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Abstract

accompany the adjusted p-values are desirable.

Background: Gene expression experiments are common in molecular biology, for example in order to identify
genes which play a certain role in a specified biological framework. For that purpose expression levels of several
thousand genes are measured simultaneously using DNA microarrays. Comparing two distinct groups of tissue
samples to detect those genes which are differentially expressed one statistical test per gene is performed, and
resulting p-values are adjusted to control the false discovery rate. In addition, the expression change of each gene
is quantified by some effect measure, typically the log fold change. In certain cases, however, a gene with a
significant p-value can have a rather small fold change while in other cases a non-significant gene can have a
rather large fold change. The biological relevance of the change of gene expression can be more intuitively judged
by a fold change then merely by a p-value. Therefore, confidence intervals for the log fold change which

Results: In a new approach, we employ an existing algorithm for adjusting confidence intervals in the case of
high-dimensional data and apply it to a widely used linear model for microarray data. Furthermore, we adopt a
concept of different relevance categories for effects in clinical trials to assess biological relevance of genes in
microarray experiments. In a brief simulation study the properties of the adjusting algorithm are maintained when
being combined with the linear model for microarray data. In two cancer data sets the adjusted confidence
intervals can indicate significance of large fold changes and distinguish them from other large but non-significant
fold changes. Adjusting of confidence intervals also corrects the assessment of biological relevance.

Conclusions: Our new combination approach and the categorization of fold changes facilitates the selection of
genes in microarray experiments and helps to interpret their biological relevance.

Background

When simultaneously testing a large number of hypoth-
eses, a high number of false positive test results is
expected. This applies particularly in the case of high-
dimensional data, where the number m of features is
much larger than the available sample size n. Therefore,
raw p-values are adjusted in order to control a false posi-
tive rate, for example the false discovery rate (FDR). The
FDR was introduced by Benjamini and Hochberg [1] as
the expected proportion of false positives among all posi-
tive test decisions. A prime example of high-dimensional
data are gene expression levels from DNA microarray
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experiments. A frequent microarray study design is the
comparison of gene expression levels among two distinct
groups of tissue samples, for example from wild types
and mutated subjects [2], resulting in several thousand p-
values, one per gene. These raw p-values are then
increased by an adjusting algorithm to reduce the number
of false positive detections. Additionally, expression
changes between the two groups are quantified by some
difference statistic such as the log fold change. The reason
for a difference statistic instead of a ratio statistic is that
gene expression data are usually log-transformed by one
of several data preprocessing steps. Published microarray
experiments, where the log fold change is accompanied by
a confidence interval, are rare, and the interval limits are
usually not adjusted for multiplicity. These unadjusted
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confidence intervals are not comparable to FDR-adjusted
p-values. One reason for that might be that FDR-adjust-
ment procedures are based on ordered p-values (so called
step-up or step-down procedures), while confidence inter-
vals cannot be ordered according their level of signifi-
cance. Therefore, an algorithm presented by Benjamini
and Yekutieli [3] for adjusting confidence limits analogous
to the p-values is also based on the order of their corre-
sponding p-values. A similar algorithm was introduced by
Jung et al. [4] who studied adjusted confidence intervals
for the fold change of protein expression levels. Although
the latter algorithm produces adjusted confidence intervals
which match their related adjusted p-values in the sense
that they lead to the same test decision, it has the draw-
back of gene-specific confidence levels. In contrast, the
algorithm of Benjamini and Yekutieli [3] uses the same
adjusted confidence level for all genes.

In order to evaluate the performance of their algorithm
for adjusting confidence intervals, Benjamini and Yeku-
tieli [3] introduced the false coverage-statement rate
(FCR), which, in the context of DNA microarray experi-
ments, is defined as the expected proportion of true log
fold changes not covered by their confidence interval
among all genes that have been detected as differentially
expressed. They use this rate instead of the conditional
coverage probability (CCP), i.e. the portion of true log
fold changes covered by their confidence interval among
all genes detected as differentially expressed. Both, FCR
and CCP, are defined to be zero in the case that the num-
ber of genes detected as differentially expressed is zero,
too. It can be shown that the CCP is dependent of the
size of the fold changes, while the FCR is independent.
Thus, studying the non-coverage of confidence intervals
is more reasonable than studying their coverage.

Before building confidence intervals, genes have to be
selected by statistical tests. A popular method framework
for detecting differentially expressed genes among two
distinct groups of samples is given by the linear models
proposed by Smyth [5]. These models pick up the ideas
of Lonnstedt and Speed [6] who recommended to use a
moderated t-statistic for testing the differential expres-
sion of each gene. They argue that a very small variance
is expected for some genes, when testing thousands of
genes simultaneously, though the difference of group
means is inconsiderable for these particular genes. As a
consequence, the classical z-statistic will become unrea-
sonably large for these genes. Therefore, Smyth [5]
employed an empirical Bayes approach where a prior dis-
tribution for the variance of genes is assumed and the
observed standard errors of the estimated model coeffi-
cients are shrinked towards these prior values. In the
case of two groups, the coefficient of the related linear
model can be taken as an estimate for the log fold
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change. As a new approach, we use these estimates as
well as their shrunken standard errors to construct confi-
dence intervals for the fold change, and employ the algo-
rithm of Benjamini and Yekutieli [3] to adjust these
intervals to control the FCR. With this, we account for a
problem mentioned by Efron [7] and Ghosh [8], that is
the confidence intervals proposed by Benjamini and
Yekutieli [3] tend to be too wide. Combining an adjusting
algorithm with a multiple testing procedure was also
proposed in the paper of Jung et al. [4]. This former pro-
posal had, however, the above mentioned drawback of
non-uniform confidence levels and only uses simple
confidence intervals based on the assumption of normal
distribution. Thus, we present now an extended
methodology.

Building confidence intervals for the log fold change
adjusted by this new combination method is a helpful step
for assessing genes which might be biologically relevant.
In order to further categorize genes according their poten-
tial biological relevance, we adopt a concept developed to
assess the clinical relevance of observed effects in clinical
trials [9]. According to this concept, genes are classified
individually into one of four relevance categories, based on
the location of their confidence intervals relative to the
zero log fold change and a relevance threshold.

The outline of this article is as follows. In the methods
section we describe the linear model of Smyth [5] for
the case of a two group comparison. Next, the construc-
tion of unadjusted and adjusted confidence intervals is
detailed, followed by a short description of their imple-
mentation in the free software R [10]. Afterwards, the
concept of relevance categories is explained. In the
results section, we present the results of a brief simula-
tion study with which we evaluate the behavior of the
CCP and the FCR in a two group comparison. The ben-
efit of incorporating adjusted confidence intervals for
the log fold change and of categorizing genes by their
potential biological relevance is further illustrated by
two examples of microarray data, featuring gene expres-
sion levels observed in lung and rectal carcinomas,
respectively. Finally we close with a discussion and some
conclusions.

Methods

Selection of differentially expressed genes

The most frequent design in microarray experiments is
the comparison of expression levels in samples from
two distinct groups. Following the models of Smyth [5],
an estimate for the log fold change of gene j (j = 1,...,
m) is given by the estimate of the model parameter ;.
In order to test the hypothesis that the log fold change
for gene j is equal 0, i.e. Hy; : B; = 0, Smyth [5] uses a
moderated ¢-statistic
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where se(Bj) are the shrunken standard errors as men-
tioned in the introduction. The moderated ¢-statistic can
be shown to follow a ¢-distribution with augmented
degrees of freedom f*. Estimation of 8; and the determi-
nation of f* is explicitly detailed in Smyth [5].

Consider the object £it to be the output of the
model fit for a two-group comparison using the 1imma-
package for the free software R. In the R-environment,
the estimated coefficients, ﬁj, can be obtained by

>beta = fit$coefficients|[, 2]

The vector of standard errors se(ﬁ,-) can be created by
the following line

>se = sqrt (fit$s2.post) * sqgrt(fitScov.
coefficients [2,2])

At last, the degrees of freedom f* are obtained by

>dof = fitsdf.prior + fitsdf.residual [1]

With these data vectors, one can easily implement the
unadjusted and adjusted confidence intervals detailed in
the subsection below. An example R-code is also pro-
vided in additional file 1

Using this test statistic, a raw p-value p; can be
derived for each gene j. In the context of microarray
analyses, these raw p-values are usually adjusted to con-
trol the FDR at a pre-specified level (e.g. 5%). The most
commonly used adjusting method is that of Benjamini
and Hochberg [1], in the following denoted as BH-
method, which allows for certain dependencies among
the m hypotheses. This step-wise procedure orders first
the m raw p-values by increasing size, i.e.
pr, <Pr, < ... <Pr,. The adjusted p-values are then
given by

Another method was proposed by Benjamini and
Yekutieli [11], which is, on the one hand, more conser-
vative, but allows hypotheses to have an arbitrary depen-
dence structure on the other hand. With this BY-
method, p-values can be adjusted by

"o1/j
ﬁj=kg}_i_{lm{min (mzﬁzl H 1)}

A detailed overview of other adjusting methods can be
found in Dudoit et al. [12].

Construction and adjustment of confidence intervals
Using the estimate §; for estimating the log fold change
of gene j as well as the shrunken standard error of this
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estimate, se(ﬁj), the limits of an unadjusted (1 - &)-con-
fidence interval can be constructed by

Bi = ti—ap25e(B),

where t; _ ,/» denotes the (1 - a/2)-quantile of the
t-distribution with f* degrees of freedom.

In order to adjust these confidence intervals to coin-
cide with the adjusted p-values, the order given by the
unadjusted p-values p; needs to be determined, because
confidence intervals alone do not reveal information
about the strength of significance. Furthermore, adjusted
confidence levels need to be determined for construct-
ing the adjusted confidence intervals. Such adjusted con-
fidence levels can be found by considering that the FDR
can not only be controlled by adjusted p-values but also
by comparing the unadjusted p-values with adjusted sig-
nificance levels. If we regard again the ordered unad-
justed p-values,Pr, the adjusted significance level can be
found by determining the largest k such that
pr, < (k/m) - a. According to the algorithm of Benjamini
and Yekutieli [3], we can replace the a-level in the
above unadjusted confidence intervals by using this k in

to obtain BH-adjusted confidence intervals. Similarly,
interval limits can be constructed according the BY-
method. Here, the adjusted o-level is given by
k
= .al
m 2;21 1/j

where k denotes the

pro <K/ (m 3% 1)) - e

a*

largest k such that

Assessment of biological relevance
Adjusting confidence intervals has direct implications on
assessing the potential biological relevance of the genes
they belong to. When genes are selected for further
laboratory research, not only their p-value is compared
to a predefined FDR-level but also their fold change is
compared to some relevance threshold p, e.g. an abso-
lute log fold change of 1. In this regard we adopt an
idea that was first proposed by Jones [9] in the context
of clinical trials in COPD and later more generally
adopted by Kieser and Hauschke [13], who assessed the
clinical relevance of effects by four different categories.
In terms of the log fold change for up-regulated genes
(and similarly for down-regulated genes), the categories
are as follows.

A) Log fold change statistically significant but not bio-
logically relevant: The confidence interval lies comple-
tely between zero and p.
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B) Log fold change statistically significant but probably
not biologically relevant: The lower confidence limit is
larger than zero, the log fold change lies between zero
and p, and the upper confidence limit exceeds p.

C) Log fold change statistically significant and prob-
ably biologically relevant: The lower confidence limit is
larger than zero, log fold change and upper confidence
limit exceedp.

D) Log fold change statistically significant and biologi-
cally relevant: The whole confidence intervals exceeds
the threshold p.

It was also pointed out by Victor [14] that knowledge
about the location of a confidence interval relative to a
threshold allows a more differentiated interpretation of
test results. In the context of selecting genes in a two-
group microarray experiment, potentially biologically
interesting gene could be missed, if only those genes
which are significantly larger than a threshold (i.e., those
of category D) are selected. To illustrate this, we will
perform a pathway analysis subsequent to categoriza-
tion. More concrete, we study the association between
the genes in the different categories and biological path-
ways defined by Gene Ontology (GO) terms [15]. A GO
term covers information about cellular components, bio-
logical processes and molecular functions. Using for
example Fisher’s exact test, GO-analysis studies whether
a certain biological function is associated with more
genes among the selected ones than would be expected.
We will perform GO-analysis using the R-package
topGO [15].

Simulation settings

In order to analyse the behavior of the FCR and the
CCP when BH- and BY-adjusted confidence intervals
are being built within the linear models of Smyth [5],
we simulated a typical two group comparison of gene
expression data. In particular, the intention of this simu-
lation is to find out whether the findings of Benjamini
and Yekutieli [3] on the FCR and CCP hold under an
empirical Bayes approach, i.e. when standard errors are
shrinked and confidence intervals are shorter. In each
simulation run (totaly 1000), we draw gene expression
levels of m = 200 genes for 10 samples per group (i.e.,
1, = ny = 10) from the multivariate normal distribution
N(u;, X). While p; was always the null vector, gy = 0,,, 7
= 25% of randomly selected genes were altered in the
second group. In detail, these genes were all altered
with the same log fold change . This fold change was
varied across the simulations, i.e. § was either 0, 1, 2, 3
or 4. The covariance matrix was constructed as follows.
In order to mirror the fact that some genes are strongly
correlated while other genes are nearly uncorrelated,
blocks of 40 genes were assigned a common covariance
of either 0, 0.2, 0.4, 0.6 or 0.8:
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where ® denotes the Kronecker product and J,,,;5 a
(m/5 x m/5)-matrix with all elements being equal 1. In
order to include different variances for the genes and to
obtain the covariance matrix ¥, the diagonal elements of
the (m x m)-matrix ZN: were than exchanged by a vector
of length m with elements increasing evenly from 1 to
2. In each simulation run, the FCR and the CCP were
determined.

Results

Simulation results

The behavior of the FCR and the CCP in our simula-
tion study was such as described in a similar setting by
Benjamini and Yekutieli [3]. When selecting genes by
BH-adjusted p-values and constructing the related BH-
adjusted confidence intervals, the CCP increases with
increasing fold changes (Figure 1, left). The same is
observed for BY-adjusted confidence intervals. For
both methods, the CCP is zero, when no genes are
altered among the two groups. Thus, the CCP is no
adequate measure to evaluate the performance of the
adjusted confidence intervals.

In contrast, when studying the behavior of the FCR
(Figure 1, right), it can be observed, that this rate does
not seriously depend on the size of the fold change.
Furthermore, the rate maintains a level of 5% in essence.
Of course, the rate clearly falls below this level when
using the more conservative BY-method. Thus, it can
also be seen that coverage rate and non-coverage rate
are not equivalent when being regarded for genes that
are detected as differentially expressed. In summary, the
behavior of the FCR shows that among all genes
detected as differentially expressed, only a small portion
of confidence intervals does not cover its true fold
change.

Example data set on rectal cancer

In order to illustrate the duality of BH-adjusted p-values
and BH-adjusted confidence intervals we regard microar-
ray data from a rectal cancer study [16]. The data com-
prises gene expression levels of 33091 genes observed in
79 patients rectal tumors. The data set is publicly avail-
able from the ArrayExpress Archive http://www.ebi.ac.
uk/arrayexpress/ mainainted by the European Bioinfor-
matics Institute. Patients were clinically classified into
n; = 12 being lymph node positive and n, = 67 being
lymph node negative. Using the linear model of Smyth
[5] we obtained gene-wise raw p-values and adjusted
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Figure 1 Simulation results. Simulated conditional coverage probability (CCP) and false coverage-statement rate (FCR) of confidence intervals for
the log fold change B.

them according the method of Benjamini and Hochberg
[1] to control the FDR. Among the adjusted p-values, 868
were smaller than 5%, indicating the related genes as dif-
ferentially expressed among the two patient groups. For
quantifying the effect of up- or down-regulation, log fold
changes were obtained from the linear model fit and
their unadjusted 95%-confidence intervals were built.
Many of these unadjusted intervals, however, did not
coincide with the p-value decision. Le., for many up-
regulated genes the lower limit of the related confidence
interval exceeded zero, though these genes were not sig-
nificant according to the FDR-adjusted p-values (Figure
2, left). The same can be observed for down-regulated
genes in the opposite direction. When, instead, confi-
dence limits are adjusted as proposed by Benjamini and
Yekutieli [3], the limits exceed (fall below) zero only if
the related BH-adjusted p-values indicated significance
(Figure 2, right). The formal proof of the duality between
adjusted confidence intervals and adjusted p-values is
given in [3]. By means of this example we illustrated that
this principle is also applicable to confidence intervals
within an empirical Bayes framework.

Example data set on lung adenocarcinoma
The misleading character of fold changes without confi-
dence intervals can be observed by another example.
Beer et al. [17] studied gene expression levels in samples
of 86 patients with lung adenocarcinoma.

Sixty-seven (n;) tumor samples were histopathologically
classified as stage I and n, = 19 as stage III. The data set
contained expression levels 3171 genes measured by oligo-
nucleotide microarrays. We compared these genes among

the two tumor stages using the linear models of Smyth [5]
and detected 152 genes as differentially expressed accord-
ing to a false discovery rate of 5%. The gene ranked at
place 38 according the adjusted p-values has a log fold
change of 0.36 and the lower limit for the related BH-
adjusted confidence interval exceeds zero. Another gene,
ranked at place 411 has actually a slightly larger fold
change, 0.38, but it's BH-adjusted confidence interval cov-
ers zero (Figure 3). Thus, the adjusted confidence interval
can help not to evaluate too optimistically the gene at
rank 411. In fact, in this example again, the adjusted confi-
dence intervals coincide with the p-value statement.

Assessment of biological relevance
We studied the distribution of the four categories
among all genes in the rectal cancer data example
which had an BH-adjusted p-values less than 5%, that
were 868 genes. Portions of genes in each relevance
category are plotted against the relevance threshold p in
Figure 4. The left hand plot displays the case that unad-
justed confidence intervals were used. If, in that case,
the relevance threshold was chosen to be p = 0.5, 0% of
the significant genes fell into category A, 9% into cate-
gory B, 62% into category C, and 29% into category D.
Thus, 29% of the 868 pre-selected genes (in detail 251)
would have been judged to be biologically relevant. The
right hand plot displays the case that BH-adjusted confi-
dence intervals were used. Here, only 7% fell into the
highest category, yielding 60 genes that would be rated
to be biologically relevant.

For 7858 genes of this experiment pathway annotation
in terms of Gene Ontologies was available. For each
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up-regulated genes detected in the rectal cancer data, ordered by their corresponding BH-adjusted p-values. In order to avoid an overfilling of
the plot, only every 50th interval is plotted. In the case of adjusted intervals, their lower limit only exceeds zero if the corresponding BH-adjusted
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relevance category we tested whether significantly more
genes were associated with the different GO terms than
would be expected in comparison with the other cate-
gories. GO analysis identified 130 GO terms which were

0.25
1

0.20
Il

BH-adjusted p-value

0.05
L

0.00
|

T T
-0.2 0.0 0.2 0.4
B (log fold change)

Figure 3 Significant versus non-significant log fold change. BH-
adjusted p-values versus the log fold change S derived from the
lung cancer data. Two genes with nearly the same log fold change,
where the confidence intervals for the one gene expresses
significance while the other one does not. Intervals were adjusted

according the BH-method.

significantly associated with genes in category D, 64
with genes in category C, 10 and 23 with genes in cate-
gories B and A. Le., the number of significantly asso-
ciated GO terms increased with the relevance of the
category.

In many microarray experiments the relevance thresh-
old for the log fold change is only loosely established
and not fixed before the experiment takes place. Experi-
menters can employ plots like those shown in Figure 4
to assess how many genes fall in which relevance cate-
gory given a certain threshold. This might help to find
an adequate threshold, which can than be used in
related future experiments.

Discussion

In practice, gene selection in DNA microarray experi-
ments is based on several aspects. It is common that
such a group comparison yields several hundreds of sig-
nificant genes, even with FDR-adjusted p-values. This
result of a multiple testing procedure can, however, only
be seen as a first screening. Particularly, gene selection is
usually not only based on pure statistical results, i.e.
whether a gene is significantly differentially expressed
between two distinct groups of samples. Among this bulk
of significant genes, those are selected for further labora-
tory validation which are known to be related to molecu-
lar pathways associated with the studied biological
system. In addition, the strength of the expression
change, in terms of the log fold change, is considered for



Jung et al. BMC Bioinformatics 2011, 12:288 Page 7 of 9
http://www.biomedcentral.com/1471-2105/12/288
N
Unadjusted confidence intervals BH-adjusted confidence intervals
_— A - B ...... C ——— D _— A - B ...... C ——— D
o o
> T >
) : ) \
()] ()] .
2 o s o !
g 8 g5 8!
(0] [0
(& [&]
& o & o
g 3 > © |
Q@ K}
o o
£ o | £ o |
o ¥ o ¥
(O] [0
C c
(0] [0
o o | o o |
N N
O O

T T T
0.0 0.5 1.0 1.5 2.0
Relevance threshold for |B|

Figure 4 Biological relevance with regard to unadjusted and adjusted confidence intervals. Portion (%) of genes in one of four different
relevance class versus the threshold for the absolute log fold change (results from the rectal cancer data set).

T T T
0.0 0.5 1.0 1.5 2.0
Relevance threshold for |B|

selecting relevant features. In this context, the potentially
divergent statements of p-value and log fold change can
be confusing for laboratory decision makers. The studied
examples in this article have shown, that genes with a
large fold change can lack in significance, and vice versa.

One solution to interpret test results and fold changes
together are volcano plots, where the log p-values are
plotted versus log fold changes (see for example Cui and
Churchill [18]). Using volcano plots one can easily see
which genes are significant on the one hand and highly
regulated on the other hand. However, this information
gets lost in a tabular representation of test results.
Furthermore, a volcano plot cannot be read easily when
points overlap. Therefore, we decided to employ confi-
dence intervals which express by their length the high
variation behind some genes with a large fold change and
can thus help to solve the misleading impression of high
relevance.

The four categories of relevance, as proposed by Jones
[9] may further assist experimenters to rate the selected
genes. In this context, one could eventually replace the
term ‘biologically relevant’ by ‘biologically interesting
effect size’, because larger fold changes might not neces-
sarily have a large impact within a molecular pathway.
Performing a GO analysis onto the rectal cancer data
data subsequent to differential testing and relevance cate-
gorization we could assign pathway information to the
different relevance categories. If just volcano plots were
employed to assess the biological relevance of significant
genes one could perhaps miss interesting pathway

information associated with genes of class C (‘probably
biologically relevant’). With a volcano plot only pathways
associated with genes in class D (’biologically relevant’)
would be taken into account. Thus, the categorization
principle opens up insight into gene-pathway associations
about those genes which are not highly significant but
which may not be completely unimportant as well.
Regarding the description of the four categories it should,
however, be mentioned that the word ‘probably’ is only
appropriate if the distribution of the log fold change esti-
mates is symmetric. Symmetry is needed to ensure that
the estimate exceeds the true value 50% of the time.

In this article we have combined the ideas of Benjamini
and Yekutieli [3] for adjusting confidence intervals with
the widely used linear models presented by Smyth [5], in
the case of a two group comparison. This new approach
of combining these two methods improves a former idea
of Jung et al. [4], which was based on unadjusted confi-
dence intervals under normal distribution. Employing the
models of Smyth instead, specific characteristics of
microarray data are taken into account. In addition, the
incorporation of the adjusting algorithm by Benjamini
and Hochberg guarantees equal confidence levels for all
genes. Using the combination of both methods, confi-
dence intervals can be constructed which coincide with
their related p-values. Le., the lower (upper) limits of the
confidence intervals for the fold change exceed (falls
below) zero, exactly when the p-value indicates signifi-
cance. In a brief simulation we have shown, that the
adjusted confidence intervals control a pre-specified FCR
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which was proposed by Benjamini and Yekutieli [3] as
reasonable analogue for the FDR. More precisely, the
simulation results correspond to those in the article by
Benjamini and Yekutieli [3]. Thus, we could show that
the characteristics of their algorithm are maintained in
our combination approach. When we repeated this simu-
lation study with larger numbers of genes (m = 1000)
and with different portions of differentially expressed fea-
tures (z = 10% and 7 = 50%), nearly the same results were
obtained. Therefore, we assume that the FCR is also inde-
pendent from the log fold change, even when a larger
number of genes is studied like in DNA microarray
experiments. An alternative approach to classifying confi-
dence intervals into relevance categories is to test
whether log fold changes exceed a given relevance
threshold. Methods for this were provided for example
by Lewin et al. [19], Bochkina and Richardson [20], van
de Wiel and Kim [21] and by McCarthy and Smyth [22].
Using again the data example of Lips et al. [16] and a
relevance threshold of p = 0.5, one can see a strong cor-
relation between the p-values derived by the method of
McCarthy and Smyth [22] and the classification of confi-
dence intervals into relevance categories by our approach
(Figure 5). However, as was seen in the above pathway
analysis, certain information about biological pathway
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Figure 5 Testing the log fold change with regard to a
threshold versus categorisation into relevance classes.
Comparison of testing the log fold change with regard to a
threshold (McCarthy and Smyth [22]) versus categorisation of
confidence intervals into relevance classes by our approach. Both
methods show a strong correlation. In particular, nearly all
significant p-values fall in the strongest relevance category D. The
comparison was performed using the data of Lips et al. [16] and a
relevance threshold of p = 0.5.
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information could be missed, when selecting only highly
significant genes.

Conclusions

In summary, our improved combination approach is
more adequate for microarray data than a similar
approach described previously. Together with the pro-
posed categorization of fold changes it facilitates the
selection of genes in microarray experiments and helps
to interpret their biological relevance. Although, some
mathematical shortcomings of using the FCR have been
discussed in several published comments (in the same
volume as the article of Benjamini and Yekutieli), the
practical use of the adjusting algorithm becomes more
evident in our examples.

Additional material

Additional file 1: Example R-code. Additional file 1 presents an
example R-code for calculating adjusted confidence intervals.
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