
SOFTWARE Open Access

An integrated ChIP-seq analysis platform with
customizable workflows
Eugenia G Giannopoulou1,2 and Olivier Elemento1,2*

Abstract

Background: Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq), enables
unbiased and genome-wide mapping of protein-DNA interactions and epigenetic marks. The first step in ChIP-seq
data analysis involves the identification of peaks (i.e., genomic locations with high density of mapped sequence
reads). The next step consists of interpreting the biological meaning of the peaks through their association with
known genes, pathways, regulatory elements, and integration with other experiments. Although several programs
have been published for the analysis of ChIP-seq data, they often focus on the peak detection step and are usually
not well suited for thorough, integrative analysis of the detected peaks.

Results: To address the peak interpretation challenge, we have developed ChIPseeqer, an integrative,
comprehensive, fast and user-friendly computational framework for in-depth analysis of ChIP-seq datasets. The
novelty of our approach is the capability to combine several computational tools in order to create easily
customized workflows that can be adapted to the user’s needs and objectives. In this paper, we describe the main
components of the ChIPseeqer framework, and also demonstrate the utility and diversity of the analyses offered,
by analyzing a published ChIP-seq dataset.

Conclusions: ChIPseeqer facilitates ChIP-seq data analysis by offering a flexible and powerful set of computational
tools that can be used in combination with one another. The framework is freely available as a user-friendly GUI
application, but all programs are also executable from the command line, thus providing flexibility and
automatability for advanced users.

Background
The use of chromatin immunoprecipitation in combina-
tion with high-throughput sequencing (ChIP-seq) has
enabled the study of genome-wide mapping of protein-
DNA interaction and epigenetic marks. By sequencing
millions of immunoprecipitated DNA fragments in a sin-
gle experiment, ChIP-seq outperforms the array-based
ChIP-chip (Chromatin Immunoprecipitation followed by
DNA microarray hybridization) technology in terms of
quality, specificity, and coverage [1-3], and has the poten-
tial to greatly improve our understanding of the mechan-
isms underlying transcriptional regulation [4-8]. Many
peak detection methodologies and software tools have
been developed for the analysis of ChIP-seq data since the

introduction of the technology [2,3,9,10]. Although peak
detection is important for the analysis of ChIP-seq data, it
is only the first step. Additional computational tools are
needed to help interpret the genome-wide transcription
factor binding and histone mark enrichment patterns
revealed by peak detection procedures. We have developed
ChIPseeqer, a comprehensive computational framework
that enables broad, but also in-depth, analysis of ChIP-seq
data. The framework includes: (1) gene-level annotation of
peaks, (2) pathways enrichment analysis, (3) regulatory
element analysis, using either a de novo approach, known
or user-defined motifs, (4) nongenic peak annotation
(repeats, CpG islands, duplications, published ChIP-seq
datasets), (5) conservation analysis, (6) clustering analysis,
(7) visualization tools, (8) integration and comparison
across different ChIP-seq experiments. These components
share a common architecture: they take as input a set of
ChIP-seq peaks, perform the defined analysis, and output
one or more sets of peaks that can be used by any of the
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other tools provided. Thus, our framework was designed
to offer the flexibility required to perform complex ana-
lyses by defining custom workflows. In principle, ChIPsee-
qer can use peaks generated by any peak-calling program
as initial input, assuming these peaks are in a simple and
standard format (i.e., chromosome, start position, end
position). For convenience, ChIPseeqer also includes its
own fast and accurate peak finding algorithm, previously
evaluated and compared with other algorithms in Qin et
al. [11]. Details and additional validation of our peak
detection algorithm are provided in Additional file 1. By
analyzing a published ChIP-seq dataset, we show how the
modular nature of the framework can help the users create
easily computational pipelines and address sophisticated
biological questions.

Comparison with related work
Although numerous approaches already exist for the ana-
lysis of ChIP-seq data, many of them focus on the peak
detection process and provide few or no tools for the
interpretation of ChIP-seq peaks [5-8,12-19]. Several fra-
meworks for interpreting ChIPseq datasets have nonethe-
less been developed, all of which have strengths and
limitations. For example, the Cistrome project (unpub-
lished, [20]) integrates several analysis tools, such as gene
annotation, motif and pathways analysis, and peak con-
servation. However, users must upload their ChIP-seq
data to the Cistrome server, which will be increasingly
time-consuming and less practical as the size of ChIP-seq
datasets increases. Moreover, feeding the results of an
analysis directly into another tool within the same frame-
work can be difficult for some users because each tool
supports different input formats. Galaxy [21-25], which is
used as Cistrome’s backend, is a powerful framework but
possibly too general for the analysis of ChIP-seq data. In
particular, Galaxy does not allow control over several
important parameters in ChIP-seq data analysis, such as
the maximum or minimum distance between the peak
and its closest gene in the peak-gene association task
[26]. CisGenome [27] also supports tools for the inte-
grated analysis of ChIP-seq data, such as annotation of
peaks with their neighbor genes, conservation analysis,
and motifs discovery. However, CisGenome does not
allow the correlation of peaks and their target genes with
Gene Ontology (GO) terms and pathways that could
shed light on the biological processes and pathways con-
trolled by the transcription factors (TFs) or histone mod-
ifications assayed by ChIP-seq. The GPAT program [26]
provides systematic annotation of genomic positions in
general. It uses gene annotation from different public
databases, such as RefSeq and Ensembl, and provides
access to the expression status of the corresponding
genes from existing transcriptomic databases, or user-
generated expression datasets. The limitation of GPAT is

the lack of other tools for the analysis of ChIP-seq data,
apart from genomic annotation. Thus, GPAT users can-
not perform motif discovery, pathways enrichment, and
other analyses that are useful in the ChIP-seq context.
EpiChIP [28] offers gene-based enrichment analysis of
ChIP-seq datasets. In particular, EpiChIP looks for
enrichment of the ChIP-seq reads over the control sam-
ple in specific regions of the genes, such as the 5’- or 3’-
end, exons or introns. This approach has the advantage
of identifying directly the genes that are enriched in the
TF or the histone modification of the reference dataset.
However, the program lacks in providing further annota-
tion of the enriched regions. The seqMINER platform
[29] aims at integrating and comparing different ChIP-
seq datasets in terms of read density. The algorithm first
estimates for a set of genomic regions (i.e., reference
dataset) the read density of multiple ChIP-seq datasets.
Clustering and visualization methods are then provided
to show groups of regions with similar binding features.
Although this approach is useful to integrate ChIP-seq
datasets, it focuses on the comparison of read density
profiles and does not integrate other sources of informa-
tion, such as the motifs and pathways enrichment or the
level of conservation. HOMER [30] provides a suite of
programs originally developed for motif discovery, and
later for ChIP-seq peak detection. Although it includes
tools for gene annotation, clustering, and visualization of
the peaks (e.g., histograms, heatmaps), it does not sup-
port conservation analysis and can only run from the
command-line. BEDTools [31] is a UNIX-based collec-
tion of utilities that allow common operations on geno-
mic features in general (e.g., find overlaps between two
files with genomic intervals, extract FASTA sequences
from genomic intervals). Although the BEDTools are
designed to provide fast solutions to basic operations on
large data volumes produced by DNA sequencing, they
do not offer computational tools for the functional inter-
pretation of ChIP-seq peaks (e.g., motifs and pathways
analysis). Their command-line nature also demands extra
effort and computer skills from users. CEAS [32] is a
stand-alone extension of a web application previously
developed for ChIP-chip data [33], but is also offered
through the Cistrome framework. The tool provides
basic annotation tools for ChIP-seq data, such as the esti-
mation of peaks distribution across the genome, identifi-
cation of genes associated with peaks by proximity, and
more. However, one drawback of CEAS, when using it
through the Cistrome application, is that it produces gra-
phical representation of the results and does not output
lists of peaks that belong to specific genomic categories
(e.g., promoters, introns). PeakAnalyzer [34] can subdi-
vide ChIP-seq peaks that have multiple sites of enrich-
ment into smaller peaks; this procedure may facilitate
more detailed analysis of individual subpeaks. It also
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offers annotation functions, and can locate the nearest
downstream genes and transcription start sites for each
peak. It can also determine overlapping peaks between
different datasets. Although PeakAnalyzer allows the user
to perform gene annotation, motifs analysis, annotation
with functional elements, and comparisons across data-
sets, it does not support the functional interpretation of
the ChIPseq results through their association with path-
ways. On the other hand, GREAT [35] is a web applica-
tion that supports the analysis of functional significance
of ChIP-seq peaks using 20 different information sources
(e.g., Gene Ontology, PANTHER pathway, Pathway
Commons, InterPro). Importantly, the tool integrates not
only proximal but also distal binding events to obtain a
gene-based p-value for enrichment [35]. However,
GREAT does not offer an automated way to retrieve lists
of genes and peaks associated with a specific pathway,
Gene Ontology term, or motif. This feature (provided in
our framework) would enable users to perform further
and more targeted analysis on subsets of the initial peaks,
which were found to be functionally significant. In con-
trast, ChIPseeqer has many advantages compared to
these programs. First, it offers a variety of tools that
cover not only basic gene annotation, but also a wide
range of computational analyses, including motif analysis,
pathways enrichment, estimation of conservation, read
density analysis and more. Second, ChIPseeqer allows the
comparison of multiple datasets based not only on read
density profiles, but also on peak binding overlap, and
integration with other ChIP-seq datasets. Third, the fra-
mework provides a straightforward and effortless connec-
tion between the tools; no data format transformation is
needed to combine the tools and perform a comprehen-
sive and sophisticated data analysis. Fourth, the frame-
work allows the users to control all parameters of the
analysis, such as the minimum distance away from tran-
scripts, the upstream distance from transcription start
site (TSS), the database annotation and more. In addition,
ChIPseeqer runs locally on the user’s computer enabling
the analysis of very large datasets. Finally, it provides a
user-friendly graphical interface that can be used effort-
lessly even by non-expert users.

Implementation
Software distribution and availability
ChIPseeqer is available as a set of standalone command
line tools. For advanced users, command line tools pro-
vide great flexibility and automatability. For less
advanced users, we have made these tools available via a
graphical user interface (GUI), developed using the
multi-platform QT framework [36]. The bundle (i.e.,
command line tools and GUI) has been tested on Linux
and Mac OS X. Detailed installation instructions and
documentation for all tools included in the framework

are also available online [37]. Our implementation is
available as free software, released under the GNU Gen-
eral Public License (GPL) v3 [38].

Comparison of genomic intervals
Many computations performed in ChIPseeqer involve
assessing overlaps between hundreds or thousands of
genomic regions (i.e., peaks, transcripts/genes, gene
parts), and therefore, efficient algorithms are needed to
quickly determine and characterize these overlaps. In
ChIPseeqer, fast comparison on genomic intervals is per-
formed using interval trees [39,40], ordered tree struc-
tures that store and index intervals with fast querying
and processing times, and ensure efficient searching of all
indexed intervals that overlap with any given interval or
point. An interval tree is an augmented binary search
tree: each node contains an interval and also stores the
maximum endpoint of the subtree rooted at the particu-
lar node. Apart from the insert and delete operations that
characterize the binary search trees, interval trees also
support a query operation that allows searching the tree
for overlaps with a given interval. The first step of the
algorithm sets the root of the tree as current node. The
second step checks if the given interval overlaps with the
current node; if not, it compares the low endpoint of the
given interval with the maximum value stored at the left
child of the current node. If the low endpoint of the
interval is lower than the maximum value stored, then
the current node is set to the left child; otherwise it is set
to the right child. Then the algorithm goes back to the
first step and repeats the same procedure for the new
current node until it finds an overlap of the given interval
with the interval stored in the current node, or until the
whole tree is explored. Of note, we are using a modified
implementation of the original algorithm [40], so as not
to stop at the first overlapping interval but find all inter-
vals that overlap with the given one. Moreover, we use a
randomization procedure that takes into account the nat-
ural clumping of features [41] to assess the statistical sig-
nificance of the observed number of overlapping peaks
between two peak files. This procedure consists of gener-
ating many “random” lists of peaks maintaining peak
sizes and number of peaks as well as the chromosomal
and genomic distribution of the peaks in the first peak
file. The latter means that each random list of peaks
maintains the same fraction of peaks in promoter, exonic,
intronic, downstream, and intergenic regions as the origi-
nal peak file. Then, for each random peak list, the num-
ber of overlapping peaks with the second peak file (kept
unchanged) is calculated. A p-value is determined by
counting the number of times the random overlap is
equal to or greater than the originally observed number
of overlapping peaks. Additionally, the z-score is esti-
mated, representing the distance (in number of standard
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deviations) betweem the observed number of overlapping
peaks and the average number of overlapping peaks
expected by chance.

Supported formats, annotations, and species
One of the advantages of the framework is the support of
different formats that are well-established in deep sequen-
cing experiments, such as SAM, BAM, eland, extended
eland, bed and export. ChIPseeqer also provides gene-
based annotation from multiple sources and databases,
such as RefSeq, Ensembl, UCSC Genes, and AceView.
Finally, four species are currently supported, namely
Homo sapiens, Mus musculus, Drosophila melanogaster,
and Saccharomyces cerevisiae. Support for additional spe-
cies can be added to the framework as described in Addi-
tional file 1 and in our online documentation.

Results
ChIPseeqer user-defined workflows
ChIPseeqer is a comprehensive and fully integrated frame-
work offering a dry-lab workbench for the processing and
analysis of ChIP-seq data. Table 1 summarizes the basic
tools in the framework along with a short description of
their functionality and their availability in the ChIPseeqer
interface. A detailed description of these tools is provided
in the ChIPseeqer modules section. The framework
includes a peak detection program as well as tools for per-
forming quality control of the raw reads (see Additional
file 1). However, the most interesting aspect of ChIPseeqer
is the variety of independent analysis modules, all of which
have the same structure: (1) they take as input a list (or in
some cases lists) of peaks in a simple tab-delimited format,
(2) perform a given analysis, and (3) output one or more
peak lists. These modules can be used in any order, since
their input and output are peak lists of the same format
(i.e., chromosome, start position, end position). Thus, the
novelty of the framework is the capability to combine
these modules and design specific workflows that enable
multi-step bioinformatics analyses of ChIP-seq data,
according to the user’s objectives and hypotheses. Figure 1
shows two scenarios that combine some of the ChIPseeqer
modules. These scenarios are indicative examples based
on our experience in analyzing several ChIP-seq datasets,
and others could be considered as well. For example, a
potential workflow (see Figure 1A) involves:
(1) running the peak detection algorithm for a TF

(e.g., ETS) ChIP-seq dataset,
(2) finding the peaks that have a specific motif (e.g.,

the ELK1 motif) using the ChIPseeqerMotifMatch
module,
(3) identifying the peaks that bind at the promoters of

known RefSeq genes using ChIPseeqerAnnotate, and
(4) performing pathways analysis on these genes with

ChIPseeqeriPAGE, in order to find biological processes

in which the given TF is likely involved. Another work-
flow (see Figure 1B) identifies putative enhancers based
on TF and histone modifications ChIP-seq data. In that
case, the intergenic peaks are first detected using ChIP-
seeqerAnnotate, and then the peaks that also overlap
with enhancer marks [42] are reported using Compar-
eIntervals. The corresponding subset of peaks represents
putative enhancers; to discover informative regulatory
elements within these peaks, unsupervised de novo
motif analysis can be performed using ChIPseeqerFIRE.
Finally, the ChIPseeqerCons module can be used to com-
pare the conservation between putative enhancers and
random genomic regions, in order to determine enhan-
cers that are most likely to be functional.

Use of ChIPseeqer - Example
To illustrate the power and flexibility of ChIPseeqer, we
analyzed a published ETS1 ChIP-seq [43], performed in
Jurkat T cells. ETS1 is an oncogene [44] and member of
the ETS family of eukaryotic transcription factors. It is
preferentially expressed at high levels in B and T cells, and
plays a critical role in T cell activation [45]. Recent studies
based on chromatin immunoprecipitation have shown
ETS1 binding events in both promoters and enhancers in
Jurkat T cells [43,46].

ETS1 binds to thousands of locations and is associated
with binding sites of other TFs
Our peak detection algorithm identified 9,065 ETS1
peaks. We associated these peaks with genes using the
ChIPseeqerAnnotate module and the RefSeq annotation
(Figure 2A). This analysis revealed a large occupancy of
ETS1 peaks at the promoters of the genes (~67%), but
also that ETS1 binding occurs on intergenic regions
(~17%), at least 2 kb away from known TSS. Using the
lists of these promoter peaks and distal peaks automati-
cally generated by ChIPseeqerAnnotate, we performed
“supervised” motif analysis (using known motifs) and de
novo motif discovery. In the supervised analysis on the
promoter peaks ChIPseeqerMotifMatch module), we
determined subsets of ETS1 peaks that contain motif
occurrences for other ETS family members (e.g., SPI1,
SPIB, ELK1) [43,47,48], using motif weight matrices from
the JASPAR [49] and UniPROBE [50] databases. ChIPsee-
qerMotifMatch reveals that a large fraction of ETS1 peaks
(more than 73%) contain such matches (see Figure 2B).
The unsupervised analysis (ChIPseeqerFIRE module) for
the distal peaks revealed that multiple motifs appear
from the same regions, among which ETS-domain motifs
(e.g., ELK1), but also motifs resembling binding elements
recognized by non-ETS related factors (see Figure 2C).
For example, the HLF motif, which is bound by the hepa-
tic leukemia factor and has been implicated in childhood
B-lineage acute lymphoid leukemias, was also found in
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the intergenic ETS1 peaks. A motif resembling the AML-
1a/RUNX1 binding sites was discovered as well using
this de novo analysis. RUNX1 is a TF associated with sev-
eral types of leukemia and is known to bind to T cell
receptor enhancers [43]. The RUNX1 association with
ETS1 distal peaks led us to look for ETS1 binding in
putative enhancers as described in the next section.

ETS1 binds to many putative enhancers
To identify and characterize putative enhancers among
the ETS1 peaks, we use the list of distal peaks obtained
from the ChIPseeqerAnnotate analysis. To better identify

enhancers, we also analyzed the CBP ChIP-seq dataset
described by Hollenhorst et al. [43] (also Jurkat T cells),
as well as the ChIP-seq histone marks datasets of primary
CD4+ T cells described by Barski et al. [51]. CBP protein
shares regions of very high sequence similarity with p300,
a protein that binds to many enhancers [52]. Moreover,
several studies [42,53,54] have suggested high levels of
H3K4me1 combined with low levels of H3K4me3 as a
signature for predicting enhancers. Our peak detection
algorithm identified 8,246, 41,426 and 30,797 enriched
regions for CBP, H3K4me1 and H3K4me3 datasets
respectively. In order to locate the putative enhancers, we

Table 1 The main tools of the ChIPseeqer framework

Tool name Description GUI
availability

QcAnalysisTools Offers basic quality control tools. NA

ChIPseeqerSplitReadFiles Splits read files (e.g., bed, eland) into one read file per chromosome. √

ChIPseeqer Peak detection algorithm. √

ChIPseeqerSummaryPromoters Creates a promoters-based annotation of the detected peaks (i.e., gene name-description,
peaks)

√

ChIPseeqerAnnotate Finds the peaks distribution in the genome (e.g., exons/introns/intergenic) and creates lists of
these peaks.

√

ChIPseeqerPeaksTrack Creates a UCSC Genome Browser track for the detected peaks. √

ChIPseeqerMakeReadDensityTrack Creates a UCSC Genome Browser track for the reads density. √

ChIPseeqerNongenicAnnotate Finds the peaks that overlap with repeating elements, CpG islands and segmental duplicates. √

ChIPseeqerFIRE Runs FIRE for the detected peaks, in order to perform an unsupervised motif discovery. √

ChIPseeqerMotifMatch Runs MyScanACE for the detected peaks, in order to look for specific motifs (Jaspar, Bulyk PBM
databases).

√

ChIPseeqeriPAGE Runs PAGE for the genes associated with the detected peaks, in order to perform pathways
analysis.

√

ChIPseeqerPathwayMatch Looks for genes (and their corresponding peaks) that are associated to a specific pathway (e.
g., apoptosis, GO:0060742).

√

ChIPseeqerCons Estimates the conservation scores for the detected peaks and for random intervals to allow
comparison.

√

ChIPseeqerDensityMatrix Creates a reads density matrix for a window around the TSS or the TES of the genes, or for
any interval selected.

NA

ChIPseeqerReadCountMatrix Estimates the avg/max reads number for every input peak, across multiple ChIP-seq datasets
and creates a peak-based reads matrix.

NA

ChIPseeqerCluster Clusters a matrix (e.g., k-means, hierarchical, SOMs) and visualizes the clustering. NA

CompareIntervals Compares two lists of peaks and finds the overlapping peaks and the peaks that are unique in
each list.

√

CompareGenes Compares two lists of genes and finds the common genes and the genes that are unique in
each list.

√

ChIPseeqerComputeJaccardIndex Estimates the Jaccard similarity coefficient for a set of peak files. The larger the coefficient, the
more similarity you have between two peak files

√

ChIPseeqerMakeGenepartsMatrix Creates gene-based matrices (one for promoters, one for exons, etc) for many peak files.
Summarizes the number of peaks that fall in specific gene parts, across many different peak
files (TFs).

NA

ChIPseeqerFindDistalPeaks Finds peaks that are away from known genes. NA

ChIPseeqerFindClosestGenes Finds the closest gene(s) for each peak. NA

ChIPseeqerGetReadCountInPeakRegions Estimates the avg/max reads number for every peak, for a ChIP-seq dataset and creates a
peak-based read matrix.

NA

FindPeaksWithMotif Extracts the peaks that have a specific FIRE motif (can be applied after running FIRE). NA

MakePAGEInput Creates the input file for iPAGE from a list of genes. NA

The table shows the names of the tools, short description of their functionality and their availability within the ChIPseeqer interface. This is not an exhaustive list;
all available tools are documented online [37].
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looked for the ETS1 distal peaks that have histone signa-
ture for enhancers–presence of H3K4me1 and absence of
H3K4me3– and are also co-occupied by CBP. Using the
ChIPseeqer CompareIntervals module, we identified such
peaks (see Figure 3). First, we determined all ETS1 distal
peaks (1,550) that also overlap with at least one peak in
the H3K4me1 dataset (232 peaks). Second we looked for
peaks that have absence of H3K4me3 marks (191 peaks),
and finally, we determined which of the remaining peaks
(i.e., ETS1 distal peaks with H3K4me1 but without
H3K4me3 marks) overlap with at least one CBP peak
(163). Statistical assessment of the overlaps described
here showed that not all of them were different from
chance expectation (data not shown). However, in what
follows, the 163 peaks obtained from this analysis are
considered to be putative ETS1-binding enhancers. We

then performed unbiased motif discovery for this set of
putative enhancers, using the ChIPseeqerFIRE module.
This analysis revealed over-representation of two ETS
domain-related motifs, the ELK-1 and the c-ETS motifs
(see Figure 3) in the putative ETS1-binding enhancers
peaks, and under-representation in the random regions.
Finding these highly enriched motifs in such a small sub-
set of peaks (that is ~0.18% of the initial pool of peaks
and ~10% of the ETS1 distal peaks), but not in random
regions, shows that the putative enhancers were not arbi-
trarily identified.
Moreover, to examine whether these regions are also

conserved (and thus probably functional), we performed
conservation analysis using the ChIPseeqerCons module.
One of the capabilities of this module is to determine the
conservation profile in and around the ChIP-seq peaks,

Figure 1 Workflow use cases. Examples of workflows that can be easily generated using tools from the ChIPseeqer framework are shown. The
starting point is always the result of peak detection: a set of enriched regions/peaks. (A) The aim of the workflow is to analyze a subset of the
peaks that have a specific motif. From all the peaks that have the motif, we look for those that bind in the promoters of known genes. Pathways
analysis is then performed on these genes in order to reveal enriched pathways associated with this particular subset of peaks. (B) This workflow
allows locating and characterizing distal regulatory elements (i.e., intergenic peaks) that overlap with enhancer marks (e.g., H3K4me1 binding), in
terms of motifs and conservation. Different workflows can be created using any combination of the ChIPseeqer tools.
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Figure 2 Analysis of the ETS1 ChIP-seq dataset. (A) The ChIPseeqerAnnotate module outputs the distribution of the ETS1 binding peaks in
gene parts, as well as several lists of peaks that were found in a specific gene part (e.g., promoters, exons, introns). (B) The occurrence of specific
motifs among the ETS1 peaks is shown, after using ChIPseeqerMotifMatch. The underlined motifs represent transcription factors of the ETS
domain. (C) Unsupervised motif discovery, using ChIPseeqerFIRE, reveals multiple motifs that derive from the same regions. The fraction of ETS1
peaks containing at least one instance of each motif is given, with the expected frequency of the motif in the random regions given in the
parentheses.
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Figure 3 Identification of putative enhancers. This workflow shows the identification of putative enhancers, by progressively filtering the
distal peaks with histone modification enhancer marks (i.e., presence of H3K4me1 and absence of H3K4me3) and CBP binding. De novo motif
discovery and conservation analysis were then performed, which showed highly enriched ETS-domain motifs and high conservation scores in
the set of putative enhancers compared to random regions.
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using the phastCons scores [55]. The conservation pro-
files in randomly selected regions were also determined,
in order to compare the level of conservation between
the input peaks and randomly generated genomic
regions. After averaging the conservation profiles in the
two groups (i.e., peaks and random regions), higher level
of conservation was indeed noticed for the group of puta-
tive enhancers, as can be seen in Figure 3. In this exam-
ple, we showed how the identification of putative
enhancers could be performed in ChIPseeqer, starting
from the distal peaks and progressively filtering them
with histone modification enhancer marks and CBP bind-
ing. De novo motif discovery and conservation analysis
were then performed, which revealed highly enriched
ETS-domain motifs and high conservation scores for the
set of putative enhancers compared to random genomic
regions. To further investigate the biology of ETS1 bind-
ing in Jurkat T cells, we also looked for potential biologi-
cal pathway differences between the genes associated
with ETS1 binding peaks in promoters (6,053 peaks) and
with ETS1 binding peaks in intergenic regions (1,550
peaks). We used the ChIPseeqeriPAGE module, in order
to find pathways that can discriminate the two groups of
genes, (i.e., pathways enriched in one group but not in
the other). We used the two lists of genes as input, one
list for each group. Using the Gene Ontology annotation,
we noticed a higher enrichment of T and B cell related
pathways [43] in the distal peaks group, such as leukocyte
differentiation, lymphocyte activation, immune response,
immune system development and others (Table 2), rather
than in the promoter peaks group. We also observed
similar results using SignatureDB [56], a database of gene
expression signatures mainly derived from B and T cells.
In particular, we found a significantly higher enrichment
of many T cell-related pathways and gene sets in the dis-
tal peaks compared to the promoter peaks (Table 2),
such as the signatures “Tcell_PIind_CsAdown4x” [57]
and “Thymic_SP_CD4+Tcell_gt_Blood_CD4+Tcell” [58].
The former signature originates from a study focusing

on the signalling pathways network downstream of the
T cell receptor [57], explaining the gene expression
changes during T cell activation, whereas the latter sig-
nature comes from the analysis of phenotypic and func-
tional parameters of T cell differentiation stages by
studying human thymocytes, an important organ of T
cell production [58]. On the other hand, the promoter
peaks group was highly associated with more general
pathways and gene sets, such as RNA processing, RNA
splicing, metabolic process, proliferation and others
(Table 2). These results are consistent with previous
findings [43], where ETS1 bound intergenic regions
were associated with genes involved in T cell specific
functions, while ETS1 occupancy in promoters occurred
at genes related to housekeeping functions. Using

CompareGenes, a tool in our framework that allows
comparisons on the gene level, we also looked for genes
that have ETS1 peaks in their promoters (6,053 promo-
ter peaks) and in intergenic regions (163 putative
enhancer peaks). This analysis gave us 39 genes (see
Table 3). One hypothesis that can be formed is that
binding of ETS1 at both promoters and enhancers of
these 39 genes mediates looping of the distal elements
onto proximal promoters. Thus, these genes may be
regulated by ETS1 through a chromatin looping event.
This prediction can be further tested using chromosome
conformation capture based techniques [59-61]. In sum-
mary, using the ChIPseeqer framework on a published
ETS1 ChIP-seq dataset we showed that:
• There is a large occupancy of ETS1 peaks at the

promoters but also at intergenic regions.
• ETS1 regions are bound by multiple motifs, either

from the ETS-domain or non-ETSrelated (e.g., HLF,
RUNX1).
• Specific pathways are preferentially related to genes

with ETS1 binding in promoters or intergenic regions.
• It is straightforward to characterize ETS1 binding to

genomic regions with enhancers signatures (e.g.,
H3K4me1+/H3K4me3-).
• It is possible to determine a list of genes that may be

regulated by an enhancer-bound
TF, through a chromatin-looping event. Although

these analyses could have been performed by combining
several published tools or custom scripts, in ChIPseeqer
this is fast (see Performance Evaluation section in Addi-
tional file 1) and straightforward and does not requiring
any programming knowledge. Thus, by creating custom
workflows that combine powerful computational pro-
grams, ChIPseeqer facilitates the comprehensive and in-
depth analysis of ChIP-seq datasets.

ChIPseeqer modules
This section demonstrates the diversity and versatility of
the framework by presenting basic ChIPseeqer modules
in further detail. A more exhaustive description of these
tools is available online [37].

ChIPseeqerAnnotate: Gene-level annotation of peaks
This module associates a set of ChIP-seq peaks, given as
input, with the closest genes in the genome, and deter-
mines where each peak is located in these genes. In parti-
cular, ChIPseeqerAnnotate classifies input peaks in
categories, (i.e., promoter, distal, intergenic, intronic, exo-
nic and downstream). This module generates lists of peaks
found in each of these classes of genomic regions. This
analysis is controlled by default or user-defined parameters
controlled by the user, such as the promoter window
around the TSS and the annotation database. For example,
promoters are defined by default as 4kb-long regions,
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around the TSS but not extended further than the down-
stream extremity of the genes. Moreover, ChIPseeqerAnno-
tate reports peaks overlapping with the first intron, since it
has been reported that some first introns play a vital role
in transcriptional control and splicing [62]. The tool also
determines peaks not overlapping with any gene part, but
found to be at least at a user-defined distance away from
known genes (default is set to 2 kb away). We call these
peaks distal or intergenic, because they occur in intergenic
regions (known to contain important regulatory elements
such as enhancers and insulators). The lists of peaks gen-
erated by ChIPseeqerAnnotate can be directly used in
other tools within the framework to perform subsequent
analyses. This can be useful to focus further analyses on
specific classes of peaks (e.g. promoter peaks or intergenic
peaks); ChIPseeqerAnnotate lets users extract these subsets
of peaks. ChIPseeqerAnnotate has other interesting fea-
tures. It generates a gene-based matrix that summarizes
the number of peaks found in each gene part (e.g., promo-
ters, exons, introns, intergenic) and can help the user iden-
tify quickly the peak binding occurring in their gene of
interest. We have also developed tools that merge and
combine this matrix output, in order to extract, for exam-
ple, the genes with both promoter and intergenic peaks.
The expected fraction of peaks in different genomic cate-
gories (e.g., promoters, introns, exons, intergenic) is also

provided, based on the fraction of the genome in each of
these regions, so that it can be compared to the observed
fraction of the input peaks in each category. Finally, sev-
eral widely used gene annotations are supported, such as
the RefSeq, Ensembl, UCSCGenes, and AceView (other
databases can also be easily added). This feature enables
comparing the peak-gene association results between dif-
ferent databases.

Pathways analysis modules
Pathways analysis can help elucidate important biological
mechanisms associated with genome-wide binding and
histone modification patterns. and can be performed
after peaks have been associated with genes, as described
in ChIPseeqerAnnotate. We have integrated two pathways
analysis modes in the framework that involve: (1) looking
for a given pathway of interest within the genes asso-
ciated with input peaks and (2) looking for any pathways
that are enriched in these genes. Pathways annotations
are obtained from the Gene Ontology [63], KEGG data-
base [64], Biocarta pathways [65], the SignatureDB online
resource [56], and the Reactome pathways [66]. Impor-
tantly, both modes generate lists of peaks associated with
genes in the query pathway or in the enriched ones.
These peaks can then be used as input to other tools in
the framework.

Table 2 Pathways analysis between the ETS1 distal and promoter peaks

Distal Peaks Promoter peaks

T/B cell related Gene Ontology

Leukocyte differentiation, GO:0002521 p < 0.001 p < 1

Lymphocyte activation, GO:0046649 p < 0.001 p < 1

Hemopoiesis, GO:0030097 p < 0.001 p < 1

Hemopoietic or lymphoid organ development, GO:0048534 p < 0.001 p < 1

Immune response, GO:0006955 p < 0.01 p < 1

Immune system development, GO:0002520 p < 0.01 p < 1

B cell proliferation, GO:0042100 p < 0.01 p < 1

B cell activation, GO:0042113 p < 0.001 p < 1

Others Biopolymer catabolic process, GO:0043285 p < 1 p < 1e-29

RNA splicing, GO:0008380 p < 1 p < 1e-50

DNA metabolic process, GO:0006259 p < 1 p < 1e-29

T/B cell related SignatureDB

Tcell_PIind_CalciumDefPtdown4x_Feske_Fig6 p < 1e-05 p < 1

CD40_upregulated_Burkitt_lymphoma p < 0.001 p < 1

CD40_downregulated_Burkitt_lymphoma p < 0.01 p < 1

Pax5_repressed p < 0.01 p < 1

Tcell_PIind4x_Feske_Fig6 p < 1e-08 p < 1

Tcell_PIind_CsAdown4x p < 1e-04 p < 1

Others Ribosomal_protein p < 1 p < 1e-06

Myeloma_PR_subgroup_up p < 1 p < 1e-05

The table shows some of the pathways and lymphoma-related signatures that were found enriched in the distal peaks and the promoter peaks groups. The
distal peaks group was highly associated with T cell and B cell related ontologies and signatures, while for the promoter peaks group more general and
housekeeping categories were enriched. The Gene Ontology and the SignatureDB gene expression signatures were used for this analysis (ChIPseeqeriPAGE
module). The p-values for each pathway for both groups are also shown.
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1. ChIPseeqerPathwayMatch: User-specified pathway
analysis
When using this tool, the user first selects which of the
input peaks to include in the analysis, based on their
association with genes. For example, only peaks that
belong to promoter regions can be included (Figure 4A).
Alternatively, all peaks can be included, irrespective of

where they reside within gene regions. Then, the user
either selects the desired pathway from a list of available
pathways in the provided pathway database (e.g Gene
Ontology), or directly enters a pathway name (e.g.,
apoptosis, GO:0060742). ChIPseeqerPathwayMatch then
finds all genes that belong to the selected pathway and
outputs the corresponding ChIP-seq peaks. These peaks
can then be used as input to other modules (e.g., for
regulatory elements analysis). The hypergeometric distri-
bution is used to assess the statistical significance of the
pathway association: it determines whether the input
peaks are associated with more genes in the query path-
way than expected by chance (see Additional file 1).
2. ChIPseeqeriPAGE: Pathways analysis using iPAGE
In order to discover highly enriched pathways in the
genes associated with input peaks, we use iPAGE [67],
an information-theoretic pathway analysis framework. In
iPAGE, sets of genes are used as input, and pathways
that are enriched in each set are reported [67]. ChIPsee-
qeriPAGE, is the module that integrates iPAGE within
user-defined workflows. As with the previous module,
users choose which input peaks to include in the analy-
sis, based on their association with genes. The program
then outputs the lists of peaks associated with specific
enriched pathways.

Regulatory element analysis modules
Regulatory element analysis of ChIP-seq peaks can dis-
cover the DNA sequence motifs bound by the TF
assayed by ChIP-seq, and/or to find sequences bound by
its co-factors. We have integrated two regulatory ele-
ment analysis modes in the framework: (1) analysis
based on known motifs or user-defined motif patterns,
and (2) de novo motif analysis. Both analyses require
extracting DNA sequences under the peaks from the
genome reference sequence. Efficient extraction is per-
formed by pre-indexing genomes using the SAMTools
C library [68].
1. ChIPseeqerMotifMatch: User-specified regulatory element
analysis
Several software tools support searching for peaks that
match a specific motif, but they often have limitations
that restrict their usability. For example, in Cistrome
[20] it is not straightforward to look for a specific
motif, since available motifs are not shown to the user
(only the available motif databases are). In HOMER
[30], only motifs previously detected by the software
are available for searching; the integration with public
and popular sequence motif databases such as JASPAR
that would enlarge the pool of available motifs is lim-
ited. ChIPseeqerMotifMatch seeks to overcome some of
these limitations. To perform known motif analysis in
ChIPseeqerMotifMatch, the user either selects the
desired motif from a compiled dataset of ~250 TF

Table 3 List of the 39 genes with both promoter and
distal ETS1 peaks

# Gene ID Gene Description

AKAP11 A-kinase anchor protein 11 2

AKR1A1 alcohol dehydrogenase 3

ATP5O ATP synthase subunit O, mitochondrial precursor 4

C1orf109 hypothetical protein LOC54955 5

C2orf29 hypothetical protein LOC55571 6

C9orf123 transmembrane protein C9orf123 7

CDK9 cell division protein kinase 9 8

CHSY1 chondroitin sulfate synthase 1 9

CKAP2L cytoskeleton-associated protein 2-like 10

CLINT1 clathrin interactor 1 11

DUSP2 dual specificity protein phosphatase 2 12

DUSP6 dual specificity protein phosphatase 6 isoform 13

HSPC157 hypothetical LOC29092 14

KIAA0427 CBP80/20-dependent translation initiation factor 15

LDHA L-lactate dehydrogenase A chain isoform 5 16

LOC100188949 hypothetical LOC100188949 17

LOC285456 hypothetical LOC285456 18

LSM14B protein LSM14 homolog B 19

MAX protein max isoform a 20

MRPS18A 28S ribosomal protein S18a, mitochondrial 21

MTF2 metal-response element-binding transcription 22

NAIF1 nuclear apoptosis-inducing factor 1 23

NDUFA10 NADH dehydrogenase [ubiquinone] 1 alpha 24

POMP proteasome maturation protein 25

PSMA6 proteasome subunit alpha type-6 26

RBM16 putative RNA-binding protein 16 27

RBM38 RNA-binding protein 38 isoform a 28

RPN1 dolichyl-diphosphooligosaccharide–protein 29

SEPHS2 selenide, water dikinase 2 30

SIRPG signal-regulatory protein gamma isoform 1 31

SPRED2 sprouty-related, EVH1 domain-containing protein 32

TFRC transferrin receptor protein 1 33

TMEM18 transmembrane protein 18 34

TRIP13 thyroid receptor-interacting protein 13 isoform 35

TXN2 thioredoxin, mitochondrial precursor 36

UBE2D2 ubiquitin-conjugating enzyme E2 D2 isoform 1 37

ZFAT zinc finger protein ZFAT isoform 1 38

ZNF212 zinc finger protein 212 39

ZNF683 zinc finger protein 683

The table shows the 39 genes that were found to have both promoter and
intergenic ETS1 peaks. It is possible that ETS1 binding at the promoters and
enhancers of these genes is explained by looping of the distal elements onto
proximal promoters. This hypothesis could be tested using chromosome
conformation capture based techniques.
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binding sites (defined as position-specific weight
matrices) from JASPAR [49] and UniPROBE [50] data-
bases, or provides a consensus sequence in the form of
regular expressions (e.g., TCCAAT, [AT]CG[CT]). In
the former case, peak regions are scanned using the
Berg and Von Hippel method [69] and a user-defined
affinity threshold [70], and peaks containing one or
more occurrence of the motif are given as output.
Additional information such as motif positions within
the peak and orientation are also reported. In the latter
case, user-specific consensus sequences are used
instead of weight matrices, and peak regions are

scanned using regular expression matching algorithms
from the pcre C library [71].
2. ChIPseeqerFIRE: De novo regulatory element analysis
De novo motif analysis is performed using FIRE, an infor-
mation-theoretic methodology for identification and
characterization of regulatory elements [72]. In order to
search for any informative motifs that are highly enriched
within the detected ChIP-seq peaks, background
sequences are first created. These background sequences
can be extracted either randomly across the entire gen-
ome (option “random”), or immediately adjacent to the
peak regions (option “adjacent”). They can also be

Figure 4 ChIPseeqer graphical interface. (A) The users can control all parameters of the tools. For example, in the Find Pathway tool (the GUI
version of ChIPseeqerPathwayMatch) the user can select: the input peaks, the species of their data, the gene annotation database used to extract
the genes related to the input peaks, which subset of the peaks to include in the analysis (e.g., promoter peaks, intergenic peaks), and which
pathways database to use in order to look for the pathway. The desired pathway can be either selected from a list of available pathways or
typed by the user (e.g., apoptosis, development). (B) The typical output of each tool is a table summarizing all peaks resulting from the analysis,
as well as basic statistics (e.g., how many peaks found). Here, the peaks that contain the TCCTAGA motif are shown, after using the Find Motif in
peaks tool (the GUI version of ChIPseeqerMotifMatch). (C) Several tools also provide graphical output. For example, the summary result of iPAGE
tool (the GUI version of ChIPseeqeriPAGE) is a pathway enrichment table showing the level of enrichment for all pathways found in the genes
related to the input peaks (category 1), compared to the genes used as background (category 0). (D) The output of the Similarity coefficient tool
(the GUI version of ChIPseeqerComputeJaccardIndex) is a color-coded matrix, showing the pairs of datasets that have more common peaks than
others, with darker red color.
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extracted so as to preserve the C+G and CpG content of
the input sequences using two different options. The
“CGI” option estimates the fraction of the original peaks
that overlap with CpG islands, and then produces ran-
dom background regions that maintain this fraction of
CpG islands overlap. Alternatively, using the “1MM”
option, the program calculates for each input peak
sequence 1st order Markov frequencies and uses these
frequencies to generate new random sequences. As
shown in Additional File 1 Figure S10, both CGI and
1MM preserve C+G and CpG frequencies of the input
peaks. The option that the users should use depends on
the question they want to address (e.g., Are there are any
DNA motifs enriched in ChIP-seq peaks compared to
regions flanking these peaks?, Are there any DNA motifs
enriched in ChIP-seq peaks compared to randomly
selected genomic regions with similar lengths and
nucleotide compositions?). After identification of the
motifs that best explain the distinction between peak
regions and background sequences, peak lists containing
each motif are extracted and can be used as input to
other tools in the framework, such as pathway analysis
tools.

ChIPseeqerNongenicAnnotate: Nongenic peak annotation
The ability to integrate the results of a ChIP-seq study
with existing and publicly available ChIP-seq is an impor-
tant. For example, this integration could suggest tran-
scription factor, co-factors or histone modification that
should be further explored because of their extensive
overlap with a set of ChIP-seq peaks. In the ChIPseeqer
framework, the ChIPseeqerNongenicAnnotate provides
such capabilities; it can determine the subset of input
peaks that overlap with peaks obtained from TF or his-
tone modification ChIP-seq datasets of the ENCODE
project [73,74], as well as the statistical significance of
this overlap (ENCODE datasets are subject to the
ENCODE data usage policy available at http://genome.
ucsc.edu/ENCODE/terms.html). ChIPseeqerNongenicAn-
notate can perform additional integrative analyses. For
example, extensive literature has shown that TF binding
sites and specific histone modifications can be associated
with repeated elements [75] and other nongenic ele-
ments, such as CpG islands [76]. Filtering the peaks
based on that type of features could reveal interesting
groups of peaks that have the potential to alter and
impact gene expression (e.g., possible promoters, retroe-
lements that impact transcriptional networks [75] and
more). Using the ChIPseeqerNongenicAnnotate module
and track-based data from the UCSC Genome Browser,
users can quickly and easily determine which of their
input ChIP-seq peaks overlap with: (1) known repeated
sequences (identified by RepeatMasker [77]), (2) CpG
islands and (3) segmental duplications. While such

comparisons can be performed via the UCSC Table
Browser (i.e., use intersection between any two tracks),
ChIPseeqerNongenicAnnotate facilitates these analyses
and allows their integration with other analyses within
the framework.

ChIPseeqerCons: Conservation analysis
Cross-species conservation analysis is necessary in order
to discover functional genomic elements (e.g., distal regu-
latory elements) and also to prioritize the most promising
genomic elements for experimental validation. For these
reasons, we have developed ChIPseeqerCons, a tool that
estimates the conservation for a given set of peaks and
outputs the peaks whose average conservation score is
greater than a user-defined threshold (default is set to
0.5). The most useful aspect of this module, is estimating
the conservation level of sequences adjacent to the input
peaks, or of randomly selected sequences, thus allowing
global assessment of peak conservation.
Another interesting feature of ChIPseeqerCons is produ-

cing conservation profiles for regions around the summit
of the peaks (default is 2kb-long regions), and for random
intervals: the average conservation score is estimated for
every n-sized bins of the regions (default is n = 10 nucleo-
tides). By plotting the resulting conservation profiles, we
can easily compare the level of conservation between the
input peaks and randomly generated genomic regions (see
Figure 3). ChIPseeqerCons uses the phastCons [55] or phy-
loP [78] scores (freely available as tracks from the UCSC
Genome Browser website), calculated from placental
mammalian genomes or primates.

Analysis of read density profiles
The analysis of read density profiles, when combined with
clustering methods, can help identify groups of genes with
similar binding profiles in their promoters, or groups of
peaks that tend to have similar histone modification or TF
binding patterns. In ChIPseeqer, we have developed tools
that take as input a set of genomic regions and: (1) calcu-
late the read density profile of the regions (split regions
into bins and calculate the average read count within each
bin), (2) count the maximum or average number of ChIP-
seq reads for each genomic region. These tools can also
perform RPKM-style read count normalization [79] prior
to read counting, in order to compare multiple experi-
ments with different numbers of short reads.
1. ChIPseeqerDensityMatrix: Read density matrix
ChIPseeqerDensityMatrix lets the users explore and ana-
lyse the average read density profiles, either for user-
defined regions around the TSS or TES of the genes
(default is set to 4 kb around the TSS), or around the
summit of the given peaks (default is set to 2 kb window
centred to the peak summit). For each region, bins of n
nucleotides (default is 10 nucleotides) are created and the
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average number of reads for each bin is counted. For
example, if 4 kb regions are extracted around the TSS of
genes, the result of this module will be a matrix that con-
tains for each promoter the average number of reads for
400 bins of 10 nucleotides each. Clustering the promoters
of the resulting matrix is then performed based on
their read density profiles, using either the built-in Self-
Organizing Map algorithm [80], or by interfacing with
Cluster 3.0 software [81,82] (ChIPseeqerCluster). The
results can be directly visualized using Postscript/PDF
heatmaps produced using our built-in visualization tools
or using TreeView [83] (included in the framework).
Lists of genomic regions for each cluster can be exported
and then used as input into other tools, in order to
answer questions such as “Are there any regulatory ele-
ments associated with a given promoter binding pattern?”
and “Which pathways discriminate between promoter
binding patterns?”.
2. ChIPseeqerReadCountMatrix: Read count for multiple
ChIP-seq experiments
ChIPseeqerReadCountMatrix estimates for each of the
input peaks the maximum or average number of reads
for multiple ChIP-seq datasets. The result of this module
is a matrix that contains, for each of the input peaks, the
maximum or average reads count for every ChIP-seq
experiment. Similarly, the ChIPseeqerCluster module can
be used to cluster the peaks of this matrix based on the
reads number across multiple datasets, in order to reveal
groups of peaks that share common binding in several
TFs or histone modifications. The clusters of peaks can
be extracted and used as input into other tools.

Integration and comparison of ChIP-seq experiments
As more and more ChIP-seq datasets become publicly
available, the need for data integration and comparison is
becoming essential. Such integration can reveal how dif-
ferent TFs cooperate to regulate gene expression [84], as
well as the interplay between TF binding and histone
modifications [85,86]. The integration between ChIP-seq
datasets can be realized by determining the overlap
between sets of peaks. In ChIPseeqer, we have addressed
this need by implementing fast interval tree-based tools
for comparing ChIP-seq experiments at the peak level
(CompareIntervals). These tools can be used to compare
sets of peaks, and quickly: (1) identify overlapping peaks,
(2) merge sets of peaks, or (3) determine peaks in the
first set that do not overlap with any peaks from the sec-
ond set (i.e. find unique peaks). Moreover, as described
in previous section, these tools can assess the significance
of the overlap between two sets of peaks using randomi-
zation tests that take into account the genomic distribu-
tion of peaks. In addition to simply counting how many
peaks overlap between two peak lists, we provide tools
that can also quantify the extent to which two sets of

peaks overlap by estimating the pairwise Jaccard similar-
ity coefficient between pairs of ChIP-seq datasets (ChIP-
seeqerComputeJaccardIndex). The Jaccard index is
estimated as the number of peaks that overlap between
two peak files, divided by the union of the two files. The
larger the coefficient, the more similar two datasets are
in terms of overlapping peaks (see Figure 4D). Such com-
parisons can also be performed at the gene level; we have
developed similar tools for gene-based comparisons
(CompareGenes) that can be easily used on the genes-
based output of ChIPseeqerAnnotate. Finally, the annota-
tion of peaks against a collection of ENCODE ChIP-seq
datasets (ChIPseeqerNongenicAnnotate), as well as the
read density analysis across multiple datasets (ChIPsee-
qerReadCountMatrix), both described in previous para-
graphs, were also developed in the context of integration
and comparison of multiple ChIP-seq experiments.

Visualization tools
Visualization is tightly integrated to all modules of the fra-
mework in order to facilitate ChIP-seq data exploration
and summarize the results of each analysis. ChIPseeqer
includes tools for creating UCSC Genome Browser tracks
representing peak location and genome-wide read densi-
ties. It also includes tools for drawing pie charts summar-
izing the genomic distribution of the peaks, creating motif
and pathway enrichment tables and conservation plots
(see Figure 1, Figure 4C). The output of clustering read
density profiles can be visualized either using heatmaps, or
2D Kohonen maps [80]. Finally, we provide tools (ChIPsee-
qerPlotAverageReadDensityInGenes, ChIPseeqerPlotAvera-
gePeaksNumberInGenes) for the visualization of reads
density and peaks number in gene parts (e.g., promoters,
exons, introns). The description of these tools and exam-
ples of the visualization they provide can be found at the
ChIPseeqer tutorial [37].

Discussion
The ChIPseeqer framework can considerably facilitate
the bioinformatics analysis of ChIP-seq data by providing
an integrated suite of computational tools that are fast,
easy to use (no programming experience required), and
can be combined with each other. The variety of tools
and the flexibility offered by their parameters (Figure 4A)
makes it possible to address most biological questions
that are often raised when analyzing ChIPseq datasets.
Notably, as demonstrated before, ChIPseeqer users can
create personalized workflows in order to perform speci-
fic but sophisticated analysis, often requiring integration
of multiple datasets (Figure 4D).
ChIPseeqer is a continuously developing project and

we are actively working on implementing several addi-
tional components. For example, more species will be
supported soon (e.g., C. elegans, zebrafish, chicken, rat),
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as well as more visualization components. Moreover,
facilitating the integration of ChIP-seq data with gene
expression data, obtained from microarray or RNA-
sequencing (RNA-seq) experiments, also represents an
important avenue for future improvement of the
framework.

Conclusions
In order to fill the gap between the identification of
ChIP-seq peaks and the biological interpretation of the
data, we have developed ChIPseeqer, a comprehensive
computational framework that can be adapted to a
user’s needs and to the hypotheses of a ChIP-seq study.
We showed that using the ChIPseeqer framework we
can perform sophisticated analyses of ChIP-seq datasets
(e.g., compare and integrate peak/gene lists), explore the
data from multiple perspectives (e.g., conservation,
motifs occurrence, pathways enrichment), and address
specific biological questions, such as “How do promoter
peaks differ from distal peaks?”, “Are there genes with
both promoter and enhancer peaks?”. We believe that
this framework will be of great assistance to investiga-
tors who wish to perform high-level analysis of genome-
wide ChIP-seq datasets, but do not yet possess advanced
computer programming skills.

Availability and requirements
ChIPseeqer is freely available and can be downloaded at
http://physiology.med.cornell.edu/faculty/elemento/lab/
CS_files/ChIPseeqer-2.0.tar.gz The system requirements,
instructions on how to install and run the software, and
a detailed tutorial are also provided at http://physiology.
med.cornell.edu/faculty/elemento/lab/chipseq.shtml The
ETS1 and CBPdatasets used in this paper can be found
at the GEO (GSE17954), and the H3K4me1 and
H3K4me3 datasets are available at http://dir.nhlbi.nih.
gov/papers/lmi/epigenomes/hgtcell.aspx

Additional material

Additional file 1: This file describes in detail the quality control
analysis tools and the peak detection algorithm, implemented
within the ChIPseeqer framework, as well as performance
evaluation results for several tools of the framework.

List of abbreviations used
kb: kilobase; ChIP-chip: Chromatin Immunoprecipitation followed by DNA
microarray hybridization; ChIP-seq: Chromatin Immunoprecipitation followed
by sequencing; GUI: Graphical user interface; RNA-seq: RNA sequencing; TES:
Transcription end site; TSS: Transcription start site; TF: Transcription factor.
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