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Ranking insertion, deletion and nonsense
mutations based on their effect on genetic
information
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Abstract

Background: Genetic variations contribute to normal phenotypic differences as well as diseases, and new
sequencing technologies are greatly increasing the capacity to identify these variations. Given the large number of
variations now being discovered, computational methods to prioritize the functional importance of genetic
variations are of growing interest. Thus far, the focus of computational tools has been mainly on the prediction of
the effects of amino acid changing single nucleotide polymorphisms (SNPs) and little attention has been paid to
indels or nonsense SNPs that result in premature stop codons.

Results: We propose computational methods to rank insertion-deletion mutations in the coding as well as non-
coding regions and nonsense mutations. We rank these variations by measuring the extent of their effect on
biological function, based on the assumption that evolutionary conservation reflects function. Using sequence data
from budding yeast and human, we show that variations which that we predict to have larger effects segregate at
significantly lower allele frequencies, and occur less frequently than expected by chance, indicating stronger
purifying selection. Furthermore, we find that insertions, deletions and premature stop codons associated with
disease in the human have significantly larger predicted effects than those not associated with disease.
Interestingly, the large-effect mutations associated with disease show a similar distribution of predicted effects to
that expected for completely random mutations.

Conclusions: This demonstrates that the evolutionary conservation context of the sequences that harbour
insertions, deletions and nonsense mutations can be used to predict and rank the effects of the mutations.

Background
Genetic variations contribute to normal phenotypic varia-
tion [1]. For human, it is estimated that there are more
than 10 million SNPs (i.e. 1 in 300 base pairs on average)
with an observed minor allele frequency of ≥ 1% in the
population [2]. Recent advances in sequencing technologies
[3] have enabled rapid discovery of other types of varia-
tions, including mutations expected to have very large
effects on protein function such as frame shifting insertions
and deletions (indels) and nonsense mutations (mutations
that introduce premature stop codons). Amazingly, inser-
tions and deletions are also abundant in the human gen-
ome with sizes ranging from single to several million base
pairs (bp) [4,5]. For example, in 179 human genomes there

were 1.13 million short indels identified [6] indicating
an estimate of 1 million indels per human genome (1 in
3600 bps on average). Similarly, recent studies have
revealed a surprising number (on average, 80-100) of non-
sense mutations per genome observed [6]. Consistent with
these data from humans, recent studies in model organ-
isms such as yeast have also revealed an abundance of
variants that would be expected to have large effects on
phenotype [7,8].
Large-effect mutations (defined here as frame-shift

causing indels, nonsense mutations and indels that dis-
rupt highly conserved non-coding DNA) are often
assumed to have significant functional impacts, and
therefore are likely to cause disease. However, discovery
of a large numbers of these variants suggest that many of
them might in fact have no (or little) impact on function
[9]. A quick survey of dbSNP [10] reveals that of 8311
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nonsense mutations (NM) and 33285 frame-shifting (FS)
indels have been identified in humans, of which only
2234 (27%) NMs and 801 (2.4%) FS indels have been
clinically studied (i.e. have records in OMIM [11] and
LSDB [12] and are associated with diseases). Thus, identi-
fication of the fraction of these variations that contribute
to diseases from those with little effect on function is a
great practical challenge [13,14].
Even in cases where the variations are detected in indivi-

duals with diseases, identification of the causative varia-
tions is a major challenge. For instance, there are 2729
structural variants (including indels) catalogued in the
COSMIC project [15] that are potentially associated with
lung cancer. Similar observations can be made at the level
of individual important disease genes: studies of TP53
(mutated in various kinds of cancer) have identified 1256
somatic, 127 cell-line and 36 germline FS indels [16] as
well as 95 somatic, 49 cell-line and 15 germline NMs.
Similarly, there are 301 FS indels as well as 160 NMs iden-
tified in CFTR (a single mutant gene that is identified to
be associated with Cystic Fibrosis [17]). In all these cases,
the identification of causative variations in the list of
potential candidates remains a challenge.
As the number of observed mutations increases, it

quickly becomes infeasible for researchers to manually
assess the impact of each one in laboratory. It is therefore
becoming absolutely essential to rank the effect of these
variations in terms of their impact to define priority in
clinical research as well as to weight their effects in asso-
ciation analyses.
There is a wide range of computational methods that

predict the effect of SNP on protein function (for a survey
of these methods see [18] and references therein). Despite
existing interest, to the extent of our knowledge, none of
these methods are able to deal with indels and NMs. Here
we propose to use evolutionary conservation principles to
rank the effect of these variations on genetic information.
Evolutionary conservation has been previously used for

predicting the effect of SNPs on protein function [19,7] as
well as on non-coding DNA [7]. In SIFT [19] the conser-
vation of amino-acid residues are measured using protein
sequence homology. In this method, a non-synonymous
SNP (nsSNP) that substitutes a highly conserved residue
(i.e. a residue that is less observed in an alignment of
homologue sequences) is predicted to have a more deleter-
ious effect. Similarly, in the case of non-coding DNA, in
the so-called LR test [7], a SNP is predicted to have more
deleterious effect if it causes greater change in the rate of
evolution of the DNA site that it alters.
We argue that the underlying ideas used in these meth-

ods, i.e. using the evolutionary conservation context
[20,21] of the sequence that harbours the mutation for
assessing the mutation impact, can be extended to rank
the net effect of indels and NMs. In particular, for the

protein coding sequences, we propose a scoring scheme
that measures the amount of the loss of protein “informa-
tion content” [22] caused by a NM or FS indel. We expect
the variations that interfere with conserved residues of a
protein to a larger extent to have more deleterious
effects. For the non-coding DNA, we propose to use a
likelihood-ratio scoring scheme to measure the conserva-
tion of the DNA bases that harbour the indels. We argue
that indels that fall in highly conserved DNA sites are
expected to have more deleterious effects.
To evaluate our hypothesis, we study the effect of indels

and NMs in a population of Saccharomyces cerevisiae
(S.cer) yeast [8]. We provide evidence that mutations that
disrupt the most highly conserved regions segregate at sig-
nificantly lower allele frequencies. The paucity of varia-
tions in lower allele frequencies suggests that highly
deleterious mutations have been removed from the popu-
lation [23].
Next, we assess the effects of FS indels as well as NMs

on human proteins [10,6,11,12]. We show that variations
with no disease association tend to cause less information
loss than those associated with disease, suggesting that
variations not associated with disease are likely to have
less deleterious effects. We further show that NMs that
cause higher information loss in human proteins segregate
significantly in lower allele frequencies suggesting that not
all NMs have the same deleterious effects. We argue that
the scoring scheme that quantifies the information loss
can be used to rank the effect of mutations in human
population.

Results
Large-Effect mutations in protein coding DNA
SIFT [19] predicts a non-synonymous SNP to be deleter-
ious if it disrupts a highly conserved amino acid residue in
a protein sequence, where the conservation of any residue
is measured using an alignment of homologous protein
sequences.
We propose that the same principle applies to variations

that affect more than one amino acid residue. We know
that a FS indel changes the translated amino acid residues
from its position to the end of the protein, and a NM
causes a premature termination of the amino acid
sequence. Thus, in order to extend the approach taken in
SIFT, we simply add up the effects of each residue
affected. In doing so we are assuming that changes in
amino acid residues contribute independently to the over-
all function of the protein, obviously an over-simplification
(see Discussion).
Scores used in SIFT are based on a “normalized” transi-

tion probability matrix (TPM) that is built using an align-
ment of protein sequences homologous to the target
protein. The TPM is not suitable for adding the effect of
mutations on multiple residues because each column is
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normalized such that for any residue, the most likely
transition is normalized to 1. Since the absolute maxima
of the observed probabilities are lost in the normaliza-
tion, the scores cannot be used to compare the residues
or, in our case, to add the effect of substitutions for a
number of residues together.
Therefore, we modify the scoring method used in

SIFT by using the conventional definition of information
carried by biological sequences (e.g. [22]) (for a review
see [24]). According to this definition, protein residues
that are important for the species are evolutionarily con-
served and therefore have a statistically different distri-
bution compared to the freely evolving residues that are
under no selection. Biological information corresponds
to the difference between the distribution of conserved
and non-conserved (freely evolving) sequence. We quan-
tify this difference as follows.
Let us consider a multiple alignment of n protein

sequences with length w (that is w columns). We define
the position weight matrix (PWM), f, as follows:

f =

⎡
⎢⎢⎢⎣

f1A
f1R
...
f1V

f2A
f2B
...
f2V

· · ·
· · ·
...

· · ·

fWA

fWR
...

fWV

⎤
⎥⎥⎥⎦

20×W

where, for instance, f1A represents the relative fre-
quency of amino acid residue “A” in the 1st column of
the alignment covering all the 20 protein amino acids.
For a freely evolving set of sequences, this matrix is
close to the so-called background distribution g of the
genome (in the simplest form we assume that all amino
acids have the same frequency, i.e. fiA=fiR=...=fiV = 1/20).
However, when the sequence alignment is conserved,
the PWM, f, is different from the background distribu-
tion. For any residue Xi in a given protein sequence, X,
we measure the information content by the ratio of the
likelihood that the residue is generated according to the
distribution fi and the likelihood that it is drawn from a
background distribution g [24]:

S(Xi) = log
p(Xi|fi)
p(Xi|gi) =

∑
k∈{A,R,...,V}

Xik log(
fik
gik

)

where, for instance, XiA = 1 if the residue at ith col-
umn is amino-acid residue “A”. The score S(Xi) shows
how likely is that the residue Xi is generated from the
distribution fi (compared to the background distribution
gi). This score is closely related to the relative informa-
tion and hence our interpretation of information carried
by Xi [24]. The total score of a sequence, S(X), is
defined as the sum of information carried by individual
residues.

Now suppose that the residue Xi is substituted by a
residue Yi. The amount of change in the information
carried at site i is given by:

Di = S(Yi) − S(Xi)

When Di > 0 we say that the residue i has lost infor-
mation compared to the original sequence. In rare cases
that we observe an increase in the score, i.e. Di < 0, we
conclude that the genetic event has increased the infor-
mation content of the residue, i.e. it has a beneficial
effect for the gene. The total loss of information, D, of
the sequence is defined as a normalized sum of informa-
tion losses due to individual residues:

D(X,Y) =

W∑
i=1

S(Xi) − S(Yi)

W∑
i=1

S(Xi)

By combining the effects of change in individual resi-
dues we assume that residues contribute independently
to the information loss (or gain) of the sequence. We
normalize the loss of information to the total score, S
(of the wild-type (WT) sequence), to obtain a dimen-
sionless quantity that can be used to compare the infor-
mation loss between protein sequences.
Our predictions are based on the information loss

score D which defines a normalized ratio of the infor-
mation content S of the protein without (i.e. the WT)
and with the mutation (mutant). The larger the score D
is the greater is the information loss due to the muta-
tion. We use this score to rank the effect of mutations.
As an example, consider the human proteins NF1

[10]. A NM at DNA base 910 ("C” ® “T”) of NF1 is
associated with neurofibromatosis type-I [25] (see Figure
1). The premature stop codon caused by this mutation
cuts short the protein at residue 304. The information
loss due to this mutation is proportional to the sum of
information that was carried by residues that are not a
part of the translated amino acid sequence any more.
Similarly, a FS deletion at site 143 of the human protein
PTEN [10] has been shown to be associated with a type
of skin cancer [26]. The amino acid residues after the
shift caused by the deletion are different from their ori-
ginal WTs (Figure 1). The information loss, in this case,
is a normalized difference between the S scores of the
mutant and the WT sequences. For the case of the NM
of G to T at the base 1047 of the TP53 tumour repres-
sor protein [10,16], the score of the mutation is consid-
erably lower, consistent with the location of the
mutation at the C-terminus of the protein. Table 1
shows corresponding scores for these three genes.
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Effect of mutation in non-coding DNA
It is widely accepted that the non-coding DNA harbours
many functional elements [27,28] and that variations in
these regions can have phenotypic effects and cause disease
[29-34]. We use conservation of bases in the non-coding
DNA to assess the impact of these variations. While in
principle, a similar approach used for computing the infor-
mation loss in coding regions could also be applied to the
non-coding DNA, building sequence alignments of homo-
logous non-coding DNA from distantly related species is
infeasible due to the relatively fast rates of evolution.
We must therefore use an approach based on

sequence alignments from closely related species, where
conservation of functional elements in non-coding DNA

is detectable [35-38]. We hypothesize that mutations
that fall into most conserved sites have more deleterious
effects compared to others that do not disrupt con-
served regions [39-42] (see Figure 2 for examples of
highly conserved and non-conserved non-coding DNA).
Consider 1000 base-pair (bp) wide regions of non-cod-

ing DNA upstream of genes. Given an alignment of
DNA sequences of width W, we measure conservation
of a DNA site by the log-likelihood ratio (LLR) [7,43]:

LLR(dna site) = log
p(dna site|λ∗,T)
p(dna site|λsyn,T)

wherelsynis the average rate of evolution of synon-
ymous mutations in the coding DNA of the protein and
λ∗(λ∗ ≤ λsyn) is the maximum likelihood estimate of the
rate of evolution of the non-coding DNA site. Here T is
the evolutionary tree of the species being used in building
the DNA alignments. The LLR measures how fast a DNA
site is evolving compared to the synonymous rate of evo-
lution of the protein coding DNA. Slowly evolving sites
(i.e. more conserved) give larger LLR values. For these

A frame-shift deletion of base 
143 (del “A”) causes a

(a) PTEN (b) NF1

A nonsense mutation at base 910 
(“C” ”T”) causes a premature

Protein 
coding DNA

143 (del A ) causes a 
mistranslation

V   Y   R T   I   L   M
GAC TAC AGG ACA ATA TTG ATG

mutant

( C T ) causes a premature 
termination

D   S   L *
GAC AGT CTA TGA AAA GCT CTTmutant

of 
interest GTA TAC AGG AAC AAT ATT GAT

V   Y   R N N I   D
wildtype

GAC AGT CTA CGA AAA GCT CTT
D   S   L R K   A   L

wildtype

PTEN     PAERLEGVYRNNIDDVVRFLDSK
B2R904   PAERLEGVYRNNIDDVVRFLDSK
O54857   PAERLEGVYRNNIDDVVRFLDSK

Alignments of 
homologous 

proteins used 
to measure

NF1 NMNKKLFDSLRKALAGHGGSR
B1AQE7 NINKKLFDSLRKALAGHGGSR
B1AQE8 NINKKLFDSLRKALAGHGGSR

. . . . . .
Q4S2U9   PAERLEGVYRNNIDDVVRFLDSK
Q6TGR5   PAERLEGVYRNNIDDVVRFLDSK

conservation of residues is

to measure 
conservation at 

amino-acid 
residue

. . . . . .
B0WYP5 VKKKHFMEGIKKGLGAHLSSK
Q16Z01 VKKKHFMEGIKKGLGAHLSSK

conservation of residues isconservation of residues is 
used to compute the 
biological information

conservation of residues is 
used to compute the 
biological information

Figure 1 Computation of the information loss score for variations in the protein-coding DNA. (a) Deletion of DNA base “A” at site 143 of the
human protein PTEN causes a reading frame-shift (depicted by an arrow to the left on DNA sequence) that results in the mistranslation of all residues
after the mutation. An alignment of homologous proteins is used to measure the biological information content of the reference sequence (PTEN in
the figure) and to measure the loss of information due to this mistranslation. (b) A NM at the DNA site 910 on the human protein NF1 causes a
premature stop codon at the residue 304 (denoted by *). The mutant protein is missing residues after the premature stop codon.

Table 1 examples of mutations in human genes

Gene cDNA length Mutation at base D

NF1 8517 2730 (NM) 0.80

PTEN 1209 429 (deletion) 0.66

TP53 1182 1047 (NM) 0.09

Information loss due to mutations on human genes
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sites, the likelihood (in the LLR numerator) that the site
is evolving according to the rate l* (which is no more
than lsyn) is significantly greater than the likelihood that
the site is evolving as fast as the synonymous rate of pro-
tein coding region. Alternatively, the DNA sites that
evolve at a rate similar to the synonymous sites in the
coding region are not conserved and therefore give a
lower LLR scores.
The results of our analysis provide evidence that LLR

score can also be used to measure the effect of indels
that disrupt the conserved DNA sites. A similar approach
was previously used in [7] to assess the effect of SNPs in
non-coding as well as the protein-coding regions [43].

Genome-wide population analysis with mutations in yeast
protein coding regions
We sought to test whether our scores for large-effect
mutations reflected their functional impact. More

deleterious variants are expected to segregate at lower
frequencies in the population and occur at lower densi-
ties that would be expected of neutral variants [23].
Therefore, in a natural population, we expect mutations
with larger predicted effects to segregate at lower fre-
quencies and be found at lower densities than mutations
with smaller predicted effects.
Using sequence data from a population of 39 strains

of S.cer [8], we identified genes that contain single NM
as well as genes with a single FS indel. We first com-
puted the derived allele frequency spectrum (DAF) and
tested for a shift towards lower DAFs (left of the spec-
trum) [23], which is expected under purifying selection
[8]. We confirmed that FS causing indels segregate at
significantly lower frequencies (Kolmogorov-Smirnov
(KS) test, p < 10-6) than do in-frame indels (those that
do not cause frame shifts) (Figure 3a). Similarly, we
found a significant skew to the left for NMs (KS test,

An insertion in position 943
(between TT) in 2 strains

A deletion (“A”) in position 
807 in 2 strains

(a) highly conserved site (b) less conserved site

Scer 1 ATATGTTTTT-TCTGGCATCTC
S 2 ATATGTTTTT TCTGGCATCTC

(between TT) in 2 strains 807 in 2 strains

GCATAAATAA-ATACCATTTA
GCATAAATAAAATACCATTTAScer 2 ATATGTTTTT-TCTGGCATCTC

Scer 3 ATATGTTTTTATCTGGCATCTC
. . . ATATGTTTTT-TCTGGCATCTC
Scer 39 ATATGTTTTTATCTGGCATCTC

non-coding DNA of 
a population of 39 

S. cer strains

GCATAAATAAAATACCATTTA
GCATAAATAA-ATACCATTTA
GCATAAATAAAATACCATTTA
GCATAAATAAAATACCATTTA

Scer ATATGTTTTTTCTGGCATCTC
Spar ATATGTTTTTTCTGGCATCTC
i

GCATAAATAAAATACCATTTA
GCGTAGAT--AATACCGTTTA

Smik ATATGTTTTTTCTGGCATCTC
Skud ATATGTTTTTTCTGGCATCTC
Sbay ATATGTTTTTTCTGGCATCTC

GCCTAGAA--TGAACCATATA
GCATAATC--AGCGTCACCCA
----ATTT--AGGGCCATACA

A less conserved DNA site
917-797 bp upstream of

YIL134W

A highly conserved DNA site
953-933 bp upstream of

YGR060W

Alignments of DNA sequences 
of 5 closely related  yeast 

species used to compute the YIL134W
LLR=0.88

G 060
LLR=44.10

species used to compute the
conservation (LLR)

Figure 2 Computation of the LLR score for indels in the non-coding DNA. Once the indel is detected in population (here 39 S. cerevisiae
yeast strains depicted in the top panel), an alignment of width W = 21 of orthologous sequences (referred to as the DNA site) from 5 closely
related yeast species (including the reference S. cer, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus) is made centred around the position
of the indel (bottom panel). The conservation of the DNA site is measured through the LLR score by measuring the relative rate of evolution of
the site compared to the synonymous rate of evolution of the protein’s coding region. (a) shows an insertion that falls into a highly conserved
DNA site whereas (b) shows a deletion that falls into a region that is not conserved.
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(e) Yeast non-coding DNA indels 
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(f) Human genes with NMs 
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Figure 3 Spectrums of mutation allele frequencies. (a) Distribution of yeast frame-shifting indels (blue) skewed to lower DAFs compared to
genes with in-frame indels (red) suggesting a relatively greater selective pressure on these genes. (b) Distribution of yeast NMs (blue) skewed
towards the lower DAFs compared to the genes with synonymous SNPs (red) suggesting a relatively greater selective pressure. (c) Distributions
of yeast FS indels that cause (blue) larger information loss (D > 0.3) and the those that cause (red) lower loss (D < 0.3). (d) In the case of genes
with NMs, no mutations with higher allele frequency were observed and therefore the results are inconclusive. (e) Distribution of yeast non-
coding DNA sites harbouring indels versus the indels’ derived allele frequency (DAF) for two classes of indels: (blue) indels that fall in highly
conserved sites (LLR > 16.6) and (red) indels that fall in less conserved sites (LLR < 16.6). The threshold THR = 16.6 is obtained using the Poisson
random fields method (see Methods). (f) Distribution of human NMs versus their minor allele frequency in the human population for two classes
of mutations causing (blue) greater information loss (D > 0.3) and (red) less information loss (D < 0.3), respectively.
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p < 10-6) suggesting that they segregate at much lower
frequency in the population than do synonymous poly-
morphisms (Figure 3b).
In order to test whether our information-based score

differentiates FS indels that are likely to be deleterious
from those that are likely to be neutral, we computed
the fraction of high frequency alleles defined as DAF >
0.2. We compared this fraction between genes with
higher score, i.e. D > 0.3, which we considered to have a
greater deleterious effects, and genes with score less
than 0.3 (which we considered moderate deleterious
effects).
We found, for the case of FS indels (see Figure 3c)

that the fraction of high frequency alleles for the genes
with D > 0.3 was significantly less than the fraction of
high frequency alleles for genes with for the genes with
D < 0.3 (1/35 versus 7/22 with Fisher’s exact test p =
0.004) (due to sparse spectrums, we did not use the KS
test for this case). For the NMs, the results were incon-
clusive because we did not observe mutations with high
allele frequency (Figure 3d). The paucity of high fre-
quency alleles is consistent with stronger purifying
selection on the mutations we predicted to be more
deleterious (using the score D).
To test for the effects of selection on the density of

variations, we compared the distribution of scores to
that expected if the mutations were randomly placed.
For this purpose, we generated 100 sets of variations
randomly placed on genes in our dataset and computed
the information loss scores for them. We then com-
pared the distribution of the scores from the 100 ran-
dom datasets to the distribution of scores obtained from
our yeast dataset. As can be seen from Figure 4a and
Figure 4b, these distributions are significantly different
(KS test with p < 0.05 for both indels and NMs) such
that there is a great enrichment of mutations with very
small scores, D << 0.1. This suggests that purifying
selection has acted to remove mutations with greater
score D from the population.

Genome-wide population analysis of indels in yeast
non-coding DNA
We identified indels that fall within the promoter
regions (1000 bp upstream) of genes in a population of
39 strains of S.cer budding yeast [8]. For each identified
indel, we computed the conservation of surrounding
DNA site (of width 20 bps) using an alignment of non-
coding DNA sequences of orthologues genes from 5 clo-
sely related yeast species (see Methods and Figure 2).
We sought to test whether indels that fall in highly

conserved DNA sites segregate at lower DAFs compared
to those that do not disrupt conserved DNA sites (i.e.
that fall in relatively non-conserved regions). For this
purpose, we define a LLR score threshold THR = 16.6

for dividing indels into two sets: those that fall into
highly conserved DNA sites (i.e. sites with LLR > 16.6)
and those that fall in less conserved DNA site (i.e. sites
with LLR < 16.6). The threshold THR = 16.6 is esti-
mated such that the difference between the selection
coefficients of the two classes is maximal (see Methods
for detail of using Poisson random fields for computing
the optimal threshold).
Figure 3e shows the DAFs for the two sets of indels.

The allele frequency spectrum of indels falling into
highly conserved DNA sites is shifted towards lower
DAFs significantly (KS-test p = 0.0033) suggesting that
these mutations are under stronger purifying selection.
To test for the effects of selection on the density of

indels, we compared the distribution of DNA sites with
respect to their LLR scores with what is expected if the
indels were placed randomly. For this purpose, we gener-
ated 50 sets of indels distributed randomly in the 1000 bp
upstream of all genes in the reference S.cer and computed
the LLR scores for the corresponding DNA sites in which
they fall. Figure 4e shows that the distribution for DNA
sites in our dataset is significantly different than the ran-
dom dataset (KS test, p < 10-6), such that there is a great
enrichment of sites with lower LLR scores. This suggests
that indels at highly conserved DNA sites have been
removed from the population by purifying selection.

Ranking of mutations in yeast
Our method identifies candidates for new deleterious var-
iations in a pool of genes with mutations. We ranked the
mutations in our yeast dataset in terms of their deleterious
effects on the corresponding proteins. In the following, we
study the top ranked FS indels and the NMs with lowest
scores.
Table 2 shows the top 5 FS indels with the highest D

scores in our dataset. We observed that three of the genes
on the list, that are also essential to yeast [44], carry highly
deleterious FS indels. We further studied possible associa-
tion of these indels with yeast phenotypes using data from
phenotypic experiments [45] as well as phenotype data
from [46]. One of the FS indels was found in the SMD1
gene. A reduction in the function of SMD1 is associated
with a decrease in the resistance of yeast to the drug Tuni-
camycin [46]. We therefore considered the reproduction
efficiency (RE) of yeast strains in the presence of 1.5 μg/
mL Tunicamycin [45]. We observed that the RE of the 2
individuals carrying FS indels was lower compared to the
population. Specifically, the 2 individuals were among the
8 strains (out of 25) that had REs < -4 (average RE in
strains that had genotype data at this locus is -2.81).
One of the other top ranked indel predictions was in

TFB3. A reduction in the function of the gene TFB3 is
associated with an increase in resistance to the same
drug [46]. Interestingly, we observed the expected effects
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Figure 4 Randomization experiments. (a) Distribution of the information loss caused by the FS indels in the yeast population (blue) compared
to the density of a set of randomly distributed FS indels throughout the same set of yeast genes (red). (b) Distribution of the information loss
caused by the NMs in the yeast population (blue) compared to a set of randomly distributed NMs throughout the same set of yeast genes (red).
(c-d) Distributions of FS indels and NMs in the human population (dbSNP [9]), respectively, with respect to the information loss they cause. For
each type of variation, this distribution is different when compared to the variations with records of disease association (green) and variations
that do not have such records (blue). A set of randomly generated FS indels (red) shows a similar distribution to those that are associated with
diseases. (e) The distribution of DNA sites that harbour indels with respect to their LLR score is compared to the distribution of DNA sites
randomly chosen from 1000 bp upstream of all genes in the yeast dataset. In panels a and b, the “randomized” histogram bars represent the
mean of 100 random samplings of the data, and the error bars represent the standard deviation observed over the 100 samplings, while in
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in the 2 individuals that carry the FS indel (and therefore
are predicted to lack the function for this gene). Specifi-
cally, the 2 individuals were among the 8 individuals that
had REs > -2 (average RE in strains that had genotype
data at this locus is -3.06). Because of the small number
of individuals that carry the putatively deleterious FS
indel alleles (here 2) we were not able to test the signifi-
cance of these phenotypic observations. However, these
examples show the practical uses of the proposed
methods.
We further studied the bottom 5 genes with NMs

with lowest scores in our dataset. Table 2 shows that
while it is possible to observe NMs in essential genes
(ranks 74 and 70) [44], our method predicts that these
mutations have no substantial effect on the function.
These mutations are located in the C-termini of these
genes.

Variations in the human population
To test whether our methods can be applied to the var-
iations in the human population we examined genes
with FS indels and NMs reported in dbSNP [10]. We
categorized the variations into two classes: variations
that have records of diseases association in OMIM [11]
and LSDB [12] and variations with no such records. We
expect that the latter class (i.e., variations with unknown
disease association) to contain mutations with less
harmful effects.
We then sought to study the allele frequency spec-

trum of these variations. Heterozygousity information
was only available for the NMs with no disease associa-
tion. We used the heterozygousity to compute the
minor-allele frequency (MAF) of the NMs that were
used in the following MAF spectrum analysis. We stu-
died the segregation of NMs in the human population

by comparing the spectrums of MAF of the NMs that
cause greater information loss (i.e. 1101 NMs with D >
0.3) and the NMs with lower effects (i.e. 505 NMs with
D < 0.3). As for the non-coding indels above, we com-
puted D = 0.3 as the optimal threshold using the Pois-
son random fields method (see Methods). We found
that the spectrum of MAF of NMs with higher informa-
tion loss (Figuure 3f) is significantly skewed to left (KS
test, p = 0.002) indicating that these variations segregate
significantly at lower allele frequencies. Thus, these
mutations appear to have more deleterious effects in the
population.
To study the effects of selection on mutation’ density,

we compared the observed distribution of scores with
that expected if variations were randomly placed. To do
so, we computed the score D for a large number of FS
indels as well as NMs placed randomly on the human
genes in our dataset. Figures 4c and 4d compare the dis-
tribution of these scores for FS indels and NMs, respec-
tively, with variations in our dataset divided into two
classes: with and without disease associations. The insig-
nificant different between distributions for variations
with disease association compared to randomly generated
variations (KS test, p = 0.09 for FS indels and p = 0.09 for
NMs) suggests that these variations are distributed ran-
domly throughout human genes. On the other hand,
there is a significant difference between the distributions
of variations that have no disease association compared
to randomly placed variations (KS test, p < 10-6 for FS
indels and p < 10-4 for NMs). Similarly, there is also a sig-
nificant difference between the distributions of variations
with and without disease association (KS test p < 10-6 for
FS indels and KS test p = 0.0006 for NMs). The signifi-
cant abundance of mutations with lower deleterious
effects in the data with no disease association, or in other
words, the paucity of variations with higher information
loss scores, indicates that purifying selection had acted
on highly deleterious variations.

An example for the application of the method to study
human genes
The abundance of variations in genes associated with dis-
eases as well as a wide range of information loss they
cause is overwhelming. As an example, consider the
tumor repressor gene P53 and its protein product TP53
[47]. There are 95 somatic, 49 cell-line and 15 germline
NMs as well as 1256 somatic, 127 cell-line and 36 germ-
line FS indels reported to have association with different
types of cancer. These mutations have wide ranges of
effects on protein conservation (Figure 5). While it is diffi-
cult to determine which mutations cause these diseases
[48,49], different effect of these mutations on protein con-
servation suggests different roles they potentially play in
damaging the protein function. For instance, 10 NMs as

Table 2 highest and lowest D-scores

a) FS indels

Rank Gene Essential Mutation at base D

1 SMD1 YES 2 0.987

2 RPL8A NO 224 0.985

3 TFB3 YES 92 0.963

4 RAD34 NO 154 0.963

5 ERG25 YES 214 0.928

b) NMs

74 TIF5 YES 1213 0.002

73 CRT10 NO 2869 0.002

72 COX19 NO 292 0.001

71 SWI4 NO 3256 0.001

70 HYM1 YES 1193 0.001

A sample of ranked genes in terms of their information loss score D. (a) The
top 5 genes with FS indels with highest scores (b) The bottom 5 genes with
NMs with lowest scores.
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well as 100 FS indels of these sets with lowest score (D <
0.1) are positioned in residues after 300 in TP53 associated
with the exons 9-11. Consistent with the prediction that
these have little impact on protein function, these regions
are not part of the so-called “hot spots” in this protein (i.e.
exons 5-8) [50].

Discussion
Our proposed methods are useful for practical purposes to
sort a huge number of FS indels, NMs, as well as indels in
non-coding DNA in terms of their deleterious effect. It is
important to note that our methods do not seek to classify
variations into deleterious and non-deleterious but rather
to rank their effect for further analysis and laboratory
experiments.
For the variations in the protein-coding DNA, the pro-

posed score is built upon the principle assumption that

the effect of nonsense or FS indel mutations on protein
can be computed as sum of effects due to individual resi-
dues. This is obviously an over-simplification that is widely
accepted in statistically modeling the individual columns
of an alignment independently. A more complex method
that considered correlations between each residue was
also implemented using a profile-HMM based on a gen-
erative hidden-Markov model [51] (data not shown here).
The score S were computed as the likelihood of the
sequence given the profile-HMM [52]. Similar prediction
results were observed, i.e. sequences with mutations in
more conserved regions resulted in lower scores.
We observed a strong correlation between the position

of the nonsense or FS mutations and the loss of informa-
tion they cause (Additional file 1, Figure S1). We were
not able to demonstrate that the D score outperforms the
percentage of the protein that is truncated (the “length

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

somatic, germline and cell lines nonsense mutations

fr
eq

ue
nc

y

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

somatic, germline and cell lines frame shifting indels

information loss D

fr
eq

ue
nc

y

Figure 5 Distribution of mutations on the human tumour repressor TP53 with respect to their respective loss of information scores.
The upper panel shows the distribution of D for 95 somatic, 49 cell-line and 15 germline NM in the TP53 tumour suppressor. The lower panel
show the distribution of D for 1256 somatic, 127 cell-line and 36 germline FS indels reported for TP53 protein. These mutations are associated
with a wide range of cancers.
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lost”). When we compare the distribution of the length
lost to the random expectation (Additional file 1, Figure
S2) we find that the length-lost score appears to show
less deviation from the random expectation than the D
score for the human data (Additional file 1, Figure S2c,d).
This is consistent with the hypothesis that the D score
captures more information than the length lost. While
simply considering the number of residues affected pro-
vides a reasonable guess at the impact of mutations “on
average”, there are cases for which the position of
the mutation does not reflect its effect on evolutionary
conservation (off-diagonal points in Additional file 1,
Figure S1). Furthermore, we believe that the D score
represents a more principled approach to quantifying the
importance of these variants because it directly measures
evolutionary information, and because it is consistent
with previous approaches to quantify the effects of var-
iants, such as SIFT. However, if multiple sequence align-
ments are not available, the length lost might also
provide a reasonable substitute to quantify the effect of a
FS indel or NM.

Conclusions
Identification of causative mutations for diseases
remains a challenge even for the case of single genes, let
alone in cases where mutations are studied in a network
of genes and regulatory elements (e.g. variations affect-
ing genetic pathways). Due to the overwhelming abun-
dance of variations, the information loss score, that
captures the evolutionary conservation context of the
sequences harbouring mutations, seems to be a good
candidate for weighting variations in large-scale associa-
tion analyses [53,54].

Methods
Information loss in protein coding DNA
To obtain the information loss, D, we compute the
scores of the WT and the mutant sequences against a
position weight matrix as it is defined above. The
mutant proteins with highest scores D are more likely
to carry a highly deleterious mutation.
The PWM is built using an alignment of protein

sequences homologous to the WT protein. We begin with
the WT protein sequence as the query to PSI-BLAST [55]
with adequate number of iterations (2-5) to collect a set of
sequences that are locally homologous to the WT protein
(similar to SIFT [19]). The database of protein sequences
we used for this study was SWISS-PROT 3.9 [56]. We then
remove sequences that are greater than 90% identical to
the target sequence from the alignment. This is to main-
tain a minimum degree of diversity between sequences and
to avoid biasing the estimation of the PWM towards clo-
sely related species. There are cases where PSI-BLAST did
not return sufficient hits to build the alignments. We

exclude mutations on genes from our dataset in these
cases.
Any column of the PWM, f, is the maximum likelihood

estimate of the distribution of amino acid residues
observed in the alignment. In ideal cases where there is
sufficiently large number of sequences in the alignment,
the PWM is simply a matrix with columns equal to the
relative frequency of each observed amino acid residue at
that column. However, in practice, due to a relatively large
number of residues (i.e. 20) compared to the alignment
size, there are chances that many residues are not
observed and hence their corresponding entry in the
PWM is zero. We resolve this issue by considering a mini-
mum number of pseudo-observations for each residue
chosen proportionally to the background distribution g.
We compute the background distribution, g, by a genome-
wide average over all the coding and non-coding regions.
The final alignments have always gaps. For each column
of the alignment, we uniformly distribute the relative fre-
quency of gaps among all residues.

Yeast dataset
To validate our prediction method we used complete gen-
ome sequences of 39 strains of S.cer as our test data. The
data, here referred to as SGRP data [8], includes a refer-
ence lab strain (S 288c) plus 38 other strains from differ-
ent sources including other labs, pathogenic, baking, wine,
food spoilage, natural fermentation, sake, probiotic, and
plant isolates and from a wide range of geographic areas
including North America, Europe, Malaysia, West Africa
and Asia. The data were sequenced using Sanger sequen-
cing on ABI 3730 DNA sequencers as well as Illumina
Genome Analyzer. We used genome-wide alignments
made by PALAS (see Supplementary data for [8]). For
computation of derived allele frequency of indels and NM,
we used a reference Saccharomyces paraduxos (S.par) as
the out-group to the S.cer strains.
All DNA base reads as well as gaps in SGRP data have

phred quality scores [8] (according to this standard, each
quality character is translated into the probability of
error for that read. For instance, a character “A” means
that the corresponding read is wrong with the probability
of error p = 10-3.2 = 0.00063). We filter out all data reads
that have a quality score less than 40 (i.e. those with a
probability of error more than 10-4) as well variations
that occur in yeast genes annotated as dubious in SGRP.
To identify indels with a better quality, we smoothed out
the quality scores of the indels with their neighbouring
reads (2 each side). We then marked indels with fre-
quency ( < 2) as missing data. Then a simple heuristics
algorithm was applied to remove gaps that are due to
misalignments of repetitive short elements in genes. It is
commonly observed that a FS indel is followed by a stop
codon (created due to the frame-shift). We excluded
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these stop codons from our analysis of NMs and confirm
that all our NMs are due to a single nucleotide NMs. In
selecting mutant genes, we require that at any event of
indel or NM, there is at least 10 high-quality reads
available.
In our S.cer dataset, we identified 71 genes with single

FS indels and 96 genes with single NM throughout the
genome data for which the ancestral state were known.
Due to sparse PWMs, we excluded 14 (20%) genes with
FS indels and 22 (23%) genes with NMs from the analy-
sis. We then predicted the effect of 57 genes with single
frame-shifting indel and 74 genes with a single NM.
Analysis of genes with more than one form of variation
requires considering mutual effects of variations on
function that is the subject of our near future research.

Measuring conservation in yeast non-coding DNA
We aligned protein-coding sequences of 5140 genes in
S.cer with their orthologues from 12 other yeast species.
The evolutionary tree of these species is as in the
following:

((((((((S.cer, S.par), S.mik), S.bay),C.gla), S.cas),K.pol),Z.rou), ((K.lac,A.gos), ((K.wal,K.the), S.klu)));

For each gene, the corresponding alignment was used
to estimate the evolutionary tree, T, using Felsenstein
peeling algorithm [48]. The estimated tree was then
used to compute the synonymous rate of evolution lsyn
using CodeML (part of PAML suite of software [57]) for
that gene. In computing the denominator of the LLR,
we used evolutionary tree, T, as well as the synonymous
rates, lsyn, to compute the likelihood of each DNA site.
We identified 6198 indels with maximum length of 50

bps in the 1000 bp DNA upstream of 5140 genes in our
dataset. We were able to make alignments for 4710 of
these variants and excluded 1488 (24%) of the indels
from analysis due to sparse alignments, and excluded
further 462 which had frequency < 2. For each indel, we
consider a window of width W = 21 centred at it. We
refer to this short stretch of bases as the DNA site. For
each such site, we made an alignment of orthologue
sequences (see Figure 2) of 5 closely related yeast
species:

(((((S.cer, S.par), S.mik), S.kud), S.bay));

We then used these alignments to estimate the rate of
evolution of the DNA site, χ , using BaseML in PAML
[57]. In computing the maximum likelihood estimate of
the rate, we fixed the structure of the synonymous tree,
T, and maximized the likelihood of the alignment by
incrementally changing the size of the tree branch
lengths while keeping their ratio constant.
The result of the algorithm is summarized as a list of

indels with their corresponding DNA sites (width W =

21) ranked by their conservation (LLR score). The sites
with highest LLR scores consist of fully conserved DNA
bases in all W columns of 5 sequences (Figure 2).

Finding a threshold for deleterious mutations using
Poisson random field
We observed that indels that fall in highly conserved DNA
sites tend to segregate in lower derived allele frequencies.
To test this observation quantitatively, we defined a
threshold THR and classified the mutations into two
classes by comparing their LLR score with the threshold.
Mutations in the class with (LLR > THR) were expected
to segregate in comparably lower derived allele frequencies
(i.e. the spectrum of their mutations were expected to shift
more towards lower allele frequencies [8,23]).
To measure the difference between the spectrums of

allele frequencies for these two classes, we fit two sepa-
rate Poisson random fields [58] on each class of muta-
tions and computed corresponding selection coefficients
for each class using maximum likelihood estimation [59].
Each value of the threshold, therefore, results in two

classes of mutations with two different selection coeffi-
cients. We then repeated the experiment for different
values of the threshold to identify an optimal threshold
that results in maximal difference between selection
coefficients for the two classes.
By dividing the mutations based on their LLR scores and

using the optimal threshold we obtained two classes of
mutations that have maximal difference in their derived
allele frequency spectrum. The maximum and minimum
LLR scores in our dataset were 40.6 and 0, respectively.
We estimated an optimal threshold of THR = 16.6. We
used this threshold to obtain derived allele frequency spec-
trums as shown in (Figure 3e).
A Similar approach was used to determine the thresh-

old for the information loss score D associated with NMs
in the human population. The mutations used in this
analysis had no record of disease association and there-
fore included mutations with lower deleterious effects
(there was no genotype information for NMs with
records of disease association). We divided these muta-
tions into two classes by comparing their score D with a
threshold THR. We then obtained the THR similar to
what is explained in the above. We obtained THR = 0.3
for the NMs in the human population (Figure 3f)

Variations in the human population
We used all NMs and FS indels reported in the release
132 of dbSNP [10] for our human variations dataset.
We used NCBI API to fetch the data from dbSNP.
There are 33285 (8311) FS indels (NMs) reported in
dbSNP from which 801 (2234) FS indels (NMs) have
records of diseases association in OMIM [11] and LSDB
[12]. No filtering was done to ensure that the variations
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were unique, and we noted that ~25% of NMs and FS
indels seem to be listed under multiple mutation
identifiers.
We were able to compute the information loss score D

for 2047 of the 2234 (91%) NMs with disease association
records. We randomly chose 4468 (2234 × 2) NMs from
the set of 8311 NMs with no records of disease association
from which we were able to compute the D score for 3816
(85%) NMs. There was no heterozygocity information
available for NMs with disease association. Therefore were
able to compute the minor-allele frequency (MAF) of
1606 NMs in the dataset with no record of disease
association.
For the case of FS indels, we computed the informa-

tion loss score D for 696 (86%) of the 801 indels with
disease association records. We randomly selected 1602
(801 × 2) indels from the set of 6317 indels with no dis-
ease association from which we were able to compute
the D score for 1312 (81%) indels. There was no hetero-
zygocity information available for the FS indels.
On average, we excluded 14% of human variants from

our analysis due to sparse PWMs.
For computing the minor-allele frequency (MAF) of

mutations (q), we used the heterozygocity (h) and solved
the equation h = 2q(1-q). Our MAF spectrum analysis is
based on the data for the NMs with no disease associa-
tion record in OMIM and LSDB.

Additional material

Additional file 1: Supplementary_Figures.pdfSupplementary figures S-
1 and S-2 in PDF format.
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