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Abstract

Background: The advent of high-throughput sequencing has enabled sequencing based measurements of cellular
function, with an individual measurement potentially consisting of more than 108 reads. While tools are available
for aligning sets of reads to genomes and interpreting the results, fewer tools have been developed to address the
storage and retrieval requirements of large collections of aligned datasets. We present ReadDB, a network
accessible column store database system for aligned high-throughput read datasets.

Results: ReadDB stores collections of aligned read positions and provides a client interface to support visualization
and analysis. ReadDB is implemented as a network server that responds to queries on genomic intervals in an
experiment with either the set of contained reads or a histogram based interval summary. Tests on datasets
ranging from 105 to 108 reads demonstrate that ReadDB performance is generally within a factor of two of local-
storage based methods and often three to five times better than other network-based methods.

Conclusions: ReadDB is a high-performance foundation for ChIP-Seq and RNA-Seq analysis. The client-server
model provides convenient access to compute cluster nodes or desktop visualization software without requiring a
shared network filesystem or large amounts of local storage. The client code provides a simple interface for fast
data access to visualization or analysis. ReadDB provides a new way to store genome-aligned reads for use in
applications where read sequence and alignment mismatches are not needed.

Background
Next generation DNA sequencing technology [1] has
enabled the use of sequencing to query biological func-
tion using methods such as ChIP Seq [2] and RNA Seq
[3]. The cost of sequencing is rapidly declining, and as a
consequence large repositories of sequencing data have
arisen from key biological experiments. Early experi-
ments used 25 bp tags for ChIP-Seq and generated a
few million reads per sample. Recently available long
reads, paired reads, and read counts over 108 reads per
sample have enabled RNA-Seq [3,4] experiments that
detect splice form variants. Deep sequencing also per-
mits detection of SNPs and other variants across popu-
lations and between samples and reference sequences.
The number of public, potentially useful datasets is

vast. For example, the ENCODE project (http://www.

genome.gov/10005107, [5]) has produced hundreds
sequencing datasets in human cell lines for histone
modifications and transcription factor binding. Analyses
incorporating these datasets might query the genome in
kilobase windows and perform millions of queries
against each dataset in an analysis. The full alignment
output for a dataset might be hundreds of megabytes to
several gigabytes (see Table 1), requiring over a terabyte
of space for the complete ENCODE datasets.
The data requirements for analysis algorithms vary by

application. Assembly and SNP detection algorithms
require access to all bases of the read and the quality
score of each base. In contrast, some ChIP-Seq analysis
algorithms can ignore individual reads and operate only
on the histogram of read depth at each base. Common
formats currently include BAM [6] and WIG/BigWig
[7]. BAM stores the full alignment output, including the
read sequence, read quality, hit position, and mismatch
and indel information. WIG (and its binary version Big-
Wig) is a histogram format that stores positions and
values; each position corresponds to a single histogram
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bin and the value to the number of reads starting in or
crossing that bin.
Our software, ReadDB, aims to support ChIP-Seq,

RNA-Seq, DNA methylation, and DNAse hypersensi-
tivity analysis and visualization applications by provid-
ing efficient access to mapped read positions for single
and paired end reads. ReadDB operates as a network
server process such that data can be curated by one or
a few people for a large group and so that clients do
not need access to a shared network filesystem or
large amounts of local disk space. The server can
respond to queries either with the positions of indivi-
dual reads or with a histogram generated with arbitrary
bin size. The provided client code can then provide
quick network access to thousands of datasets. How-
ever, ReadDB does not implement analysis algorithms
(eg, ChIP-Seq peak calling or RNA-Seq transcript
detection) or a visualizer itself. Rather, we use and
expect others to use ReadDB as the backend storage
for these applications.

Implementation
Architecture
ReadDB implements an abstraction called an alignment
that describes where reads from a read set map to a
reference genome. A read set may be a collection of
reads from a single experiment, or it may combine reads
from multiple experiments that are replicates. Queries
on an alignment are performed with respect to the coor-
dinate space of the reference genome used for the align-
ment. Note that a read set can be aligned to different
genomes, or different alignment methods or parameters
can be used to align a read set to the same genome;
each alignment variant for a given read set is stored as a
unique alignment.
An alignment has distinct data structures for each

chromosome. Three files make up the column store and
hold the hits (a hit is a genomic position to which a
read is mapped) sorted by position (5’ coordinate of the
aligned read, a 32 bit int), the strand and hit length (one
bit strand, 15 bit hit length), and weight (32 bit float,
typically the inverse of the number of alignments for the
read). A fourth file indexes the sorted hits. Figure 1 pro-
vides an overview of the ReadDB architecture.

ReadDB’s key feature is the index of the sorted hits
for a chromosome. The index file is similar to a single
block of a B-tree index and points into the main data
files every 4-16 kb (disk reads smaller than this won’t
be significantly faster so a denser index doesn’t yield a
performance improvement). At four bytes per record
in the data file and eight bytes per entry in the index,
a 64 kb index file is sufficient for eight million ((4 kb/
4) * (64 kb/8)) to thirty two million records. As most
experiments contain fewer than ten million hits per
chromosome, most index files are smaller than 64 kb
and ReadDB can cache hundreds of index files in a
reasonable amount of memory. The index provides O
(log(n)) accesses into the list of hits, meaning that
ReadDB query operations are O(log(n) + m) where n is
the number of hits stored and m is the number of hits
returned.
For compactness, ReadDB stores chromosomes as

integers. Client code may either use this directly to
store chromosome numbers (with some alternate
scheme to handle X, Y, mt, 5_random, etc) or may use
an external database that maps chromosomes to
numeric identifiers. In the former case, the alignment
name ought to indicate the genome assembly, eg
“GM12878 CTCF against mm8.” In the latter case, a
system such as GSE [8] maps the combined genome
build and chromosome name to an identifier and
maintains metadata about each alignment. In either
case, client code can unambiguously specify which
genome should be used and could even query both
genomes by executing queries against both chromo-
some identifiers.
While ReadDB can return individual read positions,

many applications benefit from server generated histo-
grams. Condensing a potentially large number of hits
into a much smaller number of bin positions and counts

Table 1 Storage space required for each format

small medium large

read set size 536 k 13.9 m 175 m

BigWig 989 kB 23 MB 83 MB

ReadDB 3.3 MB 126 MB 463 MB

BAM 25 MB 532 MB 5.1 GB

Space used by ReadDB, BigWig files, and BAM files (including the index files
for each format).

Figure 1 ReadDB architecture. ReadDB uses a client-server
architecture to give clients access to a large set of mapped read
positions. The server stores each set of aligned reads in one
directory and uses several files per chromosome. The index files
allow quick access to the read data (which is sorted by position)
and are small enough that the server can cache many index files in
memory at once.
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generates substantially less network traffic between the
client and server. The server can also answer aggregate
queries such as the total number of reads or the sum of
hit weights in a region, chromosome, or dataset.
ReadDB also supports paired-end read sets and allows

queries based on either end of the read. The query spe-
cifies, for example, a genomic range for which to query
the “left” reads and all read pairs for which the left read
maps to that range are returned. Paired-end storage is
implemented by adding columns for the mate’s position,
strand, and length and by storing each read twice: once
keyed by the “left” read and once keyed by the “right”
read. The duplication allows for quick access by either
side at a minimal cost of storage space since the data

stored per read is only slightly larger than the corre-
sponding key (chromosome, position) and pointer.

Interface
The ReadDB server accepts queries as text and may be
queried from any programming language. The interface,
described in full in additional file 1, includes methods to

• store single-end and paired-end hits to an align-
ment. Both hit types may be stored to an alignment
• delete hits from an alignment (single or paired-
end)
• retrieve a list of chromosomes to which reads were
mapped in an alignment

Figure 2 ReadDB performance compared to other formats. ReadDB’s performance nearly matches that of local BAM or BigWig files on the
medium and large datasets. Each method was used to query n randomly chosen regions (of size 1 kb, 10 kb, or 100 kb) and the resulting
average query time is shown in milliseconds. The client and server machines were connected by gigabit ethernet. ReadDB and the BAM tests
retrieved individual hits; BigWig retrieved a histogram in 10 bp bins as the BigWig format cannot store individual read positions. bamlocal and
wiglocal queried files on local disks rather than on a remote server.
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• retrieve the number of hits present in an alignment
or in a particular chromosomal region of an alignment
• retrieve the hits present in an alignment or in a
particular chromosomal region of an alignment. The
interface allows only positions or weighs to be
retrieved in addition to the full hit information.
• retrieve a histogram either of hit counts or hit
weight sums across a chromosomal region. The
interface allows the caller to specify the histogram
bin width.

All queries may be filtered by hit strand, paired-end-
ness, and weight.

Results
We tested a Java ReadDB client with a remote ReadDB
server against the following alternatives:

• Remote BAM (HTTP access) and remote BAM
index (HTTP access)
• BAM and index on local disk
• Remote BigWig (HTTP access)
• BigWig on local disk

ReadDB and BAM files were queried to retrieve indivi-
dual read positions. BigWig files only support queries
for histograms and were tested in this mode.

Figure 3 Performance comparison with no network latency. Comparison of runtimes with the client software and server on the same
machine. To separate the effects of network throughput and latency from those of the disk and CPU, we ran the test suite from the server
machine. The ReadDB test still went through the ReadDB server and the BAM and WIG files were read by the httpd process. These tests indicate
that ReadDB’s fast queries compared to remote BAM are not the result of BAM queries passing more information across the network; the
ReadDB queries through the ReadDB server are faster than either BAM through httpd or BAM read directly from local disk.

Rolfe and Gifford BMC Bioinformatics 2011, 12:278
http://www.biomedcentral.com/1471-2105/12/278

Page 4 of 7



For each setup, we tested results from aligning three
read files to the hg19 assembly: a small set of 513,870
Pol2 ChIP-Seq reads [9], a medium set of 13,901,600
CTCF ChIP-Seq reads (ENCODE project, Crawford Lab
at Duke University, ftp://hgdownload.cse.ucsc.edu/gold-
enPath/hg18/encodeDCC/wgEncodeChromatinMap/
wgEncodeUtaChIPseqRawDataRep3K562Ctcf.fastq.gz),
and a large set of 175,128,655 reads DNAse hypersensi-
tivity reads (ENCODE project, Stam/Uw Lab at the Uni-
versity of Washington, http://hgdownload.cse.ucsc.edu/
goldenPath/hg18/encodeDCC/wgEncodeUwDnaseSeq/
wgEncodeUwDnaseSeqRawDataRep2Gm12878.fastq.gz).
Table 1 shows the number of reads in each dataset as
well as the storage space required for each method.

Each test consisted of retrieving all hit positions
within some number of regions n (ranging from n = 10
to n = 100000) of size 1 kb, 10 kb, or 100 kb. ReadDB
was queried with our Java code. BAM files were queried
with code using the Picard http://picard.sourceforge.net
library and BigWig files were queried with Perl code
using the Bio::BigFile module (http://search.cpan.org/
~lds/Bio-BigFile-1.06; we were unable to find a Java
interface for the BigWig file format). Our ReadDB server
machine also provided HTTP access to the BAM and
BigWig files off the same filesystem that provides
ReadDB storage using Apache 2.2.12.
Over a local area gigabit network, remote ReadDB

performs similarly to local-disk access and three to five

Figure 4 Performance comparison across a high-latency network. Comparison of runtimes across a residential broadband connection. The
query times correlate with the amount of data transfered over this slower connection-the histogrammed BigWig results are fastest, followed by
the per-read ReadDB results (readdb) followed by the BAM results. The server-side histograms with ReadDB (readdb.histogram)
demonstrate the best performance as they combine histogrammed data transmission with the fast ReadDB server. Each method was used to
query n randomly chosen 1 kb regions; only a single replicate was run. The readdb. histogram test used server-generated histograms such
that the data passed across the network is similar to the BigWig format rather than the per-read format in the bamlocal and readdb tests.
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times faster than remote BAM or BigWig files. As
shown in Figure 2, ReadDB also outperforms remote
BAM and remote WIG files for all dataset sizes and
query region sizes. ReadDB also outperforms a local
BAM file in some tests against the large dataset. As
expected, the local WIG file often provides good perfor-
mance as one would expect from a local data source
that is a pre-computed histogram.
Tests performed through the network server (ReadDB

or HTTP) from the server machine itself help separate
the effect of file format from the effects of network
throughput and latency. As shown in Figure 3, ReadDB
access in this situation is as at least as fast as local BAM
access indicating that ReadDB’s on-disk format provides
a performance advantage over the BAM format as the
dataset size increases. The difference between local
BAM performance and BAM via HTTP in this test indi-
cates the extra overhead incurred by the HTTP server
and avoided by ReadDB’s server.
We also performed a subset of tests from a residential

broadband connection (10 Mb/s down, 1 Mb/s up,
roughly 20 ms latency to the server) to determine the
effects of higher latency and lower bandwidth. As seen
in Figure 4, runtimes increased for all methods. The dif-
ference between ReadDB and BAM increased substan-
tially to five to seven fold. WIG performed very well in
this test as its relatively small size incurred the least net-
work transmission time.

Conclusions
ReadDB’s query performance bests that of remote BAM
and BigWig files on all but the smallest datasets. Since
ReadDB’s theoretical query time is O(log(n) + m) (where
n is the number of hits stored and m is the number of
hits returned), ReadDB should scale to datasets that are
many times larger than those evaluated here. Our tests
demonstrate that the expected behavior holds over two
orders of magnitude in dataset size.
ReadDB provides fast and compact access to aligned

short-read datasets in situations where mismatch informa-
tion and quality scores are unnecessary. In particular, we
have found that ReadDB provides an excellent back end
for visualization and analysis of ChIP-Seq, DNA methyla-
tion, DNAse hypersensitivity, and RNA-Seq datasets. We
currently store over four thousand alignments covering
over two thousand lanes of sequencing and enjoy perfor-
mance nearing that of local disk without incurring the
local storage overhead of BAM or BigWig files.

Availability and Requirements
readdb.jar, provided as additional file 2, contains the
Java class files, source files, and a HOWTO file describ-
ing how to setup the ReadDB server. ReadDB requires
Java 1.6 to run. The source code is provided under the

GPL version 3. Updated versions of the jar file are avail-
able at http://cgs.csail.mit.edu/readdb.

Additional material

Additional file 1: A description of the ReadDB interface and the
method calls it contains.

Additional file 2: The Java class files, source files, and a HOWTO file
describing how to setup the ReadDB server. Updated versions of the
jar file are available at http://cgs.csail.mit.edu/readdb.
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