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Abstract

Background: There is a great interest in understanding the genetic architecture of complex traits in natural
populations. Genome-wide association studies (GWAS) are becoming routine in human, animal and plant genetics
to understand the connection between naturally occurring genotypic and phenotypic variation. Coalescent
simulations are commonly used in population genetics to simulate genotypes under different parameters and
demographic models.

Results: Here, we present phenosim, a software to add a phenotype to genotypes generated in time-efficient
coalescent simulations. Both qualitative and quantitative phenotypes can be generated and it is possible to
partition phenotypic variation between additive effects and epistatic interactions between causal variants. The
output formats of phenosim are directly usable as input for different GWAS tools. The applicability of phenosim
is shown by simulating a genome-wide association study in Arabidopsis thaliana.

Conclusions: By using the coalescent approach to generate genotypes and phenosim to add phenotypes, the
data sets can be used to assess the influence of various factors such as demography, genetic architecture or
selection on the statistical power of association methods to detect causal genetic variants under a wide variety of
population genetic scenarios. phenosim is freely available from the authors’ website http://evoplant.uni-
hohenheim.de

Background
In recent years, genome-wide association studies
(GWAS) became widely used to uncover the genetic
basis of complex traits by comparing patterns of genetic
and phenotypic variation [1-3]. The power of such stu-
dies depends on various factors that include the genetic
architecture of the trait, the demographic history of the
population, and variation in mutation and recombina-
tion rates [4]. In addition, the trait under investigation
may be adaptive or (in case of a disease trait) can evolve
under purifying selection, which both would result in a
non-neutral pattern of genetic diversity in the genomic
neighborhood of the causal mutation.
Coalescent simulations are widely used to simulate

genotypes under complex demographies [5] with recent
extensions to include recombination hotspots [6] and
selection [7], or to simulate whole genomes [8]. Simula-
tions are often used to test population genetic

hypotheses by comparing simulated and observed data.
However, such simulations produce only genotypes but
not phenotypes, which are also required to test methods
for detecting significant associations between genetic
and phenotypic variation. Although some tools provide
an option to map phenotypes onto simulated genotypes,
they only allow the simulation of qualitative phenotypes
[9] or require time-consuming forward-in-time simula-
tions to create genotypes from complex demographic
scenarios [10-13].
Here, we present phenosim, a tool written in Python

[14] that was designed to add a phenotype to genotypes
simulated by coalescent-based simulation tools. Simu-
lated phenotypes may either be qualitative or quantita-
tive traits with different effect sizes and may show
epistatic interactions. Hence, the simulation of case/con-
trol studies as well as the search for quantitative trait
nucleotides (QTNs) of a complex trait with a user-
defined architecture is possible. By combining simulated
genotypes and phenotypes, researchers can assess the
influence of different factors on the power of new
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methods for association mapping, compare different
methods or estimate an optimal sample size and number
of markers for a given study design.

Implementation
The general work flow of phenosim is shown in Figure 1.
First, the user simulates genotypes with one of four differ-
ent programs for coalescent simulations. In the current
version, phenosim is able to read the output of the ms
[5], msHOT[6], msms[7] and GENOME[8] programs. After
the import of genotypes, a phenotype generated under a
user-defined model is assigned to each genotype. The trait
can either be qualitative or quantitative.
For qualitative traits, one- and two-locus models are

supported. The user defines the model by setting the
penetrance (probability of being affected) for all geno-
types. In the two-locus model, this is done by a pene-
trance table for all possible allelic combinations among
the two loci. Therefore, the user may define arbitrary
interactions between all alleles of the loci. The case/con-
trol-status of all simulated individuals is then assigned
according to the model. In many cases, disease states

are caused by risk alleles segregating at low allele fre-
quencies in the overall population. As such low fre-
quency variants share a genealogy that may differ from
high frequency variants and thus the linkage pattern
around these variants may be different [15], the user
can restrict causal mutations to a certain frequency
range to obtain realistic risk loci. However, as this may
result in a low number of cases in the final sample,
users need to simulate larger populations and optionally
enter a minimum number of cases to be sampled from
the population. This procedure reflects the sampling
procedure of many case/control studies.
For quantitative traits, multiple QTNs with additive

effects or epistatic interactions between two QTNs are
possible. By default locations of causal variants are
selected randomly. Nevertheless, the user can determine
the position of a QTN manually and/or restrict the
selection to an allele frequency range. A phenotype is
generated based on the formulas of [16], which we gen-
eralize for additive effects among multiple QTNs as fol-
lows. The trait value is calculated by adding a fixed
variance proportion explained by the QTN to a random
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Figure 1 Work flow. Flowchart of the phenosim pipeline.
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number drawn from a standard normal distribution with
mean 0 and standard deviation 1, N(0, 1). We provide
two different models, depending on the ploidy of the
individuals. The effect of the j-th QTN is πj and the
QTN has a derived allele frequency of fj. It should be
noted that the sum of all QTN effects, ∑j πj, equals the
heritability, h2, of the trait. If the individuals are haploid,
the allelic state of the i-th individual at the j-th QTN is
aij, where aij := 0 if the allele is ancestral and aij := 1 if
it is derived. Then the phenotype Y of individual i is cal-
culated as:

Yh(i) =
√
1−

∑
j

πj ×N(0, 1) +
∑
j

ajj

√
πj

fj(1− fj)
. (1)

The phenotype of diploid individuals under an addi-
tive model without dominance is calculated as:

Yd(i) =
√
1−

∑
j

πj ×N(0, 1) +
∑
j

Qjj

√
πj

2 · fj(1− fj)
, (2)

where Qij := 1 if the j-th QTN is homozygous derived,
Qij := 0 if the QTN is heterozygous and Qij := -1 if the
QTN is homozygous ancestral. Dominant effects at each
QTN and additive effects between loci are also sup-
ported for diploids. In this case, equation (1) is used
with aij := 0 for homozygous ancestral QTNs and aij :=
1 for heterozygous and homozygous derived individuals.
If exactly two QTNs are selected, a positive, additive

epistatic effect πE between these QTNs can be simu-
lated. This epistasis is modeled as a fictive third QTN,
whose allelic state aiE is 1, if the individual carries at
least one derived allele at both basal QTNs. For users
with a some Python scripting experience, other types of
epistasis can easily be simulated by modifying the code
of phenosim. To simulate a causal haplotype or allelic
heterogeneity among two causal variants within a single
gene, both QTNs may also be located on a common
haploblock defined by the four-gamete test [17].
To our knowledge, quantiNemo[12] is the only soft-

ware that currently supports the simulation of interac-
tions between QTNs. However, quantiNemo utilizes
time-consuming forward simulations, whereas pheno-
sim allows to include epistasis between QTNs within a
time-efficient coalescent framework.

After phenotypes have been generated, a predefined
number of markers and/or individuals can be sub
sampled from the total simulated population. The causal
marker(s) can be optionally removed from the sample,
since frequently the causal mutation itself is not geno-
typed in a genome-wide study. Finally, genotypes and
phenotypes are written into different output file formats
that can be directly used as input for commonly used
association programs such as Blossoc/QBlossoc

[16,18], EMMA/EMMAX[19,20], PLINK[21], QTDT/MER-
LIN[22,23] and TASSEL 3.0 [24]. A snapshot of phe-
nosim is available as Additional File 1 whereas the
most current version is maintained at http://evoplant.
uni-hohenheim.de

Results and Discussion
To demonstrate the ability of phenosim to simulate
data for GWAS, we utilized GENOME[8] and simulated
populations Ne = 1000, with a population recombination
parameter of r = 8 · 10-3 and 250,000 SNPs distributed
over a 120 Mbp genome. These settings are comparable
to data sets used for recent GWAS in A. thaliana
[2,25,26]. phenosim was then used to generate pheno-
types under three different models: (i) 2 QTNs, each
with an effect of 0.05; (ii) 2 QTNs at random positions,
each with an effect of 0.01, and epistatic interaction of
πE = 0.08; and (iii) 2 QTNs, located on a common hap-
loblock, each with an effect of 0.01 and epistatic interac-
tion of πE = 0.08. In all three scenarios, the total
proportion of variance explained by these QTNs and
their interaction was identical (h2 = 0.1). Four hundred
chromosomes were sub-sampled and the causal poly-
morphisms were removed from the data. EMMAX[20]
was used to detect marker-trait associations and the
causal locus for this hypothetical trait. In Figure 2 we
show the proportion of significant markers that were
found at a given distance from the causal locus. In the
first model (only additive effects), less than 10% of the
detected significant markers are located within a dis-
tance of 10 kbp to the causal locus. A larger sample size
may increase the power to detect such small additive
effects in genome-wide scans. Despite the smaller addi-
tive effect in model (ii), the number of significant mar-
kers within 10 kbp of the QTN was comparable to
model (i). Additionally, there is an increased number of
significant associations further than 10 kbp from the
QTNs. These may represent false positive associations
caused by epistasis, such as markers that are in strong
linkage disequilibrium with the fictive epistatic marker
[27]. The highest power was observed in the third
model. QTNs on a common haploblock with epistatic
effects create a strong joint QTL and therefore in more
than 75% of simulations, a significant marker was
located within a distance of 10 kbp to the causal locus.
The results show that single marker association methods
as EMMAX are able to detect QTNs with small additive
effects and a strong positive epistatic interaction. How-
ever, in certain situations larger samples than simulated
sizes are needed and some results may be confounded
by false positives as discussed earlier [27].
On average, a single simulation ran 4 min with GENOME

[8] and 2 min with phenosim on a single core of an Intel
Xeon X5650 (2.66 GHz) Processor. To compare this
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running time with other software tools, we simulated two
QTNs and 249,998 neutral loci in a population of 500
diploid individuals using quantiNemo[12]. In six min-
utes, quantiNemo generated ~120 generations. As the
expected coalescent time for a sample is ~ 4Ne generations
[28], this is by far not enough to get a realistic variation
pattern comparable to what can be achieved by GENOME
in the same time. Although forward simulations like
quantiNemo allow more complex demographic, selec-
tion and trait scenarios, the combination of coalescent
simulators and phenosim is much more suitable for gen-
erating multiple simulations of large sample sizes.

Conclusions
Demographic effects, genetic architecture, selection, and
different mutation and recombination rates affect the
ability to detect the genetic basis of complex traits in
natural populations [4]. Such population genetic para-
meters can now be estimated from genome-wide marker
sets prior to further analyses. Since GWAS are widely
used in plant and animal genetics, there is a great inter-
est in assessing the power of a particular study or
method. Using coalescent simulations in conjunction
with phenosim, one can investigate the statistical
power and other characteristics of GWAS methods

efficiently. Additionally, as different causal markers may
contribute different effects to a trait, the essential sam-
ple size and number of markers to detect a certain pat-
tern can be estimated.

Availability and requirements
• Project name: phenosim
• Project home page: http://evoplant.uni-hohen-
heim.de
• Operating system(s): Platform independent
• Programming language: Python
• Other requirements: Python 2.X
• License: no license required
• Any restrictions to use by non-academics: none

Additional material

Additional file 1: phenosim v0.15. The archive includes the current
version of phenosim as well as a documentation of its usage. For
updated versions, please visit the authors’ website http://evoplant.uni-
hohenheim.de.
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