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Abstract

Background: Worldwide effort on sampling and characterization of molecular variation within a large number of
human and animal pathogens has lead to the emergence of multi-locus sequence typing (MLST) databases as an
important tool for studying the epidemiology and evolution of pathogens. Many of these databases are currently
harboring several thousands of multi-locus DNA sequence types (STs) enriched with metadata over traits such as
serotype, antibiotic resistance, host organism etc of the isolates. Curators of the databases have thus the possibility
of dividing the pathogen populations into subsets representing different evolutionary lineages, geographically
associated groups, or other subpopulations, which are defined in terms of molecular similarities and dissimilarities
residing within a database. When combined with the existing metadata, such subsets may provide invaluable
information for assessing the position of a new set of isolates in relation to the whole pathogen population.

Results: To enable users of MLST schemes to query the databases with sets of new bacterial isolates and to
automatically analyze their relation to existing curated sequences, we introduce here a Bayesian model-based method
for semi-supervised classification of MLST data. Our method can use an MLST database as a training set and assign
simultaneously any set of query sequences into the earlier discovered lineages/populations, while also allowing some or
all of these sequences to form previously undiscovered genetically distinct groups. This tool provides probabilistic
quantification of the classification uncertainty and is highly efficient computationally, thus enabling rapid analyses of
large databases and sets of query sequences. The latter feature is a necessary prerequisite for an automated access
through the MLST web interface. We demonstrate the versatility of our approach by anayzing both real and synthesized
data from MLST databases. The introduced method for semi-supervised classification of sets of query STs is freely
available for Windows, Mac OS X and Linux operative systems in BAPS 54 software which is downloadable at http://web.
abo fi/fak/mnf/mate/jc/software/baps.html. The query functionality is also directly available for the Staphylococcus aureus
database at http://www.mist.net and shortly will be available for other species databases hosted at this web portal.

Conclusions: We have introduced a model-based tool for automated semi-supervised classification of new pathogen
samples that can be integrated into the web interface of the MLST databases. In particular, when combined with the
existing metadata, the semi-supervised labeling may provide invaluable information for assessing the position of a new
set of query strains in relation to the particular pathogen population represented by the curated database.

Such information will be useful both for clinical and basic research purposes.

Background

The widespread availability of DNA sequencing technol-
ogy over recent years has lead to the widely adopted
practice of routinely characterizing bacterial samples in
terms of molecular variation over a set of core genes
that have been established by the international research
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community for the organism in question [1,2]. Given
success of the technologies behind these community-
based efforts, there are now Multi-Locus Sequence Typ-
ing (MLST) databases available for many bacterial spe-
cies, most hosted at http://www.mlst.net and http://
www.pubmlst.org. These provide access to a vast
amount of information about many important patho-
gens. More recently, geographical tools such as Google
Maps, have been integrated into the databases for quick
access and visualization of spatial data related to strain
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distribution. For examples of these advances, see http://
www.spatialepidemiology.net/ and http://maps.mlst.net/.
Another example of the evolution of these tools is the
portal http://www.emlsa.net/, which provides access to
electronic taxonomy of bacteria, through a common for-
mat and software for assigning strains to species via the
Internet. Nevertheless, there is still substantial potential
for global advances in pathogen epidemiology as the
community using these tools keeps increasing and new
functionality will be added on a continuous basis.

Thus far, the MLST information content displayed
through the web access to either spatial or non-spatial
data is based on relatively light procedures when consid-
ered from a statistical and/or computational perspective.
This is reasonable, since the majority of more advanced
model-based statistical methods for analyzing such data
would not be scalable to provide real-time online access
to results for users. However, provided that a statistical
method for analyzing the MLST data meets the require-
ment of reasonable scalability, it may become a highly
useful epidemiological tool and gain popularity very
rapidly within this research community. The eBURST
program available at http://eburst.mlst.net/ is an exam-
ple of such a success story [3], making evolutionary
snapshots of relatedness among sampled strains of
pathogens.

Currently, MLST databases can be queried in various
ways, including comparison of DNA sequences for a
new set of samples with those previously existing in the
database. However, when samples contain strains not
currently present in the curated database, a user does
not have an automated access to information which
enables assessment of the relation of these samples to
the earlier detected evolutionary groups. Such informa-
tion is useful for various epidemiological and clinical
purposes, in particular when considering the virulence
and resistance characteristics of the strains. To enhance
the querying features of the databases, we introduce
here a statistical method for providing rapid access to
probabilistic assignment of new strains to either pre-
detected or earlier unseen evolutionary groups. The
method is based on extending a Bayesian unsupervised
classification method for MLST data [4] to a semi-
supervised setting, where the existing curated MLST
database plays the role of training data. To be able to
handle the computational challenge of doing inference
for the semi-supervised classification model, we adopt
the computational strategies based on a stochastic opti-
mization algorithm for unsupervised classification which
are implemented in the BAPS software [5-7]. In contrast
to more conventional Markov chain Monte Carlo
(MCMC) methods for Bayesian inference, our algorithm
is able to handle the computational issues more effi-
ciently, such that the method can be applied to online
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use for MLST database queries. Alternative computa-
tionally fast approaches could also be developed by con-
sidering some of the recent advances in methodology
for the analysis of genetic population structure [8,9],
based on principal component and discriminant
analysis.

Methods

Bayesian semi-supervised classification model

Standard MLST databases contain DNA sequences for 7
housekeeping genes shared by a pathogen species or a
species group. Typical lengths of these genes vary in the
range 350-500 basepairs. Let g = 1, ..., 7, denote the
index of a single MLST gene and x;, the observed DNA
sequence for gene g in strain i. It is assumed that the
sequences X;, are aligned and of the same length d, for
all considered strains. The total set of sequences for
each strain is written as x;. Each element x;;, in x;,
belongs to the finite alphabet X’ = {A, C, G, T}, which is
uniquely mapped to a set of integers such that we get
the sample space X ={1,...,4} for each site j, j = 1, ..,
d,. However, to obtain a less parameter-heavy classifica-
tion model, we define the sample spaces for all 3-mers
in these sequences in a more parsimonious manner (for
details see below).

Corander and Tang [4] introduced a Bayesian second-
order Markov model for unsupervised classification of
MLST sequence data, which aims at a balance between
a parsimonious parametrization and an adequate repre-
sentation of dependencies in observed nucleotide fre-
quencies among neighboring sites. Such standard
Markovian structures are ubiquitous in statistical model-
ing of DNA sequences. Here we adapt this modeling
framework to a semi-supervised setting, where training
data are used to pre-specify a finite set of k; possible
distinct sources of new test strains, while not excluding
the possibility that some (or even all) of these have
emerged from a previously unseen evolutionary group.
Let Vy = {1, ..., dg} denote the index set of the site vari-
ables x;, and G, = G,(V,, E,) an undirected graph on
the node set V, with the edges in set E,. The edge set is
determined by a second-order Markov structure where
for any pair {j, j*} of site indices {j, j*} € E, if and only if
|/ - /*| <3. Given the standard properties of decomposa-
ble graphical models [10], such a dependence structure
leads to an explicit factorization of the joint probability
distribution of site patterns given a joint classification of
the training and query data. To define the factorization
we let cl(G,) and sep(G,) denote the sets of cliques and
the set of separators of the cliques of graph G,, respec-
tively. The cliques correspond to all the triplets of con-
secutive site indices, whereas the separators correspond
to all the pairs of consecutive site indices, except the
first and last pairs for each gene.
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Assuming there are in total # strains in a particular
query, we index them by the set of integers N = {1, ...,
n}. The observed sequence data for any subset s € N of
query strains is given by the collection x' = {x; : i € s},
and hence x) represents the entire query data set. The
sequence types (STs) existing in a curated MLST data-
base are used as labeled training data, indexed by M =
{1, .., m}. The labels are assumed to be specified by an
earlier analysis of the database contents, which divides
the m STs into k; distinct evolutionary groups using, for
instance, an unsupervised classification with the BAPS
software. The labeling T of the training data is a joint
classification of the m STs into k; classes and we use
Zip Z;, 29, 2™ for training data in a notation analogous
to the query data as defined above.

For a set a, of sequence sites indexed by V,, such that
the cardinality |a,| equals three, we let X, Z;4, be the
corresponding 3-mers observed in gene g for strain i in
the query and training data sets. Further, we let Ta; equal
the total number of distinct 3-mers observed at the sites
a, in the joint collection of query and training data:
T, = {Xiag : 1€ N} U {zZjs 1 j € M}|,

Let S denote a joint classification of the n query STs
into the k; > 1 sources labeled by training data and k,
> 0 putative novel sources. Thus,
S = (S1seeer Skys Sky#1s -r Sy 4k, ) defines a (possibly) par-
tially labeled partition of N (semi-supervised classifica-
tion), such that U’Z:l'kz sc =N and s, n s, = &, for all
pairs {c, ¢’} ranging between 1, ..., k; + ky. The parti-
tion is completely labeled (supervised classification)
when k, = 0, that is when no query STs are assigned
into previously unknown sources. We use S to denote
the space of possible values of the semi-supervised
classification structure S, conditional on a user-speci-
fied upper bound for k; + k.

The joint conditional likelihood of query data given
the classification S and the training data labeling T is
under our Markov model defined as
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where b, and 7, are defined for subsets in sep(G,)
analogously to the subsets in cl/(Gg), Pcgag > 0,
Peghl > 0 are the probabilities of observing the /th 3-
mer and 2-mer, respectively, in class ¢, and "cgagl, Megh,l
are sufficient statistics corresponding to the observed
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counts of the /th 3-mer and 2-mer in class c. Para-
meter 0 in (1) is used as a joint abbreviation for all
the continuous parameters in the expression, which
correspond to probabilities of observing the particular
site patterns within the classes. Notice that the prob-
abilities Pegbl and counts Megh! are unambiguously
determined by marginalization from Pcga,l and Mcgagl,
since each b, is a subsequence of a a4, with cardinality
equal to two, which follows from the order of the
Markov model. Since the probabilities Pegal are
unknown parameters, the training data are used for
learning them for the k; a priori known classes,
whereas only non-informative prior distributions are
used for inferences about the remaining k, classes.
Furthermore, since these probabilities are nuisance
parameters regarding the classification task, they
should be integrated out when making inferences
about the classification S.

Assuming standard Dirichlet ({A};:gl) prior distribu-
tions which are factorized with respect to the graphs
Gg for all components of # [10,11],we can derive an
analytical expression for the posterior probability p(S|z
M) xMN " T) of S. The conjugate Dirichlet prior is
widely adopted in particular in bioinformatics applica-
tions due to the computational advantage provided by
analytical marginalization over frequency (nuisance)
parameters in multinomial models. The posterior of S
equals

p(Slz(M),x(N), T) = f(z(M), M) T)~!

ky
11 / p(xt16, 8, T)p(612™), S, T)do
c=1 © (2)

ky +ko

.Hf@

c=ky+1

p(x116, S)p(618)dop(SIT),

where p(S|T) >0 is the prior probability of S and flz
@) xN) T) is a normalizing constant equal to the sum

f(z(M), xMN), T) =

ky
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(€]
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In the expressions below Mcga,l is the observed count
of the /th 3-mer from the training data on class ¢ and
Megh,lis the corresponding marginalized count. The first
one of the two above integrals can be written in
detail as
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which further simplifies to the expression
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where @4, = {pega > 0 erfl Pegagt = 1} Correspond-
ingly, fy,(z™),x(), S, T) equals
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where @y, = {peg1 > 0 erigl Pegb,l = 1}-We set all the
Dirichlet hyperparameters in {)\}Zg1 equal to the refer-
ence value 1/7,, which is generalization of the Jeffreys’
prior and reflects a priori symmetry with respect to the
3-mer values. For a detailed discussion about such refer-
ence priors see [11]. The prior distribution of S is set
equal to the uniform distribution in S, which is defined
as

p(SIT) = 18I, )

where |S| refers to the cardinality of the space S. Simi-
larly, the second integral can be written as
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since the previously unseen sources lack the training
data observations.
We define our joint semi-supervised classifier as the
classification structure S corresponding to the posterior
mode over the distribution specified in (2)

§ = argmax p(S|z=™, xN), T). (13)
SeS

Given S, one may calculate the conditional posterior
distribution over possible assignments of the n query
STs according to

p(i € s.]z™),xN), )
o p(xS( € s0), 2, T)
Yoh p(xN)|8(i € 5.), 20, T)

(14)

where S(i € s,) is the mode classification with ith
query strain re-assigned to class c¢. These probabilities
reflect the local posterior uncertainty about the possible
sources of the query STs and they can be calculated in a
simple manner using the above analytical expressions. In
the next section it is shown how fast stochastic optimi-
zation can be used to obtain a plausible estimate of S in
the online setting considered here.

Inference algorithm

A standard Bayesian supervised classifier, for example
the naive Bayes classifier [12], would treat each query
ST separately and assign it to the class maximizing the
posterior probability among the k; known alternative
sources. Such an approach has very modest computa-
tional complexity and it can be easily extended to the
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semi-supervised classification task where any single
query ST is allowed to be assigned to an additional class
lacking training data. However, considering the query
STs individually has the disadvantage that when multi-
ple STs are assigned to a previously unknown evolution-
ary group, the classifier provides no information about
whether they should be interpreted as a single group or
eventually be split into multiple novel lineages. In addi-
tion, when compared to a simultaneous classification,
separate classification of all query ST's offers lower stati-
cal power to detect strains from novel groups which are
only modestly distinct from the k; groups in the training
data. On the other hand, simultaneous semi-supervised
classification of the query STs is computationally sub-
stantially more challenging than a separate classification,
since the search operators must allow for the presence
of multiple novel subsets of strains. Standard Bayesian
computational tools, such as the Gibbs sampler [13],
provide a straightforward way to implement a simulta-
neous semi-supervised classifier. However, due to their
notoriously slow convergence for mixture models, they
do not offer a highly versatile solution for an online
application where query assignments are expected to be
provided on a nearly real-time basis. Hanage et al. [14]
analyzed a large MLST database for which they con-
cluded that a Gibbs sampler based approach did not
converge with a reasonable computational effort (~3
days on a single CPU). The same convergence issue was
also explored for a different data type in [15], where
Gibbs sampler and a stochastic greedy search algorithm
were compared. Therefore, we use for semi-supervised
classification the same efficient non-reversible stochastic
search operators that are used for unsupervised classifi-
cation of MLST data in the BAPS algorithm.

Given a set of query data and a preprocessed MLST
database in which STs are divided into k; groups, it is
necessary to determine first the total number 7a, of dis-
tinct 3-mers observed in the joint collection of query
and training data for all collections of sites a, over the
genes. This requires a linear scan of the observed
sequences in the query data. Additionally, pairwise
Hamming sequence distances are calculated for all pairs
of query STs, as these are used to guide the stochastic
search of the optimal classification. Notice that the
unnormalized posterior probability distribution over the
possible assignments S of query strains is uniquely
determined by the sufficient statistics Megbgls Megb ! and
the Dirichlet prior hyperparameters Acgh,l. Therefore, an
efficient algorithm for searching the classification maxi-
mizing the posterior can be efficiently constructed by
book-keeping changes in the sufficient statistics implied
by re-assignments of subsets of query strains. The
search operators in S that are used for improving any
current state S of the simultaneous assignment of query
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STs work as follows:

1. In a random order relocate each single ST to the
class in S that leads to the maximal increase in the
posterior probability (2). This operator considers
explicitly the assignment of each ST into a new sin-
gleton class, unless that would increase the number
of classes k, beyond the user-specified upper bound.
2. Merge STs in the two classes of S which leads to
the maximal increase in the posterior probability (2).
If no putative merge increases the probability, the
state of S is not altered. Notice that this operator
applies to all classes irrespectively of their size, thus
including any potential singleton classes introduced
by the first or third operator.

3. In a random order, split each class into two maxi-
mally homogeneous subclasses using the complete
linkage clustering algorithm with Hamming dis-
tances between the query STs. If a classification S*
after split is associated with higher posterior prob-
ability than the current classification S, the split is
accepted and otherwise it is rejected.

4. In a random order over the classes of S, simulta-
neous relocation of several STs from each class is
attempted. The STs in a class are first sorted into a
decreasing order with respect to the improvement in
posterior probability (2) when they are assigned one-
by-one into some other class, that is the ST asso-
ciated with the largest improvement is placed first
in the sorting etc. A candidate for new classification
structure S* is then formed by relocating ST’ in this
order to the class which leads to the largest increase
in (2) or to the smallest decrease if no positive
changes are possible. The relocation is continued
either until the the total change in (2) becomes
positive, in which case the candidate S* is set as the
next state of the search algorithm, or until all STs
in the class are relocated and the total change
remains negative, in which case the candidate is
rejected.

The search algorithm uses each of the above operators
in varying combinations until no improvement in (2) is
achievable after two consecutive attempts. Given its effi-
cient implementation, even in an online application the
algorithm can be independently run multiple times such
that the globally best classification over the runs is cho-
sen as the final estimate of the posterior mode classifica-
tion. Multiple independent searches will reduce the
probability that the best classification identified among
them will be considerably suboptimal, representing a
local peak in the posterior distribution. Since any two
classification structures can be analytically compared,
the searches can even be performed on separate
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processors and results later combined using the batch
mode interface of the BAPS software.

Results

We have implemented the semi-supervised classification
algorithm for MLST data in the BAPS software version
5.4 which is available for Windows, Mac OS x and
Linux operative systems. It can be accessed both
through the graphical user interface or the batch mode
interface, which simplifies automation of the use of the
tool in MLST web interfaces. In this section we demon-
strate the performance of the semi-supervised classifica-
tion tool using data from two MLST databases. The first
database http://pubmlst.org/bcereus/ is for the pathogen
species Bacillus cereus [16] and the second database
http://saureus.mlst.net/ is for the pathogen species Sta-
phylococcus aureus [17].

We extracted multilocus DNA sequences for 515 and
1404 STs from the two databases, respectively. The
housekeeping genes used in typing of the B. cereus are:
gIpF (glycerol uptake facilitator protein), gmk (guanylate
kinase), ilvD (dihydroxy-acid dehydratase), pta (phos-
phate acetyltransferase), pur (phosphoribosylaminoimi-
dazolecarboxamide), pycA (pyruvate carboxylase), tpi
(triosephosphate isomerase). The housekeeping genes
used in typing of the S. aureus are arc (Carbamate
kinase), aro (Shikimate dehydrogenase), glp (Glycerol
kinase), gmk, pta, tpi, yqi (Acetyle coenzyme A acetyl-
transferase). The lengths of the MLST loci for B. cereus
vary between 348-504 basepairs and the total concate-
nated length of the sequences equals 2829 basepairs.
For S. aureus the lengths vary between 402-516 base-
pairs, the total concatenated length being 3198
basepairs.

A number of simulation experiments were performed
using the real B. cereus and S. aureus data as the basis.
Firstly, we divided the two databases into distinct groups
of STs using an unsupervised classification (clustering)
analysis option available in BAPS software for MLST
type data. This resulted in 11 and 6 groups for the B.
cereus and S. aureus data, respectively. For B. cereus the
group sizes varied between 9-127 STs and for S. aureus
between 9-444 STs.

In the first experiment we chose randomly 30% of the
database STs as query data and the remaining 70% were
used as training data. The training data were pre-classi-
fied into the groups identified by the earlier unsuper-
vised analysis and the query data were analyzed
assuming that there are at most 10 novel groups present
in it. This setup was replicated 10 times and we calcu-
lated for each random data configuration how well the
labels of the query STs matched the pre-classification
labels using the adjusted Rand Index (ARI) [18]. The
average ARI over the replicates (with std.dev. in
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parenthesis) is 1.000 (0.000) and 0.999 (0.003) for the B.
cereus and S. aureus data, respectively.

In the second experiment the database STs were not
randomly chosen into the query data as such, but we
selected instead randomly 30% of the database ST
groups as query data (3/11 and 2/6 groups), while leav-
ing the remaining groups as training data. Notice that in
the first experiment every class that was previously iden-
tified from the database had approximately 30% of its
STs included in the test data, and thus, the same under-
lying classes were present both in the training and test
data sets. In contrast, in the second experiment the test
data consisted of groups of STs which did not corre-
spond to any groups present in the training data, and
thus, the training and test data sets were completely
non-overlapping in terms of underlying groups.

The corresponding ARI values as in the first experi-
ment are now 0.988 (0.029) and 0.966 (0.045) for B. cer-
eus and S. aureus databases, respectively. To illustrate
the data in the simulation experiments we made two
Neighbor-Joining (NJ) trees annotated with pre-classifi-
cation and novel labels. The trees were created with
MEGA 4 software [19] using the maximum composite
likelihood option. In Figure 1, the semi-supervised label-
ing is shown for one of the S. aureus database replicates
in the second experiment. Here there are two novel
groups of STs in the test data and only a single ST in
one of them is mislabeled (uncolored in Figure 1) in the
semi-supervised analysis. Note that BAPS groups may
occasionally deviate from the groups derived from a
phylogenetic tree, primarily due to presence of recombi-
nant alleles in the data. For instance, all the long
branches present in Figure 1 are due to a strongly
deviating allele at a single locus, or even at two loci for
some STs. We detected these cases by using the BRAT
software [20] to screen the entire database (exact results
not shown). When the deviating alleles were removed,
all the long branches present in Figure 1 vanished, such
that the corresponding STs closely resemble strains pre-
sent in the remaining lineages. For instance, the single
red-labeled ST with a very long branch had at one locus
an allele with closest match to another species (S. epi-
dermidis) when its DNA sequence was queried at the
NCBI nucleotide collection, which could represent
either a result of genuine inter-species recombination or
a case of DNA contamination in the laboratory. Since
BAPS recognized that the ST in question had very close
resemblance to other red-labeled STs at the remaining
six loci, the probabilistic query did not yield a label indi-
cating separate origin.

It should also be noted that a small number of STs
labeled as red reside in the NJ tree among green labeled
taxa and conversely, a small number of STs labeled as
green reside among red labeled taxa. Such a deviance
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uncolored STs represent the remaining training data groups.
-

Figure 1 Example of a semi-supervised classification of query STs from S. aureus database in the second experiment based on an
annotated NJ tree. The STs marked with red and green colors represent the query STs labeled as the two new detected groups and the

has several possible explanations. Firstly, the labeling of
these strains by the population genetic assignment may
be erroneous, such that the tree correctly displays their
origin. Secondly, due to the small evolutionary distances
among these groups of strains, the NJ tree itself may
provide a distorted view of their origin. In particular,
under limited molecular resolution, the population
genetic approach gains in a relative sense more statisti-
cal power to correctly detect lineage boundaries from a
large sample in the presence of a small number of sites
with highly characteristic nucleotides for a particular
lineage, compared to a tree-based approach. This is pri-
marily because the population genetic model directly
compares nucleotide frequencies at sites within and
between putative pools of samples and aims at

answering a considerably simpler statistical question
than a tree-based approach. We have obtained addi-
tional support for this tendency by examining data for
Burkholderia pseudomallei STs, for which a large num-
ber of additional loci were available (exact data and
results not shown). In general, in our bootstrap experi-
ments BAPS assigned strains significantly to the correct
lineage with a considerably smaller number of loci com-
pared with a tree-based approach.

In the third experiment we chose the B. cereus data-
base and introduced random mutations in the sequences
of the query STs. Two types of query STs were gener-
ated to mimic a situation where some new strains repre-
sent previously detected lineages, whereas the others are
sampled from multiple unseen lineages. To create novel
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strains representing the first scenario, we chose ran-
domly 25 STs from the database and introduced 1% of
random mutations into their sequences. In addition, to
create strains corresponding to the latter scenario, we
randomly sampled 5 STs from the database and intro-
duced 5% of random mutations to their sequences.
Thereafter, 5 independent test strains were generated
from each of these mutated STs by introducing further
1% of mutations to the sequences. The test data thus
contains 50 query STs in total. Figure 2 illustrates the
semi-supervised labeling of these data by showing simul-
taneously the training and test samples in an NJ tree. All
25 test STs representing previously sampled lineages, as
well as all the five groups of STs from previously
unsampled lineages were correctly labeled according to
the group they were generated from.

The final experiment was performed to investigate
the computational cost of applying our method to an
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online probabilistic query for an MLST database. We
chose the following four sizes of query sets of STs to
represent a wide range of typically expected queries: 5,
10, 50 and 100 STs. In each replicate of the experi-
ment, the indicated number of STs were randomly
chosen as test data and excluded from the database,
while the remaining STs were used as training data.
Independent point mutations were introduced to the
sequences of test STs before submitting them as a
query, such that on average nucleotide values at 1% of
the sites were changed for the B. cereus STs and at
0.5% of the sites for the S. aureus STs. In total 10
replicates were performed on a PC with a 2.66 GHz
processor and the mean time in seconds (SD within
parenthesis) from the query submission to the final
estimates of posterior assignment probabilities was for
B. cereus: 0.320 (0.091), 3.887 (0.596), 56.175 (13.967),
181.705 (18.294), for the four distinct query set sizes,

80

Figure 2 Example of a semi-supervised classification of query STs from B. cereus database in the third experiment based on an
annotated NJ tree. The STs marked with grey colors are the new detected groups. The uncolored STs represent the STs in training data groups
and the remaining colored STs are the 25 query STs that were correctly labeled by their respective groups.
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respectively. For S. aureus the corresponding computa-
tion times were: 0.920 (0.034), 10.945 (2.102), 95.812
(12.966), 334.339 (84.523). These results illustrate that
our method can easily be applied in an online query
setting, as the required computation time is at most a
couple of minutes even for large query sets. It is also
worth noticing that the query sets are not expected to
be that large in a majority of cases within clinical
applications of MLST.

Discussion

The epidemiological research community has with its
combined efforts enabled a major leap forward in the
understanding of the dynamics and evolution of major
human and animal pathogens through the MLST web
software. As all the MLST databases are continuously
increasing in size and the popularity of these typing
schemes continues to grow, the need of additional tools
for rapidly simultaneously interfacing both previously
curated and new data has emerged as well. Our example
experiments based on real MLST databases illustrate
that the model-based approach provides high accuracy
in correctly labeling both strains from groups existing in
the curated database as well as strains representing pre-
viously unseen lineages. In addition, our method pro-
vides a probabilistic characterization of the assignment
uncertainty in terms of posterior probabilities calculated
over the possible putative sources in the estimated
mode classification structure. A classification framework
where each query ST is labeled independently of other
strains would provide a much simpler solution to the
assignment problem in computational terms, however,
on the other hand it is a more statistically coherent
approach to handle all the query strains within a joint
modeling framework to increase statistical power to
detect samples from previously unseen evolutionary
groups. It is worth noticing that since there is no other
probability-based method available that would be tai-
lored to MLST type data, we have not considered the
semi-supervised classification task in a comparative
fashion.

Conclusions

We have introduced a model-based tool for automated
semi-supervised classification of new pathogen samples
that can be integrated into the web interface of the
MLST databases. In particular, when combined with the
existing metadata, the semi-supervised labeling may pro-
vide invaluable information for assessing the position of
a new set of query strains in relation to the particular
pathogen population represented by the curated data-
base. Such information will be useful both for clinical
and basic research purposes.
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