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Abstract

Background: Comparison of the human genome with other primates offers the opportunity to detect
evolutionary events that created the diverse phenotypes among the primate species. Because the primate
genomes are highly similar to one another, methods developed for analysis of more divergent species do not
always detect signs of evolutionary selection.

Results: We have developed a new method, called DivE, specifically designed to find regions that have evolved
either more or less rapidly than expected, for any clade within a set of very closely related species. Unlike some
previous methods, DivE does not rely on rates of synonymous and nonsynonymous substitution, which enables it
to detect evolutionary events in noncoding regions. We demonstrate using simulated data that DivE compares
favorably to alternative methods, and we then apply DivE to the ENCODE regions in 14 primate species. We
identify thousands of regions in these primates, ranging from 50 to >10000 bp in length, that appear to have
experienced either constrained or accelerated rates of evolution. In particular, we detected 4942 regions that have
potentially undergone positive selection in one or more primate species. Most of these regions occur outside of
protein-coding genes, although we identified 20 proteins that have experienced positive selection.

Conclusions: DivE provides an easy-to-use method to predict both positive and negative selection in noncoding
DNA, that is particularly well-suited to detecting lineage-specific selection in large genomes.

Background
The genome of a living species is the product of a long
series of changes, including neutral, beneficial, and detri-
mental alterations to the sequence. Sequence changes
that affect the organism’s fitness are subject to evolu-
tionary pressures, such as the pressure to survive, to
out-compete other species, and to defend the organism
against external attack. In order to uncover these
changes, we need to know what the ancestral genome
looked like, which we can infer by comparing multiple
genomes to one another. As we accumulate genomes
from species related to human, and especially from
within the primate lineages, we should be able to learn
more about what makes humans special. At the same
time, we can learn what makes each primate different
from the others. Until recently, methods for detecting
the effects of evolution had been designed for relatively

distant species such as humans and mice. With the pub-
lication of the chimpanzee genome [1], we had our first
look at a very close relative of human. The genomes of
chimpanzees and humans are so close, in fact, that
sequence similarity cannot be used to infer functional
significance: in most cases, similarity simply reflects the
recent divergence between the species. With more spe-
cies, sequence comparison even among close relatives
can be used to tease apart regions that are constrained
by evolutionary forces and that, consequently, are likely
to have functional importance to the biology of humans.
Recently, the ENCODE project selected 13 primates

(in addition to human) and sequenced 1% of each gen-
ome to produce “comparative grade” [2] assemblies.
These high-quality sequences from close human rela-
tives give us a greater ability than before to detect the
signs of evolutionary selection on the human genome
and other primates. The traces of evolution’s effects can
be found more easily when they are shared among mul-
tiple species. Signs of selection also may indicate func-
tionally important sequences, and in particular they can
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be used to identify regulatory regions that fall outside
protein-coding regions and are otherwise difficult to
find.
Broadly speaking, there are two main types of selective

processes driving the evolution of genomes. Negative or
purifying selection is the evolutionary pressure that
eliminates deleterious mutations from a population.
Most mutations in the genome are probably neutral,
because most of the genome is itself non-functional, but
within coding regions, the majority of mutations are
deleterious [3]. Deleterious mutations are likely to be
transient; i.e., they do not become fixed in the human
population. Negative selection has been identified prin-
cipally by pairwise sequence alignment methods,
through which DNA or amino acid sequences can be
shown to be more highly conserved than expected based
on the overall evolutionary distance between a pair of
species. By one well-known estimate, approximately 5%
of the human genome is under negative selection [4], of
which only 1.5% is contained in protein-coding exons.
Positive selection is more difficult to detect. In positive

selection, a region of the genome, protein coding or
otherwise, accumulates beneficial mutations that provide
a survival advantage to the organism. One way to detect
positive selection is by the presence of genes that have
acquired many more mutations than other genes when
compared to close relatives. A well-documented exam-
ple of positive selection is the rapid change in the
hemagglutinin protein on the surface of the human
influenza virus, which is in constant competition with
the human immune system [5]. Positive selection must
be carefully distinguished from the relaxation of selec-
tive constraints, however. If a sequence (a gene or a reg-
ulatory sequence) ceases to perform its function, and if
that function is no longer needed by the organism, then
it might accumulate mutations faster precisely because
it is no longer functional.
In this study, we describe a new method, called DivE,

for detecting lineage-specific regions evolving at a
slower or faster rate than the background evolutionary
rate in the primate genomes. Other methods have been
previously developed for detecting selection, but most
look only at conservation of sequence (negative selec-
tion) in all aligned species, and are not lineage specific
[6-12]. Methods to detect accelerated regions (i.e.
regions evolving at faster-than-neutral rates) have also
appeared recently [13-18]. Some of these methods allow
for lineage-specific selection [14-16,18], but in contrast
with conservation-detection methods, they cannot be
easily used for genome-wide scans to detect selection,
and look only at particular regions of interest. Although
accelerated regions may indicate positive selection, this
is not necessarily the case [19]. There are many exam-
ples where positive selection manifests itself at only a

small number of sites [20-23]. Our method is not suited
to the identification of positive selection in these cases.
Recently a new program, phyloP, was developed to

examine the more general problem of detecting either
conserved or accelerated regions in a set of aligned
orthologous sequences from multiple species [24]. Phy-
loP implements four different statistical phylogenetic
tests to find significant departures from non-neutral
substitution rates on a whole phylogeny as well as on
selected subtrees (clades) of interest in the phylogeny. It
was shown to have fairly good accuracy in detecting
strong selection even at individual nucleotides. In one
respect, DivE is similar to phyloP in that both methods
try to solve the general problem of detecting an increase
or a decrease in the rate of substitution in a given geno-
mic region, either on a whole phylogeny or within a
clade of the phylogeny.
However, in phyloP the phylogenetic subtree of

interest needs to be provided to the program, while in
contrast DivE addresses the more complicated problem
in which the lineage of interest is not pre-specified.
Therefore the lineage under selection must be detected
automatically by DivE from among all possible subtrees
within a phylogeny. Another significant difference is
that applying phyloP to an entire genome to detect
selection involves using a sliding window approach.
Although a sliding-window analysis is a popular
method to test for negative or positive selection, there
are results that show that this approach is not gener-
ally valid if selective trends are not known a priori in a
given region [25]. In addition, the sensitivity of phyloP
is dependent on the size of the window used to scan
the genome, which in turn depends on the number of
species available. DivE doesn’t use a sliding window
approach, but instead tries to determine the optimal
size for the selected genomic element that is predicted
to be under selection. In regard to these differences,
DivE is more similar to DLESS [26], a method that
detects sequences that have either come under selec-
tion, or begun to drift, in any lineage. While DLESS
only allows for detection of a “gain” event (conserva-
tion in a phylogenetic subtree) or a “loss” event (where
a subtree is evolving neutrally while the rest of the
tree is conserved), DivE also detects acceleration events
in any clade of the tree. DLESS is the only other com-
putational method, prior to DivE, that can detect line-
age-specific selection when the lineage of interest is
not pre-specified.
Below we present our method for detecting both con-

served and accelerated regions and apply it to 14 pri-
mate genomes. We describe results on simulated and
real data, including the identification of positively
selected genes that intersect regions evolving faster than
the neutral mutation rate. The method described in this
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paper is implemented in the DivE package which is
available as free, open-source software [27].

Results
Simulation results
For our simulation tests, we created sequence elements
that were both positively and negatively selected within
the same 14 primate species used for our later experi-
ments on real data. Because we knew the precise loca-
tion, size, and type of selection involved in each
element, we could use this data to evaluated the accu-
racy of DivE and compare it to other methods.
We created simulated data sets that contain selected

elements of lengths between 50 bp and 1000 bp in all
subtrees of the phylogeny of the 14 primates (see Fig-
ure 1 and Methods for a description of the primate
phylogeny). Conserved elements are either “gained” or
“lost” on a particular lineage, where a “gain” event
implies that the region defined by that particular line-
age will experience selective pressure that will tend to
eliminate individuals with mutations in that region (i.
e., negative or purifying selection). A “loss” event

implies that the region in question does not have evo-
lutionary constraints, and will evolve at the neutral
substitution rate, while the rest of the tree is con-
strained. The average substitution rate observed for
conserved elements is a fraction of the non-conserved
regions, and we therefore can simulate negative selec-
tion by reducing the branch lengths of the selected
subtree (for gain) or supertree (for loss), as depicted in
Figure 2. For accelerated elements, the observed substi-
tution rate is greater than the neutral rate. A special
case of accelerated evolution is positive selection,
which occurs when a sequence is under pressure to
change more rapidly; e.g., in order to adapt to changes
in the environment. A particular subtree might be
under positive selection if the branch from the whole
tree leading to that subtree is elongated, while the
branches within the subtree are the same or shorter
than the background mutation rate (see Figure 2).
In our simulation, the accelerated elements in a given

subtree are generated according to a phylogeny in which
the parent edge of the node at the root of the subtree is
longer. We chose a scaling parameter r (where r Î {0.01,
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Figure 1 Phylognetic tree of the fourteen primates used in this study. The branches in the tree are proportional to the expected number
of substitutions per site. For reference, a scale of 0.01 substitutions per site is shown. The names of the major clades in this phylogeny are
shown in italics. All nodes have 100% support values in a Bayesian phylogeny framework, except for node a.
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0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}) to represent the selection
strength affecting the elements by reducing (through
multiplication by r) or enlarging (by dividing by r) differ-
ent branches of the phylogenetic tree depending on the
type of section [28] as described above. We obtained the
results presented here by generating 100 elements for
each subtree in the phylogeny, type of selection, selection
strength, and length.
We used DivE to detect regions that have either come

under negative selection, or begun to drift on any line-
age. We compared its results to DLESS [26], the only
previous method to our knowledge that has been devel-
oped to solve the same problem as the one presented
here. The same input was given to both DivE and
DLESS: a set of aligned orthologous sequences and a

neutral phylogenetic model generated with phyloFit [29],
which included a substitution rate matrix, a tree with
branch lengths in units of expected substitutions per
site, and estimates of nucleotide equilibrium frequencies.
Table 1 shows the average accuracies obtained by

DivE and DLESS for the prediction of elements of dif-
ferent lengths and at different selection strengths (as
specified by the scaling parameter r) that are either
gained or lost. Averages are computed on all clades in
the phylogeny (excluding the whole tree). The accuracy
of prediction for each program is computed as the aver-
age of the precision and recall to detect sites under
selection. Precision and recall performances for detect-
ing negative selection in all subtrees for both DivE and
DLESS are shown in Additional file 1, Tables S1-S16.

Neutral tree 

A 

A’ 

A 

A 
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A’ 

A 

A’ 

A’ or 

conserved subtree, 

with neutral 
supertree (“gain”) 

neutral subtree, 
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T 

Figure 2 The selection problem. Branch length changes to the neutral phylogenetic tree are shown for each type of selection considered in
this study: gain, loss, and acceleration. The figure shows a phylogenetic tree composed of a supertree T with root A, containing a subtree t with
root A’ that is affected by selection. The left side of the figure shows the effects of negative selection on the relative shape and position of t. In
the case of “gain” elements the branches within t as well as the branch from A to A’ are reduced in length. In the case of “loss” elements, t is
unaffected while the rest of the tree is reduced in size (conserved). Both gain and loss events are particular cases of negative selection affecting
different lineages in the tree. In the case of acceleration, shown on the right side of the figure, only the branch from A to A’ increases in length.
Positive selection is one cause, but not the only cause, of this type of increase. Branches within t may decrease in length if there is additional
selection within the tree.
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In almost all cases, DivE’s accuracy is significantly
greater than that obtained by DLESS. In the few cases
where DLESS obtains a better accuracy, this accuracy
is less than 0.5% greater than that of DivE. As
observed before [26] the power to predicting elements
that are lost is greater than the power to predicted ele-
ments that are gained. Actually, in the case of lineage-
specific “gains” (the upper third of Table 1), the aver-
age accuracy only surpasses 50% for elements longer
than 500 bp.
Figure 3 shows that accuracy can be greater when

considering specific clades with more species, and
longer branch lengths. In fact the power of detection
gets significantly higher if the clade has at least two spe-
cies compared to the power of detection in a single spe-
cies (see Additional file 1, Tables S1-S8). In the case of
“losses,” the power is generally quite good especially for
elements of 100 bp and greater.

Table 1 also shows the accuracy obtained by DivE on
predicting elements that are accelerated, a function lack-
ing in DLESS. There is no program that we are aware of
that is designed to detect both the accelerated element
as well as the specific phylogenetic lineage in which the
acceleration takes place. It is interesting to note that the
power of detecting accelerated elements is significantly
greater than the power to predict “gained” elements,
although not as good as the power to detect “lost” ele-
ments (see also Additional file 1, Tables S17-S24).
We should also note that by design DivE cannot dis-

tinguish between accelerations in the simian clade and
accelerations in the prosimian clades. This is due to the
symmetry of the phylogenetic tree in which enlarge-
ments in the branches from the phylogeny’s root to the
simians and to the prosimians are indistinguishable. If
acceleration in any of these clades was detected, we
assumed a 50% chance that the acceleration was in

Table 1 Average accuracy (shown as a percentage) of DivE (dE) and DLESS (dl) to detect conservation and accelerated
evolution computed on all primate subtrees for simulated data of different lengths.

50 bp 100 bp 200 bp 500 bp 1000 bp

dE dl dE dl dE dl dE dl dE dl

gain 0.01 4.4 1.6 15.0 5.3 32.3 15.6 59.6 40.0 80.7 66.0

0.02 5.2 1.7 15.1 6.3 32.7 15.9 58.7 40.0 81.5 63.7

0.05 3.8 1.6 13.0 5.6 30.5 15.6 56.0 39.9 79.6 62.2

0.1 4.7 0.9 12.2 3.8 27.5 14.6 54.0 37.8 77.2 58.6

0.2 2.0 1.6 8.7 2.7 22.7 10.5 48.6 33.6 70.7 53.8

0.3 2.1 0.2 6.6 2.0 18.3 8.9 40.7 28.0 62.1 48.4

0.4 1.3 0.3 5.2 1.8 13.6 5.8 33.8 21.5 54.2 36.6

0.5 0 0.2 1.9 0.1 13.0 4.1 25.4 13.8 45.4 26.0

loss 0.01 85.6 73.6 93.9 86.5 97.4 93.5 99.1 97.2 99.5 98.8

0.02 85.7 72.7 93.7 86.8 97.3 93.5 99.0 97.3 99.5 98.6

0.05 84.3 69.3 93.4 86.9 97.2 93.6 99.0 97.3 99.5 98.7

0.1 82.2 61.5 91.8 86.3 96.7 93.1 98.9 97.4 99.5 98.9

0.2 70.6 43.9 87.5 84.1 94.2 91.9 98.1 97.3 99.2 98.7

0.3 53.9 29.8 81.6 72.3 90.5 90.4 96.2 96.7 98.3 98.3

0.4 41.2 22.8 70.7 52.6 85.7 80.7 93.7 94.0 96.7 96.6

0.5 31.3 12.5 55.1 37.0 77.3 58.9 89.8 80.8 94.4 87.6

acc 0.01-1 71.0 - 80.4 - 88.0 - 93.6 - 96.4 -

0.02-1 69.5 - 79.8 - 87.1 - 93.5 - 96.1 -

0.05-1 54.4 - 73.7 - 84.8 - 92.7 - 95.9 -

0.1-1 35.8 - 58.7 - 78.7 - 90.7 - 95.2 -

0.2-1 16.4 - 33.2 - 56.1 - 80.9 - 90.2 -

0.3-1 6.1 - 20.4 - 36.8 - 61.5 - 80.3 -

0.4-1 3.0 - 8.6 - 24.2 - 47.1 - 66.6 -

0.5-1 1.8 - 3.7 - 10.7 - 31.9 - 47.0 -

Accuracy was computed as the average of precision and recall. The first column in table shows the type of selection (gain, loss, or acceleration), and the value of
the scaling parameter r. Smaller values of r correspond to stronger selection pressure, which is easier to detect. Results in bold show the larger accuracy value
for each comparison between DivE and DLESS.
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either clade. In real applications, an outgroup can be
used to distinguish between these two cases.
Both DivE and DLESS can predict conservation not only

on subtrees of the phylogenetic tree, but on all branches
of the phylogeny as well. For this task, DivE’s accuracy is
again significantly better than that of DLESS, as shown in

Table 2. In this case, the power of detecting elements
under negative selection is quite good even for elements
as small as 50 bp, when r ≤ 0.2. The accuracy of detection
increases significantly for elements bigger than 100 bp,
and is over 90% for r = 0.3, a value that has been shown
to be specific to conserved regions in vertebrates [10].

Figure 3 Accuracy of gain and loss predictions on the major primate clades for negatively selected regions. All regions are 200 bp in
length. DivE is shown with a continuous line, and DLESS with a dotted line. On the x axis is the value of the scaling parameter r determining
the selection strength, while the accuracy (the average of precision and recall) is shown on the y axis.
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Results on fourteen primate species
Next we applied DivE to the multiple alignments of the
44 ENCODE regions [30] of primates (see Methods).
These regions cover ~1% of the human genome
sequence and represent the largest mammalian com-
parative data set yet published [31]. For our analysis, we
focused exclusively on the primate sequences because
DivE is designed to detect selection in closely related
groups of species.
When run on all primate ENCODE regions, DivE pre-

dicted 21,633 elements with non-neutral substitution
rates. These elements had lengths ranging from 50 bp
to 40,000 bp, with an average length of 700 bp. Of all
predicted elements, 12,385 (covering ~28% of the 32.1
million columns of the ENCODE regions’ alignment)
showed negative selection on either all or a subset of
the branches of the phylogenetic tree. This coverage is
even higher in protein coding regions and UTRs, where
it reaches 74%, and 49% respectively. About 65% of the
predicted sites undergoing negative selection were either
fully conserved or lineage-specific gains, while the rest
of them were lineage-specific losses.
DivE predicted 9248 lineage-specific acceleration

events, covering 20% of all columns in the ENCODE
alignment of the primates. Given its reported power to
detect acceleration for a given clade [24], we ran phyloP
to validate our predictions. PhyloP reported p-values of
0.05 or less for 84% of our predicted accelerated ele-
ments. By comparison, phyloP reported a p-value below
0.05 for 98% of the elements that are predicted to be
under negative selection, either within a subtree or on
all branches of the phylogeny. This suggests that DivE
may have somewhat less power to detect acceleration as
opposed to conservation. Additional file 1, Table S25
shows the exact percentages of the ENCODE primate
sequences predicted to be either conserved or acceler-
ated by DivE.

We were particularly interested in regions for which
we can find evidence of positive selection. As a stricter
criterion for positive selection, we looked at the 9248
accelerated regions and asked whether, in each case, the
subtree involved was internally conserved; i.e., after the
acceleration event, the sequences were conserved more
than expected (see Figure 2). This filter eliminates cases
of apparent acceleration that might be artifacts of low
quality sequence or mis-alignment. DivE predicted 4942
regions (about 53% of all predictions) to be lineage-spe-
cifically accelerated (p-value < 0.05 as determined by
phyloP) where the regions also appear conserved when
looking only at the subtree for that particular lineage.
(These regions include both one-node subtrees and
clades of 2 or more species). A list of all elements that
are potentially undergoing positive selection, as well as
all elements predicted by DivE can be downloaded from
ftp://cbcb.umd.edu/pub/data/DivE.
Positive selection (PS) is one of the most important

evolutionary forces that shape our development, and
many efforts have been made to detect its presence in
protein-coding genes. The most widely used methods is
to determine if the ratio of nonsynonymous (dN) to
synonymous (dS) substitutions is larger than 1 [32].
This only works in protein-coding regions, while DivE
considers all regions, but we wanted to compare its pre-
dictions in protein-coding regions with those made by a
standard method.
We used the dN/dS ratio estimated with the PAML

package [33] to test for positive selection (PS) in primate
genes from the ENCODE regions that overlap DivE’s
predicted accelerated elements. There are 443 human
genes with annotations in the ENCODE regions. Out of
these, 182 genes overlap with accelerated elements pre-
dicted by DivE. Because the other primates were not
annotated, we used Jigsaw [34] for each human gene
(see Methods) to determine its equivalent annotation in
the other primates. Similarly to previous work [35], to
minimize the false positive rate when predicting positive
selection, we accepted as valid only transcripts that
aligned to at least 80% of the human CDS, without
frame shifts. At each gene locus we only retained the
transcripts that had the longest overlap with the acceler-
ated predicted element. By selecting for each gene the
transcript that was conserved in most species, and using
the longest coding length in deciding ties, we obtained
80 genes that mapped to at least two other species
besides human and overlapped the predicted accelerated
elements. This procedure resulted in an average of 10
orthologous transcripts for each gene.
Using PAML to test for PS on the branches predicted

as accelerated by DivE, we determined 25 genes with p-
value < 0.05. After multiple testing correction, 20 genes
were identified as positively selected genes (PSGs).

Table 2 Accuracy of DivE (dE) and DLESS (dl) on
detecting negative selection in all primates
using simulated data.

selection
strength

50 bp 100 bp 200 bp 500 bp 1000 bp

dE dl dE dl dE dl dE dl dE dl

0.01 93.6 92.3 97.3 88.2 98.2 94.2 99.3 94.3 99.6 96.7

0.02 93.4 86.2 96.7 92.3 98.3 91.4 99.3 93.2 99.7 94.1

0.05 94.2 86.0 95.6 87.8 98.2 95.2 99.4 95.7 99.6 98.6

0.1 94.9 85.5 95.9 90.9 98.1 92.9 99.2 95.1 99.6 96.1

0.2 79.1 64.3 95.3 94.5 97.8 92.8 99.0 94.7 99.5 95.0

0.3 64.4 47.4 93.3 87.2 95.7 95.2 98.5 91.7 99.2 96.3

0.4 49.7 23.4 75.2 65.0 93.6 89.8 97.7 91.6 98.8 91.2

0.5 37.5 8.4 62.7 46.2 85.5 70.0 94.9 83.6 97.2 87.1

Results in bold show the greater accuracy.
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These genes, shown in Table 3, represent only 25% of
our initial 80 genes; i.e., only one in four genes that
were found to intersect accelerated elements were pre-
dicted as PSGs. The remaining genes might be false
positives found by DivE, or alternatively, they might
have been missed because fewer sites among their
CDS’s were found to be accelerated than for the 25%
that were consistent with the PAML analysis of PS (246
bp vs 383 bp in average), and PAML itself may have less
power to determine PS on whole coding regions where
only small fractions of them show acceleration. Also, as
one recent study found [36], positive selection may be
limited to specific regions of genes that are otherwise
conserved. As mentioned above, the subtrees tested for

the presence of PS were the ones predicted by DivE to
be under acceleration. In cases where the acceleration
was predicted in either the simians or the prosimians
clade, we tested both clades for the presence of PS, and
we reported the one with the highest p-value. It should
be noted though that in most cases PAML finds very
close p-values for both clades.
Finally we looked at gene ontology (GO) [37] cate-

gories associated with the identified PSGs. The two
most common GO categories were GO:0016021 (’inte-
gral to membrane’) and GO:0005886 (’plasma mem-
brane’). The first category has been previously found to
be over-represented among mammalian genes predicted
to be under positive selection [35]. In fact 8 out of our

Table 3 List of positively selected genes that intersect DivE’s predicted accelerated regions.

Gene
symbol

Gene full name Encode
region

Subtree
under
selection

No. of
orthologous
sequences

P-value

SERPINB7 serpin peptidase inhibitor, clade B (ovalbumin), member 7 ENr122 new world
monkeys

13 <.0001

SLC22A4 solute carrier family 22 (organic cation/ergothioneine transporter),
member 4

ENm002 orangutan 14 <.0001

UGT1A8 UDP glucuronosyltransferase 1 family, polypeptide A8 ENr131 baboon 7 <.0001

LILRA4 leukocyte immunoglobulin-like receptor, subfamily A (with TM
domain), member 4

ENm007 human-orangutan 6 <.0001

APOA4 apolipoprotein A-IV ENm003 macaque 13 <.0001

HBQ1 hemoglobin, theta 1 ENm008 chimp 14 <.0001

F7 coagulation factor VII (serum prothrombin conversion accelerator) ENr132 macaque 11 <.0001

C21orf13
(LCA5L)

Leber congenital amaurosis 5-like ENr133 mouse lemur 13 0.0004

CGN cingulin ENr231 dusky titi 13 0.0004

LILRB4 leukocyte immunoglobulin-like receptor, subfamily B
(with TM and ITIM domains), member 4

ENm007 vervet-baboon 6 0.0007

AC006985.5
(HEATR7B1)

HEAT repeat containing 7B1 ENr131 prosimians 9 0.0007

ARHGDIG Rho GDP dissociation inhibitor (GDI) gamma ENm008 simians 10 0.0017

F8 coagulation factor VIII, procoagulant component ENm006 owl monkey 10 0.0026

SYT8 synaptotagmin VIII ENm011 new world
monkeys

8 0.0030

C22orf30
(PRR14L)

proline rich 14-like ENm004 simians 12 0.0039

HBZ hemoglobin, zeta ENm008 macaque 4 0.0043

LILRB5 leukocyte immunoglobulin-like receptor, subfamily B
(with TM and ITIM domains), member 5

ENm007 macaque 3 0.0068

DEPDC5 DEP domain containing 5 ENm004 human-colobus
monkey

12 0.007

RPS9 ribosomal protein S9 ENm007 human-colobus
monkey

13 0.0227

DDX43 DEAD (Asp-Glu-Ala-Asp) box polypeptide 43 ENr223 new world
monkeys

12 0.0246

Positive selection was determined with the codeml program from the PAML package. The first column gives the ENCODE gene symbol followed in parentheses
by the corresponding Genbank gene symbol (if different). The fourth column in the table shows the name of the subtree predicted to be accelerated by DivE. If
there are multiple species in the selected tree, the clade is specified by the two species whose most common ancestor form the clade’s root, or by the clade’s
name as specified in Figure 1.
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20 PSGs are associated with over-represented GO cate-
gories among mammalian PSGs (see Additional file 1,
Table S26).

Discussion
In this study we introduced DivE, a new method to
detect lineage-specific selection in a group of closely
related species. In contrast to most previous methods,
our approach does not restrict its search to selection
events in a particular lineage, but rather tries to discover
the particular clade undergoing selection as well as the
type of selection. We should note that DivE does not
specifically detect positive selection, but rather identifies
regions undergoing accelerated change. An accelerated
rate of evolution can be used as an indication that posi-
tive selection has occurred, but it could also be due to
other factors, including relaxation of selective
constraints.
Results on simulated data suggest that this method

performs as well or better than earlier methods, espe-
cially for longer sequences, and its performance in dis-
covering negative selection is comparable to similar
methods both on real and simulated data. DivE also has
an advantage in that it does not make any assumptions
about the expected length of the regions under selec-
tion, or about the strength of the evolutionary con-
straint. On the other hand, our method admittedly
makes the simplifying assumption that the neutral rate
of point mutation is uniform over the genome (although
local neutral substitution rates could be estimated a
priori and provided as input to DivE). Neither does it
model insertion and deletion events, but rather it
assumes that data is missing when it encounters a dele-
tion. Although this assumption is not always realistic, it
is probably true for most deletions appearing in the
ENCODE regions of the non-human primates. Never-
theless these assumptions are likely to influence the
results. Also, compared to other methods, DivE is not a
rigorously statistical method, but rather a heuristic
approach designed to capture regions with scores higher
than the false positive scores observed in neutrally simu-
lated sequences whose length and composition is similar
to the real data. Such regions are then predicted as
selected. One strength of the method is its fast running
time for discovering lineage-specific selected regions,
which then can be further evaluated with statistical
methods (e.g., phyloP).
We focused on primate genomes in our study because

of their obvious relevance to human, and also because
sequence data is now available for 14 different primates
for a select set of regions covering approximately 1% of
each genome. The very close evolutionary relationship
of these species required the development of a new
method that could detect signs of possible selection in

very recently diverged species. We were particularly
interested in positive selection, because rapidly evol-
ving regions might be key to explaining the unique
phenotypic traits that distinguish humans from other
primates and the primates from one another. The DivE
program predicted accelerated regions overlapping 182
genes in the ENCODE regions. Not all evolutionary
acceleration events are caused by adaptive evolution
[38], and therefore DivE alone should not be used to
infer positive selection. Using the ratio of nonsynon-
ymous to synonymous substitution, we found evidence
of positive selection in different lineages of the pri-
mates in 20 genes, representing about 5% of all known
ENCODE genes that have valid transcripts in at least
two other primates. These 20 genes represent only
25% of all the genes predicted to intersect accelerated
regions. These results agree with an analysis of positive
selection and acceleration in the evolution of the
human and chimp genomes [19], where the authors
found that many of the genes with accelerated rates
did not show significant signals of positive selection.
Anyway, as a recent study points out [39], these results
should be treated with caution because estimates of
positive selection can be greatly influenced by errors in
sequencing, annotation and alignment. Although the
ENCODE regions for these 14 primates are between
17 and 30 Million bp (see Additional file 1, Table S25)
they are still not 100% complete [40], and they repre-
sent only a small fraction of the whole genomes. They
also contain less than 2% of the approximately 22,000
known human genes [41]. Therefore the results pre-
sented here might not extrapolate well to an alignment
of complete genomes.

Conclusions
The evolutionary events relating a group of species can
often be discerned by searching for patterns in the
aligned DNA sequences from those species. These pat-
terns can reveal the critical changes that make each spe-
cies unique and different from its relatives. Regions of
strong sequence conservation are a sign of negative (or
purifying) selection, in which detrimental changes are
eliminated. Positive selection, in which beneficial
changes are retained in a species, can appear as a region
in a multi-species alignment with many more changes
than expected. Different selective pressures can act on
different lineages of a phylogeny. Although computa-
tional methods have been developed to identify regions
under selection across species or in a particular lineage,
most of these are limited to protein coding sequences
only, or to identifying negative selection, or both. Little
attention has been given to identifying selection pressure
on both coding and non-coding sequences for any
branch of a phylogeny.
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Here we developed a heuristic novel approach that
can discover either positive or negative selection on any
lineage in a phylogeny, without making prior assump-
tions about the strength of the selective pressure. We
have implemented our method in an open-source soft-
ware package, called DivE, and applied it to identify
lineage-specific selection in a group of fourteen
primates.

Methods
Dataset
We downloaded the 44 ENCODE [30] sequences and their
multiple sequence alignments for 14 primates (human,
chimp, orangutan, gibbon, colobus monkey, vervet,
baboon, macaque, dusky titi, owl monkey, marmoset,
squirrel monkey, mouse lemur, galago), along with their
associated neutral evolution phylogenetic model (as
defined in section 3.2) from the NHGRI site (ftp://kronos.
nhgri.nih.gov/pub/outgoing/elliott/encode/freeze/JAN-
2009/). The tree topology, shown in Figure 1, follows the
NCBI taxonomy (http://www.ncbi.nlm.nih.gov/guide/tax-
onomy/), while the support values for the nodes are from
[42,43]. The alignments were generated with the TBA pro-
gram [44] using the method described elsewhere [31]. The
neutral model was estimated from all fourfold degenerate
sites in the ENCODE regions, using the phyloFit program
[29] from the PHAST package [45], and assuming the gen-
eral time-reversible (REV) substitution model [46].

Finding regions under selection
We constructed the program called DivE (Divergence by
Evolution) to detect lineage-specific selection by identi-
fying conserved or accelerated elements specific only to
a subgroup of species. Given a multiple alignment of
orthologous sequences, and two phylogenetic models,
one describing regions evolving under neutral evolution
and one describing regions under selection in a particu-
lar lineage, DivE employs a greedy heuristic to deter-
mine local regions in the alignment where the following
log ratio score:

log
P(lineage specific region under selection)

P(neutrally evolving region)
(1)

is positive and maximal.
We evaluate the score in equation (1) for every line-

age in the phylogeny (which corresponds to a single
node in the phylogenetic model), between any two col-
umns in the alignment, and for any type of selection.
If the score for a given lineage in the alignment region
between the two columns is positive and above some
fixed threshold, then we consider this an indication
that the lineage has potentially undergone selection in
that particular region. The region is discarded in the

case where it contains another region whose score
represents a significant deviation from selection
(according to a previously identified threshold). This
prevents the algorithm from clustering together nearby
selected regions. If two candidate regions overlap, we
predict as under selection only the maximum scoring
region (see also Figure 4). Below we present our
method for computing the score in equation (1).
As in [47], we specify the neutral evolution phylogeny

of the species through a phylogenetic tree model with
four parameters: ψn= (Q, τ, b, π), where Q is a substitu-
tion rate matrix, τ is the topology of the phylogenetic
tree, b is a vector of branch lengths, and π is a vector of
equilibrium base frequencies. τ consists of a set of
nodes, V(τ), and a set of edges, E(τ), connecting the
nodes. Given a positive number r, and the subtrees τ’, τ’’
of τ, we will denote by rb the lengths of branches in
multiplied by r, by b|E(τ’) the lengths of branches in τ’
only, and by b| E (τ’) | ∪ b | E (τ’’) the lengths of
branches in τ’ and τ’’. If u ÎV (τ), we denote by τu a sub-
tree of τ rooted at u, and by (up,u) the parent edge of u,
where up is the parent node of u. With these notations,
we can now specify the phylogenetic models governing
the gain (g), loss (l) and acceleration (a) evolutionary
events relative to the neutral model ψ as

ψ l
u(ρ) =

(
Q, τ ,ρβ|E(τ\τu) ∪ β|E(τu),π

)
,

ψ l
u(ρ) =

(
Q, τ ,ρβ|E(τ\τu) ∪ β|E(τu),π

)
, and

ψa
u(ρ) =

(
Q, τ ,ρ−1β|(up, u) ∪ β|E(τ\(up, u)),π

)
respec-

tively, where r Î (0,1) is the scaling parameter that
identifies the selection strength of the model.
We can now give a more detailed form for the score

computed by DivE in equation (1). For each two col-
umns i and j in an alignment of sequences, with i <j,
selection type s Î {g,l,a}, and node u Î V (τ), DivE com-
putes the following score:

S(i, j, s, u) = max
ρ∈(0,1)

⎧⎨
⎩0,

j∑
k=i

(
log p(k;ψ s

u(ρ)) − log p(k;ψn)
⎫⎬
⎭ (2)

ACGTTCCGATTAGAGAGTTGGTGGAATCCGACGATTAGAGAGTTGGTGGAA

ACGTATTCATTAGAGAGTTTGTGGATTTCGACGATTAGAGAGTTGGTGGAA

CCGTTTTGTTAAGAGAGTCGGTAAAATTCGACGATTAGAGAGTTGGTGGAA

GTATT

GT

TAT

TT

TT ATTATCCGATTG

TTTCGACTC

GAGAGTA

AGA TT T AA

AA

AGAGTTGGTGGAA

GAGTTGGTGGA

GAGTTGGTGGA

GAGTTGGTGGA

G

TGGTGGAA

AAT

TGGTGGA

G GGGGA ATTAGAACGA AGGTTAGAAATATT

GGTAAGTCG

TTTGTGGGTG

GG

TCATTAG

TGTTAA

T

TT

AT

TT AGGGTAAAGGG

Figure 4 Schematic figure of DivE’s heuristic approach. For
each type of selection, and each node in the phylogenetic tree, first
we identify local regions (denoted by shadowed rectangles in the
figure) that score positively according to a log ratio selection score -
the more intense the shadow color, the higher the score of that
region is. Then DivE predicts as “under selection” the maximal
scoring non-overlapping regions. The arrows in the figure connect
predicted regions in the alignment.
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where p(k;ψ) is the probability of the column k in the
alignment under the phylogenetic model ψ. We can
compute the probability p(k;ψ) using the Felsenstein
algorithm [48]. As shown in equation (2) the scaling
parameter r is not fixed in the input of the program in
order to avoid assumptions about the selection strength
in the observed local alignment. In the actual implemen-
tation of DivE, for practical purposes, r is not left to
vary freely in the (0,1) range, but there is a fixed num-
ber of possible values for r that DivE can choose from.
This number and the possible values for r can be chan-
ged in the program’s input. The results presented here
were generated with r allowed to vary in the
(0.05,0.1,0.2,0.3,0.4,0.5) set.
If n represents the number of sequences in the align-

ment, and L is the length of the alignment, than com-
puting the score in equation (2) between any two
columns in the alignment would lead to an O(nL2) run-
ning time complexity for DivE’s heuristics. The actual
implementation of DivE has a running time of O(nLa)
where a represents the average length of a selected ele-
ment, since we don’t need to evaluate a score between
any i and j (i<j) columns, if the region between the two
columns contains a subregion that is neutral or shows
selection of a different type (according to a predefined
threshold). This linear running time of our heuristics
makes DivE particularly well-suited to detecting lineage-
specific selection in large genomes.

Simulations
We used the program evolver from the PAML package
[33], version 3.15, to simulate aligned nucleotide
sequences evolving either neutrally or under selection.
Aligned neutral sequences were generated to follow
the neutral model of evolution described in the Dataset
section, and they were of the same length (about 32.1
million bp) and with the same deletion patterns as the
aligned ENCODE regions of the 14 primates. We used
them to determine thresholds for DivE to call pre-
dicted elements with a false positive rate of less than
0.1%. To simulate sites under selection in a given sub-
tree of the phylogeny the scaling parameter r<1 was
used to adjust the branch lengths of the phylogeny
either through multiplication of all branches’ lengths
in the selected subtree (in the case of gain and loss),
or through division of the length of the parent edge
from the root of the subtree (in the case of accelera-
tion). The sites under section were chosen to span
regions of 50, 100, 200, 500, or 1000 aligned columns
that were randomly inserted inside neutrally evolving
region that was twice as long, flanked on either side by
another 1000 neutral alignment columns. For any
given subtree, length, and scaling parameter we

generated 100 such regions containing sites under
selection, resulting in a total number of 243,000 simu-
lated regions, that we used to compute the accuracy of
prediction. The accuracy was computed as the average
of the recall (the number of sites under selection cor-
rectly identified, also known as sensitivity) and preci-
sion (the number of predicted sites that were truly
under selection.

Gene annotations for the ENCODE regions
We downloaded the GENCODE reference set [49] of
human gene annotations for the ENCODE regions from
the UCSC genome browser [50], and we aligned the
known human mRNA sequences from each ENCODE
region to the corresponding genomic region of every
primate species. The nucleotide sequences of these
mRNAs were mapped using GMAP [51] and sim4cc
[52]. Where available, the coding regions of these
human transcripts were translated into proteins and
aligned to the corresponding ENCODE regions in the
other primates using PMAP (a protein mapping variant
of GMAP) and exonerate [53]. The resulting spliced
alignments were integrated using JIGSAW [34], which
reported the combined transcript structures that had
valid coding regions.

Identification of genes under positive selection
Positively selected genes were identified using the
codeml program from PAML. As input, we used the
tree in Figure 1, and the TBA alignments of the genes
extracted from the ENCODE regions. The same proce-
dure using the improved branch-site test 2 under
“model A” described in [54] was used to determine sig-
nificance p-values for positively selected genes in a spe-
cific lineage. The codon frequencies were estimated
from the average nucleotide frequencies at the three-
codon position (F3 × 4 model). Test 2 has been shown
to be the more robust in detecting positive selection
among the other branch-site models implemented in
codeml. The null hypothesis of this test assumes that
some of the branches are negatively selected and some
are neutral, while for the alternative hypothesis some
sites are allowed to undergo positive selection (dN/dS
>1) along some predefined foreground branch, which in
our case was selected to be the parent branch of the
node at the root of the subtree predicted to be under
acceleration by DivE in the coding portion of the gene.
The LRT’s values resulted from test 2 were compared
against the distribution X1 to determine significance p-
values. Correction for multiple testing was performed
using the Benjamini and Hochberg procedure [55] using
a false discovery rate (FDR) of 10% as the tests for PS
are already very conservative [54].
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Additional material

Additional file 1: Supplementary Tables S1-S26. This document
includes the accuracy obtained by DivE and DLESS for the prediction of
all simulated elements, the percentage of the ENCODE primate
sequences predicted to be either conserved or accelerated by DivE, and
the GO categories associated with genes predicted to be under positive
selection.
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