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Abstract

Background: The construction of the Disease Ontology (DO) has helped promote the investigation of diseases
and disease risk factors. DO enables researchers to analyse disease similarity by adopting semantic similarity
measures, and has expanded our understanding of the relationships between different diseases and to classify
them. Simultaneously, similarities between genes can also be analysed by their associations with similar diseases.
As a result, disease heterogeneity is better understood and insights into the molecular pathogenesis of similar
diseases have been gained. However, bioinformatics tools that provide easy and straight forward ways to use DO
to study disease and gene similarity simultaneously are required.

Results: We have developed an R-based software package (DOSim) to compute the similarity between diseases
and to measure the similarity between human genes in terms of diseases. DOSim incorporates a DO-based
enrichment analysis function that can be used to explore the disease feature of an independent gene set. A
multilayered enrichment analysis (GO and KEGG annotation) annotation function that helps users explore the
biological meaning implied in a newly detected gene module is also part of the DOSim package. We used the
disease similarity application to demonstrate the relationship between 128 different DO cancer terms. The
hierarchical clustering of these 128 different cancers showed modular characteristics. In another case study, we

used the gene similarity application on 361 obesity-related genes. The results revealed the complex pathogenesis
of obesity. In addition, the gene module detection and gene module multilayered annotation functions in DOSim
when applied on these 361 obesity-related genes helped extend our understanding of the complex pathogenesis

dosim.

of obesity risk phenotypes and the heterogeneity of obesity-related diseases.

Conclusions: DOSIim can be used to detect disease-driven gene modules, and to annotate the modules for
functions and pathways. The DOSIim package can also be used to visualise DO structure. DOSIim can reflect the
modular characteristic of disease related genes and promote our understanding of the complex pathogenesis of
diseases. DOSIm is available on the Comprehensive R Archive Network (CRAN) or http://bioinfo.nrbmu.edu.cn/

Background

The past several decades have seen a number of meth-
ods applied to the computation of similarities between
diseases [1-4]. The early work used clinical phenotypes
or diagnosed information. For example, Kalaria [1]
ascertained similarities between Alzheimer’s disease and
vascular dementia by studying the similarities between
disease symptoms and pathological result. More
recently, with the availability of large-scale knowledge
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bases such as the Online Mendelian Inheritance in Man
(OMIM) [5] and the Genetic Association Database
(GAD) [6], scientists are able to explore the genetic
similarity between diseases. In 2009, Liu et al. [7]
revealed similarities between diseases by combining both
genetic (data from GAD [6]) and environmental (data
from Medical Subject Headings, MeSH [8]) factors and,
by mining for disease etiologies, created a new concept
named the “etiome”. Zhang and his colleagues [9] used
a text-based method to build up a human disease phe-
notype network in which a disease was represented by a
feature vector and the similarities between two diseases
were calculated as the cosine of the angle between their
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corresponding feature vectors. However, little work has
been done to apply semantic similarity measures
between diseases using ontology, another way to analyze
relationship between diseases.

Understanding similarities between genes has a signifi-
cant role to play in disease research. One hypothesis
states that genes associated with similar diseases have
similar functions; the greater the gene similarity the
higher the probability that the genes are associated with
similar similarity. However, current methods to deter-
mine gene similarity rely on sequence similarity, gene
expression profiles, Gene Ontology (GO) [10] annota-
tions or PubMed abstracts, all of which are derived
from normal or partially abnormal conditions and it
secludes gene similarity from disease similarity. Thus, a
process to determine the similarities between genes in
terms of diseases and to map gene similarities to disease
similarities would help us better understand the
mechanism of complex diseases.

The Disease Ontology (DO) aims to provide an open
source ontology for the integration of biomedical data
that is associated with human disease [11]. The terms
in DO are disease names or disease-related concepts
and are organised in a directed acyclic graph (DAG)
(Figure 1). Two linked diseases in DO are in an ‘is-a’
relationship, which means one disease is a subtype of
the other linked disease. And the lower a disease is in
the DO hierarchy, the more specific the disease term is.
A recent work by Osborne and his colleagues [12] in
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which they used DO to annotate the human genome,
further advanced the application of DO. Recently, a
simplified vocabulary list, Disease Ontology Lite
(DOLite), was shown to give more interpretable results
than DO in gene-disease association tests. DOLite has
been used in FunDO (Functional Disease Ontology)
[13], one of the few bioinformatics tools based on DO
that aims to explore disease information implied in the
gene set. This work makes it possible to study disease
similarity and gene similarity simultaneously in DO
using the annotated human genome. Thus, we devel-
oped DOSim, an R package for the computation of DO-
based similarity between diseases in an ontology sense.
DOSim was developed on DO, subversion 926; the DO
term annotations of the human genes in DOSim were
taken from the study of Osborne et al. [12]. A total of
4054 genes have been assigned DO term annotations.
Compared with FunDO, DOSim divides functions into
three categories: (i) measuring the similarity between
diseases (DO terms), (ii) measuring the similarity
between human genes in terms of diseases, (iii) other
utilities for conducting DO enrichment analysis (similar
to FunDO), detecting and annotating DO-directed gene
modules, and describing and visualizing DO structures
and terms.

Implementation

Measuring the similarity between diseases

Terms in DO include disease names and disease-related
concepts. Exploring the similarity between them can
help us to understand the relatedness between diseases.
The past few years have seen an increase in the number
of different measures used for the calculation of seman-
tic similarity. Based on the semantic similarity measures
in the application of biomedical ontologies reviewed by
Pesquita etc al. [14], for general applicability, in DOSim
we implemented ten representative semantic similarity
measures, which are Resnik measure [15], Lin measure
[16], Jiang and Conrath measure (JC) [17], Relevance
measure (Rel) [18], Graph Information Content measure
(GIC) [19], Information Coefficient similarity measure
(simIC) [20], Wang measure [21], modified Resnik mea-
sure (CoutoResnik) [22], modified Lin measure (Couto-
Lin) [22], and modified Jiang and Conrath measure
(Couto]C) [22]. Except for the Wang measure that uses
a hybrid measure, the other nine measures are based on
information content (IC).

The IC of a term/disease ¢ in the DO database gives a
measure of how specific and informative a term/disease
is, and is defined as IC(t) = -log p(£), where p(t) is the
number of genes annotated to the term ¢ and its descen-
dants divided by the total number of genes annotated to
DO. When characterizing the shared IC between two
terms, two concepts, most informative common
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ancestor (MICA) and disjunctive common ancestor
(DCA), are widely used[22]. The MICA of two terms ¢;
and ¢, is the one that possesses the maximum IC among
all the common ancestor terms of the two terms. And
the DCAs of two terms ¢; and ¢, are the MICA of dis-
junctive ancestors of the two terms, which can be
defined as follows:

DisjCommonAnc(ty, tz) = {a1|
a, € CommonAnc(ty, t)A
Va, : [(a2 € CommonAnc(t, t;)) A (IC(a1) <IC(a2))] =
[(a1, a2) € (DisjAnc(t;) U DisjAnc(t2))]}

(1)

where disjunctive ancestors of the term t, DisjAnc(t),
can be described as that two ancestors a; and a, are
disjunctive ancestors of the term ¢ if there is a path
from a; to ¢ not passing through a, and a path from a,
to ¢ not passing through a;. It can be formulated as fol-
lows:

DisjAnc(t) = {(a1, a2)|
(3 : (p € Paths(ay, 1)) A (a2 ¢ p)IA 2)
(3p: (p € Paths(ay, 1)) A (a1 ¢ p)) }

Then, the shared information of two terms ¢; and t,,
Share(t;,t5), is defined as the average of the IC of the
DCAs, formulated as:

Share(t1,t) = {IC(a)|a € DisjCommonAnc(ty, t;)} (3)

Let tpca represent the MICA term of two terms ¢;
and t,, then the nine IC-based similarity measures are
calculated as follows:

Sitmgesnir(t1,t2) = IC(tmica) (4)

2 X IC(IMICA)

S. it /t =
impin(t1, 12) IC(t1) + IC(t2)

(5)

Simyc(t1, t2) = 1 — min(1, IC(t;) + IC(t2) — 2 x IC(tmica))  (6)

Simge1(t1, t2) = Simpin(t1, t2) x (1 — p(tpica)) (7)
> IC(y)
. te(Ancestor(t; )NAncestor(t,))
Simgic(ti, t) = 8
cic(ti, t2) > 1c) 8)
te(Ancestor(t; )UAncestor(t;))
Sim; t1,ty) = Simpin(t1, t 1-—
m’lsmrIC( 1 2) lmLm( 1 2) X ( 1 +IC(tMICA)) (9)
SimCoutoResnik(tlz tz) = Share(tlf tz) (10)
. 2 x Share(ty, t,
SlmC‘outoLin(tlz tz) = ( ) (11)

IC(tl) + IC(tz)
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Simcoumoic(t1, 12) = 1 — min(1, IC(t1) + IC(t2) — 2 x Share(t1, 2)) (12)

In the Wang measure, each edge is given a weight
according to the types of relationships. For a term 4, a
sub-DAG comprised of the term A and all its ancestor
terms can be represented as DAG, = (A, T4 E,), where
T, is the ancestor term set of term A (including A itself)
and E, is the set of edges connecting to the terms in
DAG,4. For any term ¢ in DAG,, Wang et al. [21]
defined the semantic contribution of ¢ to A, DA(t), as
the product of all the edge weights in the “best” path
from term ¢ to A, where the “best” path is the one that
maximises the product (the semantic contribution of the
term A to itself is set to 1). It can be represented as fol-
low:

Sa(A) =1

Sa(t) = max{w, x Sa(t')|t’ € childrenof (t)} if t # A (13)

where w, is the semantic contribution factor of edge e
(e € Ey4). It is set between 0 and 1 according to the
types of relationships, e.g., “is-a” or “part-of”. In DO,
there is only one type of relationship, defined as “is-a”.
In DOSim, we set w, to 0.7.

The semantic similarity between two terms A and B is
then calculated as follows:

>, (Sa(r) +Ss(1))

teTANTp

SV(A) + SV(B)

Simyung(A, B) = (14)

where SV(A) (or SV(B)) is the total semantic contribu-
tion of the term A (or B) in DAG, (or DAGg), which is
calculated as:

SV(A) = 3 Sal0)

teTy

(15)

sv(B) = 3 Ss(1)

teTp

(16)

Measuring the similarity between human genes in terms
of diseases

In the DOSim package, the similarity between two
genes based on the similarity of their DO term annota-
tion groups is calculated. Each gene is represented by
its set of direct DO term annotations, and semantic
similarity is calculated between terms in one set and
terms in the other (using one of the measures
described above). Some methods consider every pair-
wise combination of terms for the two sets, while
others consider only the best-matching pair for each
term. Five different methods are implemented in DOSim;
they are the arithmetic maxima and average of pairwise
similarity between two groups of DO terms describing the
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two genes (Max, Mean) [23], the arithmetic maxima and
average between similarities for two directional compari-
sons of the similarity matrix S of two genes (funSimMax,
funSimAvg) [18], and the best-match average approach
(BMA) [21] which considers the contributions from the
semantically similar terms that annotated the two genes
respectively (Formula 23).

Let DO; and DO, be the groups of annotation terms
for two genes g; and g,, and m and #n are the number
of terms in DO; and DO, respectively. A similarity
matrix S=[s;],,4, contains all pairwise similarity
scores of mappings from DO; to DO, when you refer
to each row and vice verse when you refer to each
column. ‘rowScore’ and ‘columnScore’ of S are the
averages over the row maxima and the column max-
ima, which give similarity scores for the comparison
of DO; to DO, and the comparison of DO, to DOy,
respectively.

rowScore = Z lrnqg Sij (17)
columnScore = Z max s (18)

Using these definitions, the five similarity methods for
the computation of gene similarity between two genes
g; and g, are defined as follows:

Simax(81,82) = (o max i (19)
Situtean($1,82) = Z Zsu (20)

i=1 j=1
Simpunsimmax(81, 82) = max{rowScore, columnScore} (21)

SiMpunsimavg (81, 82) = 0.5 * (rowScore + columnScore) (22)

m n
Y Mmaxs; + ) max §;
Slsjsn I 1si=m (23)
Sim =
Bma (81, 82) man

For a set of genes G (g;,¢»....g,) of size n, the simi-
larity matrix for these genes is defined as Sim=
[Simj],ixn, Where Sim;; is the similarity between gene
g: and g; derived by any of the five methods defined
above.

In DOSim, there are a total of fifty optional semantic
similarity measures for genes, which are combinations
of the ten semantic similarity measures for term pairs
and the five similarity methods mentioned above.
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Other utilities

Conducting DO enrichment analysis

In DOSim, DO-based enrichment analysis is implemen-
ted to explore the disease feature of an independent
gene set, for example, a differentially expressed gene set
from a microarray analysis. Significance of the enrich-
ment analysis is assessed by the hypergeometric test and
the p-value is adjusted by false discovery rate (FDR). For
a certain DO term ¢ which meets the requirement (see
below), if M genes are the number of annotated genes
in the human genome and x genes are the number of
annotated genes in the gene set for this term, then to
calculate whether the gene set is enriched in DO term
the following formula is used:

Ci, x Ck1
p—value:l—z M kaM
Cx

0<i<x

(24)

where, N is the total number of human genes in the
genome, k is the size of the gene set of interest, and C’;\]
is the number of combinations of the N genes taken k

N!
k! x (N—Fk)!

Compared with FunDO, which uses a small set of DO
terms (DOLite) [13], DOSim selects the DO terms
satisfy two criteria for enrichment analysis, aiming at
exploring more biological result. The first criterion is
that the term should be annotated by at least n genes,
and the second is that the term should be beneath a
depth m in the DAG of DO, where n and m can be set
by users when running the DO enrichment analysis.

In the DOSim package, the DOEnrichment function
carries out the DO enrichment analysis; the input is a
list of Entrez gene IDs. The filter and layer parameters
are the two criteria mentioned above that can be used
to control the terms to be analysed; so that the term is
annotated by at least ‘filter size’ genes and it is beneath
the ‘layer’ depth in the DAG of DO.

at a time and is equal to

Detecting and annotating DO-directed gene modules

A gene module is a group of highly correlated genes. In
DOSim, gene modules can be detected as follows: after
the gene similarity matrix for a gene set is constructed,
a hierarchical clustering is performed using the standard
R function Aclust and one of three branch cutting meth-
ods is applied (one constant-height cutting and two
dynamic branch cutting methods are embed in our
package) [24].

The DOSim package incorporates multilayered enrich-
ment analysis (GO and KEGG annotation) to explore
the biological meaning of the detected gene modules.
The GO annotations are conducted using GOSim [25]
and the KEGG annotations are generated using
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SubpathwayMiner [26]. The input for GO and KEGG
annotations is a list of Entrez gene IDs, the mechanism
implied in each annotation database is the hypergeo-
metric test, and the outputs for each annotation data-
base are the enriched terms with p-values.

Describing and visualizing DO structures and terms

DO is a collection of terminologies associated with
human diseases and the terms in DO are organised in a
DAG (Figure 1). DOSim also provides useful utilities to
easily visualise the DO structure; thus users need not
turn to other tools (e.g., OBO-Edit). Specifically, the
hierarchical structures of DO terms can be represented
as a graphNEL object and the getDOGraph function in
DOSim can be used to fetch the DO graph with
specified DO terms at its leaves. For a certain DO term,
DOSim provides a series of functions to extract related
terms (e.g., father and child terms.).

Results

The effect of different measures on the computation of
gene similarity

The different similarity measures for both the terms and
the genes have their advantages when applied to biome-
dical ontologies [14]. An important question that we
addressed was, do different similarity measures for the
same gene pairs produce very different results? We used
all the fifty similarity measures implemented in DOSim
to calculate the similarities between the 4045 genes that
have DO annotations. A Pearson correlation coefficient
(PCC) analysis between the gene similarities calculated
using the different similarity measures was then carried
out to quantify the influence of the similarity measures.
The resultant PCC frequency distribution (Figure 2)
showed that the gene similarities calculated by the
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Figure 2 Distribution of the Pearson correlation coefficient of
gene similarity scores between parameter combinations.
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different similarity measures were closely correlated,
indicating that the different similarity measures do not
much significantly influence the computation of gene
similarity.

Application on disease similarity

We investigated the relationships between different
kinds of cancers using disease similarities derived from
DOSim. First, 128 cancer disease DO terms were
obtained by using “cancer” as the key word to search all
DO term names (exclude the DO term, “DOID:162,
cancer”). Then, we used the getTermSim function to get
the pairwise similarities using Wang measure (This is
an example here. Users can choose any of the other
measures in their applications).

Figure 3 is the average linkage hierarchical clustering of
the 128 different cancer terms based on the similarities
computed by the Wang measure. To assign significance
to these associations, we randomly selected 128 diseases
from all the diseases covered by DO terms and calculated
the similarities among them. This process was repeated
100 times to generate a background distribution. The
background distribution value at the 99th percentile was
0.43 (p-value = 0.01). Only those disease correlations that
passed the p-value threshold of 0.01 were selected. Using
this criterion we found 800 significant disease-disease
similarity relationships. We defined a “module” as a sub-
branch in the hierarchical clustering which had at least
three diseases and under a height of 0.57 (inverse of simi-
larity). This resulted in 16 modules with sizes ranging
from 3 to 22. Generally, many of the expected disease
associations that pooled together in one sub-branch were
those that we expected; for example, the thyroid-related
cancers, well-differentiated thyroid cancer (DOID:3971),
localised parathyroid cancer (DOID:1544), metastatic
parathyroid cancer (DOID:7149) and recurrent parathyr-
oid cancer (DOID:7150) were all in one module. Many
novel and hitherto unknown significant correlations
such as the similarity between hematologic cancer
(DOID:2531) and spleen cancer (DOID:672) which had a
similarity of 0.785 were discovered. The spleen is part of
the lymphatic system which can filter the blood and help
the body fight infections. Lymphoma is a type of hemato-
logic cancer that develops in the lymphatic system.
Malignant lymphoma can occur in various organs,
including the spleen [27] and among the causes of iso-
lated splenomegaly, lymphoid malignancies account for a
relevant, yet probably underestimated, number of cases
[28]. Taking the correlation between hematologic cancer
and spleen as an example, such relationships can be
easily explored by DOSim.

We also created a network representation to display
all the 800 significant disease correlations by using the
Cytoscape software package [29] (Figure 4). In the
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Figure 3 Hierarchical clustering of 128 cancer terms. The distance between two diseases is defined to be 1- the Wang's similarity of the two
diseases. The tree was constructed using the average method of hierarchical clustering. The red line corresponds to a p-value of 0.01. Disease
correlations below this line are considered significant. The different colours represent the various categories of significant disease correlations.
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network, the nodes were diseases, and the thickness of
the edges between two diseases represented their
strength of correlation. The network revealed strong
correlations between different modules (defined in hier-
archical clustering), which helped us to pick additional
significant disease associations that were missing in the
hierarchical clustering. For example, germ cell cancer
(DOID:2994), a member of the module labelled in blue
with size 10, correlated with almost every member of
the largest module of size 22. This network application
demonstrates that, although cancer diseases show mod-
ular characteristics, they are also highly correlated with
each other. A detailed pairwise similarity matrix
between the 128 cancer terms and a list of significant
cancer pairs are provided in Additional file 1.

We also constructed the DO graph of these 128 can-
cers as leaves (Additional file 2), which finally contained
398 disease DO terms. We found that, as expected, dis-
eases in the same module represented hierarchical struc-
ture in the DO graph as illustrated in the Figure S1. For
example, the module marked brown contained 7 dis-
eases, of which “cancer of urinary tract” (DOID:3996) is
the ancestral node of the other 6 diseases. However, the
observed correlation between “germ cell cancer”
(DOID:2994) and the largest module which has a size of

22 (Figure 4) doesn’t show any direct link in the DO
graph. Again, the network representation in Figure 4
provided additional insights to our analysis.

Application on gene similarity

Here, by discussing the disease risk of obesity, we
demonstrated another application of DOSim (using
functions of calculating similarity between genes and
DO-directed gene modules detection and annotation).
Previous studies showed that obesity increased the risk
of various diseases, such as type 2 diabetes, heart disease
and certain types of cancer [30]. In this example, we
used obesity related genes (651 genes) that were down-
loaded from the Phenopedia database[31]. Of the 651
genes, 361 had DO annotations. The similarities
between these 361 genes were calculated using the BMA
method on the Resnik measure (This is just one exam-
ple. Users can choose to use any of the others in their
applications). A gene similarity matrix S = [s;]361 x 361
was constructed where s;; is the similarity between ith
gene and jth gene in the gene set. After that an average
linkage hierarchical clustering was performed and then a
dynamic tree cutting method was applied (minimal
module size is larger than 10) [24]. Finally, 10 different
gene modules were obtained (Figure 5, Table 1).
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When the complete GO and KEGG annotations of these
ten different gene modules were analysed (Additional
file 3), we found different enriched biology functions and
pathways for each module, indicating the complex patho-
genesis of obesity. For example, the KEGG annotations of
one of the clusters (M4) (Table 1) indicated that obesity is
a factor that may lead to various cancers (e.g., colorectal
cancer and endometrial cancer) and that obesity may also
have a relationship with many signalling pathways (e.g.,
ErbB signalling pathway and Jak-STAT signalling path-
way). However, the KEGG annotations of another cluster
(M2) suggested that obesity may either affect the metabo-
lism of many molecules or that the dysfunctional metabo-
lism of these molecules may lead to the obesity (e.g.,

pyruvate metabolism and galactose metabolism). Similarly,
the GO annotations of cluster M1 implied that obesity has
a relationship with the biology process of cholesterol, lipo-
protein and triglyceride (e.g., cholesterol homeostasis,
reverse cholesterol transport, high-density lipoprotein par-
ticle remodelling and triglyceride catabolic process), while
the GO annotations of cluster M3 suggested that obesity
may be associated with eating habits (e.g., feeding behavior
and drinking behavior). Both the GO and KEGG annota-
tions of cluster M8 indicated that obesity is related to coa-
gulation (blood coagulation in GO; complement and
coagulation cascades in KEGG). These multilayered anno-
tations successfully demonstrated the complex pathogen-
esis of obesity and suggested that the genes in the
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Table 1 Gene modules of the obesity related genes

*

Cluster Size Average p-value® FDR Representative GO annotation® Representative KEGG annotation®
similarity

M1 92 043 <1.0E-05 <1.0E-04 cholesterol homeostasis; high-density Insulin signaling pathway; Type |l

lipoprotein particle remodelling; triglyceride diabetes mellitus
catabolic process

M2 60 0.30 0.25 0.28 N/A® Pyruvate metabolism; Galactose
metabolism;

M3 55 0.30 0.29 0.29 feeding behavior; photoreceptor cell maintenance  Neuroactive ligand-receptor
interaction; Circadian rhythm -
mammal;

M4 31 0.50 <1.0E-05 <1.0E-04 response to estrogen stimulus; response to Pathways in cancer; Colorectal

cytokine stimulus; cell aging cancer; Endometrial cancer;

M5 30 0.62 <1.0E-05 <1.0E-04 response to lipopolysaccharide; response Cytokine-cytokine receptor

to glucocorticoid stimulus interaction; Toll-like receptor
signaling pathway;

Mé 23 0.55 <1.0E-05 <1.0E-04 positive regulation of phosphoinositide 3-kinase Renin-angiotensin system; Prostate

cascade; positive regulation of cholesterol cancer
esterification

M7 15 034 0.12 0.16 N/A Insulin signaling pathway

M8 15 043 6.0E-04 6.0E-03 blood coagulation; STAT protein nuclear Complement and coagulation

translocation cascades; Regulation of actin
cytoskeleton

M9 15 0.53 <1.0E-05 <1.0E-04 response to interleukin-1; response Hematopoietic cell lineage; Cytokine-

to glucocorticoid stimulus cytokine receptor interaction

M10 12 040 1.5E-02 2.2E-02 N/A N/A

# the original p-value calculated by permutation

* FDR using Benjamini and Hochberg multiple testing correlations
§ Refer to Additional file 3 for complete GO and KEGG annotations.
$ N/A indicates that there are no enriched GO or KEGG annotation for this module.
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different gene modules would be potential drug targets for
the corresponding diseases caused by obesity.

Discussion

The DOSim package offers an easy and straight forward
way to study disease similarity and gene similarity
simultaneously in the DO. Additionally, other utilities
implemented in the DOSim, such as function of gene
module detection and gene module multilayered annota-
tion, make better application of the DO and facilitate
researchers. The presented two case studies highlight
the usefulness of the DOSim in a real life scenario. We
also provided the Additional file 4 which contains all
the necessary R scripts to generate the above two case
studies.

Conclusions

The DOSim package advances the use of DO by integrat-
ing information theoretic similarity concepts for diseases
and deriving disease similarity measures for genes in the
powerful R system. Compared with the few existing
bioinformatics tools for DO, e.g., FunDO, which explores
disease information implied in the gene set by enrich-
ment analysis, DOSim focuses on the computation of dis-
ease-disease and gene-gene similarities. Other utilities,
such as function for gene module detection and gene
module multilayered annotation, should help promote a
better understanding of the complex pathogenesis of
some disease risk phenotypes and the heterogeneity of
some diseases. DOSim is available on the Comprehensive
R Archive Network (CRAN) project or through http://
bioinfo.hrbmu.edu.cn/dosim.

Availability and requirements
Project name: DOSim
Project home page: http://bioinfo.hrbmu.edu.cn/
dosim
Operating system(s): platform independent
Programming language: R
Other requirements: none
License: GPL

Additional material

Additional file 1: Pairwise similarity matrix between 128 cancer
terms and a list of significant cancer pairs. Similarities for these 128
cancers were computed by getTermSim function using the Wang
measure. The threshold of similarity 0.43 was selected by permutation
and the corresponding p-value was 0.01. The excel file contains three
separate sheets named ‘readme’, ‘similarity matrix’ and ‘significant disease
pairs’. They contain the following information: Readme: Brief introduction
to the file. Similarity matrix: Stores all the 180 cancers’ pairwise
similarities. Data coloured red are those with a similarity larger than 043,
corresponding to p-value 0.01. Significant disease pairs: Represents the
significant disease pairs at a significant p-value of 0.01 fetched from the
‘similarity matrix'.
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Additional file 2: The DO graph of the 128 cancer DO terms. The DO
graph of the 128 cancer DO terms was generated by “getDOGraph”
function in the DOSIim package. The 128 terms functioned as leaves,
resulting in 378 terms in total. The 128 starting terms are represented as
circles with different colours according to the modules they belong to.
The additional 270 terms are represented as grey squares. Two modules
coloured in brown and green are expanded as examples amd compared
with the results in the Figure 3. Additionally, term DOID:2994 (germ cell
cancer) is also expanded as an example and compared with the results
in the Figure 4.

Additional file 3: Detailed annotation for ten obesity related gene
modules Ten modules of obesity genes were obtained by
‘detectModule’ function with minimal module size larger than 10 and
using the ‘tree’ method. The module annotation was carried out by the
R script in the Addtional file 4 (R_CodeR). All GO and KEGG terms
assigned to each module are at a significant level of FDR < = 0.01.

Additional file 4: R and Perl scripts used to generate the results in
the two case studies This zip file contains the 10 files, which were used
to generate the results in the two case studies. Two files, the “R_Code.R"
and the “get_significant_of_each_module.pl” are the main scripts that
were used. A detailed description of all 10 files is available in the
“Readme.txt” file.
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