler has an additional advantage with regard to calcula-
tion time because one attempt of this sampler is faster
than one scan with the Gibbs sampler, and unlike

MCMCMC, the SAMS sampler does not need multiple
chains.

Effect of l
In the DP prior method, allele frequencies of popula-
tions are assumed to be drawn from the Dirichlet distri-
bution Dirichlet (l,...,l). Because the variance of the
distribution decreases as l increases, the frequencies
approach uniformity among alleles as l increases. Thus,
it was expected that l would affect clustering behavior
depending on the uniformity of frequencies among
alleles, i.e., the preferable values of l would vary
depending on uniformity. We examined this hypothesis
by analyzing data sets that were generated with simula-
tion method 2. In this simulation method, the level of
uniformity of frequencies among alleles could be deter-
mined by varying ancestral allele frequencies. Three sce-
narios were used for both microsatellites and SNPs. In
one scenario, frequencies among alleles were relatively
uniform at all loci (ancestral allele frequencies were
{0.2,0.2,...,0.2} for microsatellites and {0.5,0.5} for SNPs).
In another scenario, frequencies were skewed at all loci
({0.8,0.05,...,0.05} for microsatellites and {0.8,0.2} for
SNPs), and in the last scenario, frequencies were rela-
tively uniform for half of the loci and skewed for the
other half. We analyzed these data sets with DPART
using the Gibbs and SAMS samplers under different set-
tings of l.
As expected, the results showed that the preferable

values of l varied depending on the uniformity of fre-
quencies among alleles (Tables 4 and 5). When the fre-
quencies were closer to uniformity, higher values were
preferable. In addition, when a data set included loci
that differed significantly in the uniformity of frequen-
cies among alleles, analysis with a single l value was
less accurate than that with inferring l for each locus.
These results suggest that to maximize the performance
of the DP prior method, the l value should to be deter-
mined properly for each locus according to the allele
frequencies. Although inferring l for each locus is a

Table 3 Evaluation of the SAMS sampler

K = 2 K = 4 K = 8

Program algorithm Microsatellite SNP Microsatellite SNP Microsatellite SNP

DPART Gibbs 0.016 (98) 0.292 (42) 0.228 (26) 0.476 (4) 0.315 (3) 0.523 (0)

2.06 1.42 3.15 2.12 5.74 3.93

Gibbs + SAMS 0.006 (100) 0.005 (100) 0.023 (97) 0.020 (97) 0.047 (89) 0.088 (68)

2.08 2.01 3.98 3.97 7.91 7.46

STRUC- Gibbs + MC3 0.006 (100) 0.025 (96) 0.039 (91) 0.118 (67) 0.122 (52) 0.264 (20)

TURAMA 2.06 1.97 3.90 3.57 7.31 6.09

Average d
(
ηT , η̂

)
, which is the partition distance between the true and inferred partition, the number of data sets in which d

(
ηT , η̂

)
was 0.1 or less (in

parentheses) in 100 simulated data sets, and the average K values in the inferred partitions (in Italic) are shown. The number of individuals in each population
was 25. The number of loci was 20 for microsatellites and 100 and for SNPs. The migration rate was 0.003 for microsatellites. MC3 indicates MCMCMC.
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solution for this problem, the specification of l in this
manner tended to make inferences less accurate than
assuming single values for all loci when the uniformities
of allele frequencies were relatively equal among loci.
Thus, we recommend that analyses be repeated under
two different assumptions, a single l value for all loci
and a unique value for each locus. In each assumption,
inferring l would be useful.

Analysis of the chicken data set
This data set, representing 600 chickens of 20 European
breeds, was analyzed previously using STRUCTURE and
HWLER [44,18]. Rosenberg et al. [44] examined K
values ranging from 1 to 23 using STRUCTURE and
selected 19 as the proposed K value according to likeli-
hood. Then, 100 runs of STRUCTURE were performed
assuming that K was 19. The authors reported that
most breeds could be distinguished from each other, but

breeds 44 and 45 shared a cluster in all runs. Pella and
Masuda [18] analyzed the data set with HWLER assum-
ing that K was 1 and detected 23 clusters. Similar to
that in STRUCTURE analysis, breeds 44 and 45 were
not distinguished. HWLER divided breed 21 into two
clusters that included 14 and 16 individuals and
detected three additional clusters that included 1, 1, and
3 individuals in breed 102. The three individuals in
breed 102 were sampled from a flock of zoo animals,
which were reported to be frequently assigned incor-
rectly in STRUCTURE analyses.
If the l value is determined according to the number

of alleles at each locus, similar to that in HWLER, l
ranges from 0.024 to 0.5 and the mean value is 0.138
because the number of alleles at each locus ranges from
2 to 41. The average major allele frequency across all
loci and breeds was 0.631, indicating that the allele fre-
quencies were relatively skewed. We analyzed this data

Table 4 Effect of l on the behavior of DPART (number of alleles was 5)

Ancestral allele freq. and number of
loci

{0.2, 0.2 ..., 0.2} × 30
loci

{0.8, 0.05, ..., 0.05} × 100
loci

{0.2,0.2 ...} × 30 loci + {0.8, 0.05, ...} × 30
loci

Mean major allele frequency 0.353 ± 0.074 0.799 ± 0.105 0.575 ± 0.242

l = 3 0.028 (97) 0.500 (0) 0.500 (0)

2.17 1.00 01.00

l = 1 0.044 (91) 0.500 (0) 0.236 (53)

2.65 1.00 1.53

l = 0.5 0.130 (75) 0.215 (57) 0.136 (73)

2.13 1.57 1.73

l = Jl
-1 0.459 (8) 0.020 (96) 0.370 (26)

1.18 1.96 1.26

Inferred (unique) 0.034 (93) 0.475 (5) 0.028 (95)

2.24 1.05 1.95

Inferred (single) 0.024 (99) 0.120 (76) 0.166 (67)

2.07 1.76 1.67

Average d
(
ηT , η̂

)
, the number of data sets in which d

(
ηT , η̂

)
was 0.1 or less (in parentheses), and the average K values (in Italic) are shown. The number of

populations was 2 and the number of individuals per population was 25. Vectors in parentheses indicate ancestral allele frequencies. “Mean major allele
frequency” indicates the mean values of major allele frequencies in the data sets. Jl is the number of observed alleles. “Inferred (unique)” indicates that a unique
l value was inferred for each locus, and “Inferred (single)” indicates that a single value was inferred for all loci.

Table 5 Effect of l on the behavior of DPART (number of alleles was 2)

Ancestral allele freq. and number of loci {0.5, 0.5} × 50 loci {0.8, 0.2} × 200 loci {0.5, 0.5} × 50 loci + {0.8, 0.2} × 50 loci

Mean major allele frequency 0.621 ± 0.088 0.802 ± 0.114 0.711 ± 0.137

l = 6 0.067 (83) 0.500 (0) 0.440 (12)

2.09 1.00 1.12

l = 3 0.085 (73) 0.470 (6) 0.176 (66)

2.31 1.06 1.66

l = J−1
l 0.325 (36) 0.050 (90) 0.208 (59)

1.44 1.90 1.59

Inferred (unique) 0.104 (70) 0.080 (84) 0.063 (89)

2.22 1.84 1.89

Inferred (single) 0.068 (86) 0.035 (93) 0.073 (87)

2.02 1.93 1.87

The number of populations was 2 and the number of individuals per population was 25.
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set with DPART using the Gibbs and SAMS samplers,
varying the l value to demonstrate the extent to which
l affects the behavior of the DP prior method. a was set
to 0.01, resulting in the expected K value of 1.06. The
results are summarized in Table 6. When a unique l
value was inferred for each locus and l was 0.05, the
result was the same as that obtained with HWLER. The
l value inferred for each locus ranged from 0.040 to
0.579 and the average across loci was 0.131. On the
other hand, when a single value was inferred for all loci,
breed 21 was not divided into two clusters. The l value
inferred for all loci was 0.082. As l was increased from
0.05 to 3, the number of detected clusters decreased.
Thus, the finest partition was obtained when l was J−1

l ,
inferred for each locus, and set to 0.05. This indicates
that for this data set, the specification of l according to
the number of alleles was appropriate. This is probably
because of the fact that the allele frequencies at any loci
were relatively skewed. These results also indicate that
inferring l was actually useful in empirical data sets.

Comparison among DPART, FUM, and FCM
We compared DPART, FUM, and FCM, focusing on
cases with unbalanced sample sizes among populations.
Data sets were generated by simulation method 1. First,
we assumed situations in which K = 2, the size of the
smaller subset was fixed at 10, the number of microsa-
tellites was 20, and the migration rate was 0.003. The
size of the larger subset was 10, 100, 200, and 300.
Hereafter, the sample size is denoted as N (10, 10), N
(10, 100), and so on. DPART was used with the Gibbs
and SAMS samplers. The true K value was used for
FUM and FCM. The results showed that DPART was
insensitive to unbalanced sample sizes (Table 7). In con-
trast, FCM was the most sensitive of the three programs
to unbalance. FUM was less sensitive than FCM, but
was inferior to DPART when the sizes were N (10, 300).

The difference among methods was most prominent at
N (10, 300), but it decreased or disappeared when the
migration rate decreased or the number of loci
increased.
Next, we increased the size of the smaller subset to 50

to create a moderate unbalance. The number of loci was
decreased to 10 and the migration rate was increased to
0.005 in order to compare the differences more clearly.
Again, FCM was found to be most sensitive to unba-
lance (Table 8). Although the performance of DPART
decreased slightly as the sample size became increasingly
unbalanced, DPART provided the highest number of
data sets in which d

(
ηT , η̂

)
was 0.1 or less at N (50,

300). The difference among methods decreased or disap-
peared when the migration rate decreased or the num-
ber of loci increased.
Furthermore, we examined whether the number of

minor subsets affected performance of these methods.
We compared the methods in situations in which the
sample sizes were N (10, 10, 200), N (10, 200, 200), N
(50, 50, 200), and N (50, 200, 200). The migration rate
was 0.003 in each situation. When multiple minor sub-
sets were included in the data sets, i.e., at N (10, 10,
200) and N (50, 50, 200), DPART outperformed FUM
and FCM, suggesting that FUM and FCM were severely
affected by multiple minor subsets (Table 9). In con-
trast, when only one minor subset was included in the
data set, i.e., at N (10, 200, 200) and N (50, 200, 200),
the effect of the minor subset was relatively small.
In these analyses, FUM and FCM often assigned indi-

viduals to clusters such that the sizes of the clusters
were uniform, resulting in the failure of analysis. For
example, at K = 2 or K = 3 with single minor subsets,
the smaller subsets tended to absorb members in the
larger subsets. At K = 3 with multiple minor subsets,
FUM and FCM often failed to distinguish the two smal-
ler subsets and divided the larger subset into three

Table 6 Summary of results for the chicken data set, representing 20 breeds

Program l Number of
clusters

Differences from the partition that was determined from breeds

HWLER J−1
l 23 Breed 21 was divided into two clusters (14 and 16 individuals), breed 121 was divided into four clusters (1,

1, 3, and 25 individuals), and breeds 44 and 45 shared a cluster.

DPART Inferred
(unique)

23 Same as HWLER

Inferred
(single)

22 Breed 121 was divided into four clusters (1, 1, 3, and 25 individuals). Breeds 44 and 45 shared a cluster.

0.05 23 Same as HWLER

0.5 20 Breed 121 was divided into two clusters (5 and 25 individuals), breeds 44 and 45 shared a cluster, an
individual in breed 5 shared a cluster with breed 50, and an individual in breed 16 shared a cluster with

breed 5.

1 17 Breeds 5 and 6, 18 and 37, and 44 and 45 shared different clusters respectively. Three individuals in breed
102 shared a cluster with breed 33. An individual in breed 5 shared a cluster with breed 50.

3 9 Breeds 5, 16, 18, 21, 37 and 3402 shared a cluster. Breeds 33, 44, 45, 51 and an individual in breed 102
shared a cluster. Breed 13, 26, 42, 50, and an individual each in breeds 5 and 102 shared a cluster.
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clusters such that their sizes were uniform. When the
sizes were N (10, 10, 200) and the number of loci was
50, FUM frequently generated an empty cluster. In such
cases, FUM detected only two clusters, consisting of two
smaller subsets and the larger subset. Empty clusters
were not observed when the number of loci was 20.
Because the larger subset had no population structure,
FUM probably detected the larger subset correctly as
one cluster because of the increase in the number of
loci. However, since FUM failed to divide the smaller
subsets, only two clusters were detected by FUM. We
did not observe this phenomenon in analyses with FCM;
the difference in performance between FUM and FCM
may be relevant in this situation.

Analysis of the bull data set
The bull data set, representing 427 bulls genotyped with
31 microsatellites, was analyzed by DPART, FUM,
FCM, and STRUCTURE to demonstrate how unba-
lanced sample sizes among populations affect the results
of these methods. In DPART, the a value was 0.5,
resulting in the expected K value of 4. A single value of
l was inferred for all loci. As a result, we obtained two
partitions, a partition with five clusters denoted as clus-
ters A to E and a partition with four clusters. When a
unique l value was inferred for each locus, only the
partition with four clusters was obtained. In this parti-
tion, cluster C was absorbed in clusters D and E. Thus,
we created three data sets, each including clusters C
and D, clusters C and E, or clusters D and E, and rea-
nalyzed them with DPART. l was inferred for each
locus. Because clusters in each data set differed from

each other, we concluded that the bull data set included
five clusters. The dendrogram was generated on the
basis of co-assignment probabilities calculated from
4,000 MCMC samples (Figure 1).
The data set was also analyzed using FUM, FCM, and

STRUCTURE with K = 5. As shown in Figure 1,
although the result obtained with FUM was consistent
with that obtained with DPART (partition distance =
0.0328), the results obtained with FCM and STRUC-
TURE were not consistent with those obtained with
FUM and DPART (partition distance = 0.2037 between
DPART and FCM and 0.2881 between DPART and
STRUCTURE). In the results of FCM and STRUCTURE,
the smallest cluster in the results of DPART and FUM,
i.e., cluster A (N = 9), absorbed the members of clusters
B (N = 48), C (N = 115), and E (N = 76). In addition,
the moderate cluster, cluster E, also absorbed the mem-
bers of cluster D (N = 179). On the other hand, the sec-
ond smallest cluster in the results of DPART and FUM,
cluster B, absorbed very few members of the larger clus-
ters in the results of FCM and STRUCTURE. The pair-
wise Fst values between the clusters detected by DPART
are shown in Table 10. We consider the interpretation
of these inconsistent results in the Discussion section.

Discussion
The Bayesian method based on the DP prior can infer
the number of populations (K) and assign individuals,
whereas the selection of the appropriate K value is
often problematic when methods that run under a pre-
defined K value are used. We examined the properties
of this method to provide information that will be

Table 7 Comparison among DPART, FUM, and FCM in data sets with unbalanced sample sizes

Nl = 20 Nl = 50

M = 0.003 M = 0.001 M = 0.003

N (10, 10) N (10, 100) N (10, 200) N (10, 300) N (10, 300) N (10, 300)

DPART 0.056 (83) 0.018 (95) 0.025 (94) 0.023 (96) 0.001 (100) 0.002 (100)

2.42 2.07 2.10 2.05 2.19 2.23

FUM 0.024 (96) 0.010 (100) 0.009 (99) 0.095 (54) 0.001 (100) 0.001 (100)

FCM 0.053 (89) 0.041 (83) 0.146 (10) 0.190 (0) 0.024 (84) 0.021 (90)

Average d
(
ηT , η̂

)
, the number of data sets in which d

(
ηT , η̂

)
was 0.1 or less (in parentheses), and the average K values (in Italic) are shown. Nl and M

indicate the number of loci and the migration rate, respectively. N ( ) denotes sample sizes.

Table 8 Comparison among DPART, FUM, and FCM in data sets with moderately unbalanced sample sizes

Nl = 10 Nl = 20

M = 0.005 M = 0.003 M = 0.005

N (50, 50) N (50, 100) N (50, 200) N (50, 300) N (50, 300) N (50, 300)

DPART 0.125 (73) 0.120 (66) 0.100 (62) 0.119 (52) 0.030 (99) 0.023 (100)

1.92 2.01 2.05 2.03 2.15 2.12

FUM 0.073 (86) 0.072 (85) 0.081 (70) 0.118 (33) 0.023 (99) 0.016 (100)

FCM 0.074 (84) 0.078 (80) 0.103 (50) 0.146 (11) 0.039 (89) 0.023 (99)
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useful in practice. We showed that the SAMS sampler,
which assigns multiple individuals simultaneously, was
effective for the inference of population structures.
Because SAMS sampling was faster than MCMCMC
techniques, the implementation of this sampling tech-
nique may be especially useful for large data sets. We
also showed that a hyperparameter, named l, which
defines the prior distribution of allele frequencies,
affected the performance of the method and its specifi-
cation was important. This problem could be resolved
by considering l a variable. Furthermore, we demon-
strated that the DP prior method was suitable for data
sets having unbalanced sample sizes among popula-
tions, whereas methods that implement STRUCTURE-
like algorithms were sensitive to unbalance. In particu-
lar, we found that the allele frequencies correlated
model was the most sensitive.

Our results showed that both the SAMS sampler and
MCMCMC were effective in improving the mixing of
MCMC algorithms; however, the SAMS sampler was
more effective than MCMCMC. We implemented the
SAMS sampler at a frequency in which four iterations
with the SAMS sampler were followed by one iteration
with the Gibbs sampler (four SAMS and one Gibbs).
Although we examined other frequencies, such as two
SAMS and five Gibbs, one SAMS and one Gibbs, and
five SAMS and two Gibbs, the results were almost the
same (data not shown). We selected this frequency sim-
ply to shorten the run time, because one attempt of the
SAMS sampler is faster than one scan of the Gibbs sam-
pler. However, an accurate inference of the posterior
distribution is hardly possible with the SAMS sampler
alone and the Gibbs sampler is necessary. The accep-
tance rate of the proposed states was extremely low

Table 9 Comparison among DPART, FUM, and FCM in data sets with multiple small subsets

Nl = 20 Nl = 50 Nl = 10 Nl = 20

N (10, 10, 200) N (10, 200, 200) N (10, 10, 200) N (50, 50, 200) N (50, 200, 200) N (50, 50, 200)

DPART 0.112 (66) 0.032 (92) 0.004 (100) 0.043 (99) 0.040 (99) 0.006 (100)

2.88 3.07 3.16 3.05 3.11 3.11

FUM 0.435 (7) 0.012 (99) 0.334 (0) 0.154 (74) 0.035 (100) 0.057 (89)

FCM 0.496 (0) 0.055 (83) 0.364 (17) 0.162 (73) 0.041 (100) 0.072 (86)

The migration rate was 0.003

DPART

FUM

K = 5

FCM

K = 5

STRUCTURE

      K = 5

A B                                    C                                                         D                                     E

Figure 1 Results obtained with each program during analysis of the bull data set The dendrogram of DPART was generated based on
co-assignment probabilities for all individual pairs. Each vertical bar in results for FUM and FCM represents the probability that the individual
was derived from each population indicated by five colors. Each bar in the results of STRUCTURE represents the proportion of the individual’s
genome from each ancestral population. The bar plots were drawn by R [40]. The five clusters detected by DPART are referred to as clusters A, B,
C, D, and E.
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(typically below the order of 10-3 for both split and
merge), suggesting the difficulty of proposing new parti-
tions. STRUCTURAMA implementing MCMCMC can
probably increase its performance by increasing the
number of chains or adjusting the temperature para-
meter to obtain the appropriate exchange rates among
chains. However, calculation time increases as the num-
ber of chains increases and multiple runs may have to
be performed to find appropriate values for the tem-
perature parameter. Therefore, we concluded that the
SAMS sampler was more useful in practice and imple-
mented this sampler in DPART to improve the mixing
of MCMC algorithms.
We showed that the choice of l values affected the

behavior of the DP prior method in the simulated and
real data sets. Since the preferable l value varies
depending on the uniformity of frequencies among
alleles, it is desirable that the l value at each locus is
determined according to the allele frequencies. Because
HWLER set l to J−1

l for any loci, its performance is
probably inadequate for some data sets, although it
implements the SAMS sampler. STRUCTURAMA does
not state how it specifies l, but it appears to fix l for
any loci at a certain value. Inferring a unique l value for
each locus is a method of specifying the parameter for
each locus. However, this approach resulted in less
accurate inferences than assuming a single value for all
loci when the levels of uniformity of frequencies among
alleles were relatively similar among loci. We speculate
that increasing the number of hyperparameters to be
estimated may make inferences unstable. In contrast,
assuming a single value for all loci was less accurate in
data sets in which the levels of uniformity differed sig-
nificantly among loci. Therefore, it is difficult to state
which assumption is more suitable for the data set of
interest. In the chicken data set, the unique value
assumption (l is inferred for each locus or l is J−1

l ) and
the single value assumption (l = 0.05) provided the
same partition. However, analysis in which a single
value was assumed and inferred for all loci gave a
slightly rougher partition. In the bull data set, the single
value assumption (a single l value is inferred for all
loci) gave a finer partition than the unique value
assumption (l is inferred for each locus). In general, if
the loci included in the data have not been evaluated

well with regard to polymorphism, some loci may be
much less polymorphic than others, and thus, the allele
frequencies at these loci will be skewed. For such data
sets, the unique value assumption will be suitable. On
the other hand, if the loci included in the data are
selected from a large number of candidate loci, they will
be highly polymorphic, and thus, the allele frequencies
at these loci are expected to be close to uniformity.
Therefore, the single value assumption will be suitable
for such data sets. We speculate that the chicken data
may be closer to the former case and, in such a case,
even if an appropriate single value that leads to an accu-
rate inference exists, the inference of such a value may
be difficult. In contrast, the bull data set may be closer
to the latter case because the loci included in the data
set had been selected from a large number of candidates
for parentage testing. Therefore, the single value
assumption may be preferable.
Our results showed that the behavior of the DP prior

method depends on the selection of l. We speculated
that integration out of allele frequencies involves this
dependency to some extent. Thus, although we have not
examined this speculation, the dependency may decrease
by inferring allele frequencies. However, this will
increase the calculation time and thus will not be suita-
ble for large data sets.
We found that unbalanced sample sizes among popu-

lations affect the behavior of DPART, FUM, and FCM.
FUM and FCM were found to be sensitive to unba-
lanced sample sizes, and their performances were sub-
stantially affected, particularly by the presence of
multiple minor subsets. The reason why DPART is sui-
table for unbalanced sample sizes is probably its prior
assumptions about the assignment of individuals. As
seen in Eq. (3), in the algorithm implementing the DP
prior, clusters absorb individuals with higher probability
as sample sizes increase, i.e., the “rich get richer” phe-
nomenon occurs. Thus, this algorithm is suitable for
data sets with unbalanced sample sizes among popula-
tions. On the other hand, the algorithms implemented
in FUM, FCM, and STRUCTURE assume that each
population can contribute to the data set with equal
probability. Thus, these algorithms are suitable for data
sets in which sample sizes are uniform among popula-
tions. When these methods are used for data sets with
unbalanced sample sizes, they tend to cluster individuals
such that the sizes become uniform among clusters, as
observed in our experiments. The extent of sensitivity
varied depending on the number of loci and the migra-
tion rates when the level of unbalance was fixed. Thus,
if genetic differences among populations are small and
sample sizes are unbalanced, then the number of loci
needed by these methods to correctly detect population
structures is higher than that needed by DPART.

Table 10 Pairwise Fst between clusters detected by
DPART in the bull data set

B C D E

A 0.1085 0.0913 0.1495 0.0839

B 0.0759 0.1792 0.1024

C 0.1145 0.0548

D 0.0324
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Although we compared these programs using only
microsatellite data, the differences in behavior among
them will not vary if SNP data are analyzed because the
differences will be due to differences among the prior
assumptions and will not depend on the number of
alleles.
The sensitivity of FUM and FCM to unbalance can

probably be resolved by adding parameters that repre-
sent the mixing weights to the algorithms. As described
by Neal [32], when the prior distribution of the mixing
weights is assumed to be a Dirichlet distribution such as

Dirichlet
(γ

K
, . . . ,

γ

K

)
where K is the assumed number of

populations and these weights are integrated out, we
can obtain a predictive distribution for the assignment
of the ith individual,

f (i ∈ Sj for Sj ∈ η<i|η<i) =
|Sj| + γ

K
γ + i − 1

which is similar to Eq. (3), but now in the parametric
framework. FUM, FCM, and other STRUCTURE-like
algorithms will be able to deal with unbalanced sample
sizes by implementing this prior distribution.
FCM, which implements the allele frequency corre-

lated model, was shown to be more sensitive than the
other programs to unbalanced sample sizes. A refutation
of this may be that comparison among methods was
performed for simulated data sets generated using the
isolated population models that do not accord with the
assumption of FCM. However, FCM was most sensitive
to unbalance in the data sets that were generated by
simulation method 2, which was based on the assump-
tion of FCM (data not shown). We speculated that cor-
related allele frequencies are involved in the sensitivity
of FCM. In the allele frequencies correlated model, the
conditional posterior distribution for allele frequencies
of population j is given as follows:

Dirichlet
(
yjl1 + Pal1 × fj, . . . , yjlJl + PalJl × fj

)
where yjlh is the number of copies of allele h at locus l

in individuals assigned to population j, Palh is the ances-
tral frequency of allele h at locus l, Jl is the number of

alleles at locus l, and fj is

(
1 − Fj

)
Fj

where Fj is the drift

parameter for population j. Thus, as the sample size for
a population decreases, the effect of ancestral allele fre-
quencies on the inference of allele frequencies for this
population increases. On the other hand, ancestral allele
frequencies are inferred from information on allele fre-
quencies of populations and drift parameters. Therefore,
if unbalanced sample sizes are present, ancestral allele
frequencies will be affected more strongly by the

inferred allele frequencies for major subsets because
those for minor subsets are substantially affected by
ancestral allele frequencies themselves, and are thus, less
informative for the inference of ancestral allele frequen-
cies. Consequently, the inferred allele frequencies for
minor subsets will be affected by those for major subsets
and will approach them. Therefore, minor subsets may
be prone to absorbing members of major subsets.
We interpreted the inconsistency found in the bull

data set on the basis of the knowledge obtained from
simulations. If the results obtained with DPART and
FUM are correct, this inconsistency can be explained by
the sensitivity to the unbalance of the allele frequencies
correlated model. FCM and STRUCTURE probably
failed to detect the smallest cluster (cluster A) because
of their sensitivity. The failure of cluster A to absorb the
members of cluster D in the results of FCM and
STRUCTURE was due to the high level of differentia-
tion between these clusters (pairwise Fst = 0.1495 in
Table 10). Although the unbalance between clusters D
and E was moderate (N = 179 and 76), FCM and
STRUCTURE also presumably failed to distinguish these
clusters because of the relatively low pairwise Fst
between these clusters (0.0324). When the data set that
included only clusters D and E was analyzed by FCM,
this program also failed to distinguish the two clusters
(data not shown). On the other hand, because cluster B
was well differentiated from larger clusters (pairwise Fst
= 0.0759 between B and C, 0.1792 between B and D,
and 0.1024 between B and E), every program was able
to detect the cluster. The presence of multiple minor
clusters was also considered to reduce the performance
of FCM and STRUCTURE. In fact, when the two data
sets that included only clusters A and B and clusters A
and E were generated and analyzed by FCM, this pro-
gram was able to distinguish the two clusters in each
data set (data not shown). Although we admit that we
have not proved that the results of DPART and FUM
are correct, we believe that our interpretation is appro-
priate because it can clearly explain the inconsistency.
For the bull data set, 10 runs were performed with

FCM and STRUCTURE. The results of the 10 runs of
each program were almost similar, and we considered
them to be incorrect. However, in the simulated data
sets with unbalanced sample sizes among populations,
we occasionally observed that these programs or FUM
provided both correct and incorrect results when multi-
ple runs were performed (data not shown). Thus, when
the ad hoc statistic proposed by Evanno et al. [45] is
used to select the true K value, this phenomenon possi-
bly confuses the selection because it increases the stan-
dard deviation of likelihood at the true K value.
The effect of sample sizes of populations on the per-

formance of clustering programs was addressed in some
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studies [[44,46] and [47]]. However, the effect of unba-
lanced sample sizes has been overlooked, and simulation
studies for comparison of clustering methods usually
assume uniform sample sizes among populations
[12,48]. Because our results showed that sensitivity to
unbalance in sizes varied among the methods, we
recommend that comparative studies consider the effect
of unbalance during analyses.
Through analyses of simulated data sets by DPART,

we observed overestimation of K caused by small clus-
ters that included only one or two individuals. This phe-
nomenon increased the average K values and slightly
affected the average d

(
ηT , η̂

)
. As discussed above, the

DP prior method can efficiently detect minor subsets
because of the “rich get richer” phenomenon. Thus, we
speculated that the overestimation was due to the fact
that DPART detected individuals that were slightly dis-
tanced from the other members because even in simu-
lated data sets, individuals harboring rare genotypes can
be generated with low probabilities. This interpretation
was supported by phylogenetic analysis based on genetic
distances between individuals (data not shown). In addi-
tion, this may be supported by the fact that overestima-
tion became prominent as the number of loci, i.e., the
power to detect population structures, increased (Tables
7, 8, and 9). Therefore, such small clusters are inter-
preted as overestimations in simulation studies, but will
provide useful information in empirical studies because
they indicate the presence of genetic discontinuity in the
data sets.

Conclusions
This study characterized the Bayesian method of imple-
menting the DP prior and introduced a program, named
DPART, in order to infer population structures more
accurately than preceding programs based on the DP
prior. First, we showed that the SAMS sampler, which is
a technique for improving the mixing of MCMC algo-
rithms, was effective for population structure analysis.
Implementation of this sampler was useful with regard
to the accuracy of inference and computing time. Sec-
ond, we showed that a hyperparameter for the prior dis-
tribution of allele frequencies affected the behavior of
the DP prior method. Appropriate values can be speci-
fied by inferring this parameter. Third, the DP prior
method was shown to be suitable for analysis of data
sets with unbalanced sample sizes among populations.
In contrast, methods that implement STRUCTURE-like
algorithms were shown to be suitable for data sets with
uniform sample sizes among populations, but not for
data sets with unbalanced sample sizes. Because these
differences can yield inconsistent results among meth-
ods, we recommend using these methods concurrently.

When the results obtained are inconsistent among
methods, considering the effect of unbalanced sample
sizes may be a key to interpreting the inconsistency.

Endnote A - Gibbs sampler
One scan of the Gibbs sampler consists of the following
steps.
Step 1. Remove the ith individual from h.
Step 2. Assign i to existing populations according to

probabilities

|Sj|
L∏
l=1

[
2δ(xil)

(Jlλ + yjl + 1)(Jlλ + yjl)

Jl∏
h=1

�(λ + yjlh + nilh)

�(λ + yjlh)

]

where 1 ≤ j ≤ K, or a new population according to
probability

α

L∏
l=1

[
2δ(xil)

(Jlλ + 1)Jlλ

Jl∏
h=1

�(λ + nilh)
�(λ)

]

Step 3. Update h.
Step 4. Repeat Steps 1-3 for all i Î {1,...,n}.

Endnote B - SAMS sampler
The algorithm of the SAMS sampler is as follows.
Step 1. Select two individuals, i and j, at random.
Step 2. If i and j belong to the same population S,

remove i and j from S and form two singletons, Si = {i}
and Sj = {j}. If not, proceed to Step 5.
Step 3. Assign the individuals remaining in S to Si or

Sj. The order of the assignment is randomly determined.
The kth individual is assigned to Si with probability

f (k ∈ Si|Si, Sj,X)

=
|Si|

∫
L(Xk|φ)H<k,Sidφ

|Si|
∫
L(Xk|φ)H<k,Sidφ + |Sj|

∫
L(Xk|φ)H<k,Sj dφ

(7)

Otherwise, add the individual to Sj.
Step 4. The proposed partition h’ is accepted with MH

probability

R = min
[
1,

f (η′|X)q(η|η′)
f (η|X)q(η′|η)

]

= min
[
1,

L(X|η′)f (η′)q(η|η′)
L(X|η)f (η)q(η′|η)

] (8)

where q(h’|h) and q(h|h’) are the transition probabil-
ities. Using Eq. (5), the ratio of likelihoods in Eq. (8) can
be written as follows:∏

k∈Si

∫
L(Xk|φ)H<k,Si dφ

∏
k∈Sj

∫
L(Xk|φ)H<k,Sjdφ∏

k∈S

∫
L(Xk|φ)H<k,Sdφ
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Using Eq. (4), the ratio of prior probabilities in Eq. (8)
can be written as follows:

f (η′)
f (η)

=
α�(|Si|)�(|Sj|)

�(|S|) (9)

q(h|h’) is 1 and q(h’|h) results from the products of
probabilities of the assignment given in Eq. (7).
Step 5. If i and j belong to different populations, say Si

and Sj, propose a new population S by merging Si and
Sj. The proposed partition h’ is accepted with the prob-
ability given in Eq. (8). The ratio of likelihoods can be
written as follows:∏

k∈S

∫
L(Xk|φ)H<k,Sdφ∏

k∈Si

∫
L(Xk|φ)H<k,Si dφ

∏
k∈Sj

∫
L(Xk|φ)H<k,Sjdφ

and the ratio of prior probabilities is given as follows:

f (η′)
f (η)

=
�(|S|)

α�(|Si|)�(|Sj|)
q(h’|h) is 1 and q(h|h’) is computed by splitting S into

Si and Sj in a randomly determined order.

Endnote C - prior distribution of K
Prior distribution for K can be inferred using the follow-
ing Monte Carlo procedure.
Step 1. Let the first individual belong to the first

population and let K = 1.
Step 2. Assign individual i = {2,3,...,n} to existing or

new populations with the probabilities noted in Eq. (3).
Step 3. Record K after the assignment of the last

individual.
Step 4. Repeat Steps 1-3 for sufficient cycles to infer

the distribution of K (e.g., 10,000).

Endnote D - mean partition
The algorithm for calculating the mean partition
described by Huelsenbeck and Andolfatto [19] is as
follows.
Step 1. Pick a sampled partition as the initial state of

the mean partition and calculate D, which is the sum of
the partition distances between the mean partition and
every sampled partition.
Step 2. Pick an individual i in the mean partition. Pro-

pose new mean partitions by moving i to other popula-
tions in the mean partition and to a new partition.
Calculate the sum of partition distances between each
proposed mean partition and each sampled partition,
which is denoted as D’.
Step 3. Let D’min denote the minimum value of D’s. If

D’min <D, the corresponding proposed mean partition is
accepted and D is replaced by D’min.

Step 4. Repeat Step 2 and 3 for i = {1,2,...,n}.
Step 5. Repeat Steps 2, 3, and 4 until D stops

decreasing.

Additional material

Additional file 1: An R function for agglomerative hierarchical
clustering. This performs agglomerative hierarchical clustering based on
the results of DPART.

Additional file 2: Executable file of DPART. This file will work on a
Windows platform.

Additional file 3: Parameters. This file defines the parameters for
DPART.

Additional file 4: Input file names. This file defines the input file
names for DPART.

Additional file 5: Source code. This is the source code of DPART.

Additional file 6: Header file. This is the header file of DPART.

Additional file 7: Manual. This is the manual for DPART.

Additional file 8: Bull data set. This file contains the genotypes of the
bulls used in this study. This file is also an example of input data for
DPART.
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