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Abstract

Background: mRNA-Seq technology has revolutionized the field of transcriptomics for identification and
quantification of gene transcripts not only at gene level but also at isoform level. Estimating the expression levels
of transcript isoforms from mRNA-Seq data is a challenging problem due to the presence of constitutive exons.

Results: We propose a novel algorithm (IsoformEx) that employs weighted non-negative least squares estimation
method to estimate the expression levels of transcript isoforms. Validations based on in silico simulation of mRNA-
Seq and gRT-PCR experiments with real mMRNA-Seq data showed that IsoformEx could accurately estimate

transcript expression levels. In comparisons with published methods, the transcript expression levels estimated by
IsoformEx showed higher correlation with known transcript expression levels from simulated mRNA-Seq data, and

higher agreement with gRT-PCR measurements of specific transcripts for real mRNA-Seq data.

Conclusions: IsoformEx is a fast and accurate algorithm to estimate transcript expression levels and gene
expression levels, which takes into account short exons and alternative exons with a weighting scheme. The
software is available at http://bioinformatics.wistar.upenn.edu/isoformex.

Background

The central dogma of molecular biology “the flow of
genomic information from DNA to RNA to protein” in
multi-cellular organisms is much more complex than
originally thought [1]. An important aspect of this com-
plexity is the generation of multiple transcript isoforms
from a single gene in a genomic locus, due to the use of
alternative initiation and/or termination of transcription
and alternative splicing of pre-mRNAs [2-4]. Although
the functional consequence of differential expression of
alternative isoforms for some genes has been known,
the advent of massive parallel sequencing technology
has facilitated the study of transcript isoforms at gen-
ome-scale. In fact, recent evidence suggests that almost
all multi-exon human genes have more than one mRNA
isoform [5,6]. For example, the deep sequencing of
c¢DNA fragments of 15 human tissue and cell line tran-
scriptomes showed that 92-94% of human genes
undergo alternative splicing [5]. The transcript variants
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are differentially expressed across different tissue/cell
types, developmental stages and disease conditions.
Moreover, for many genes, different transcript isoforms
can lead to different protein isoforms with distinct func-
tions. Therefore, in order to study the gene function at
isoform level, it is necessary to know the expression of
each transcript in various physiological and disease
conditions.

With the advent of next-generation sequencing (NGS)
technologies and decreasing cost per base, mRNA-Seq
approach has become a desirable method to get a com-
plete view of the transcriptome and to detect rare tran-
scripts and isoforms [4-10]. mRNA-Seq experiments
generate millions of short sequence reads that are
sequenced from expressed transcripts. The majority of
these short sequence reads can be mapped to exon
regions of the genome and exon-exon junction regions
of a transcriptome. Therefore, mRNA-Seq has been
used for splice junction identification and alternative
splicing detection [11-15], and for novel transcript iden-
tification through transcript assembly [16-18]. The assay
provides sensitive and accurate digital counts for the
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exon regions of expressed transcripts in a given sample.
The count of short sequence reads for each exon region
is the sum of counts belonging to the exon region of
different transcript isoforms that are expressed in the
sample. Therefore, estimating the transcript-level
expression from the collection of counts of short read
sequences that map to exons or exon slices is a compu-
tational challenging problem, which has been recently
attempted by some programs such as rSeq [19] based
on maximum likelihood estimation, Cufflinks [20]
extended from rSeq, and RSEM [21] considering
sequencing mapping uncertainty. Bayesian Analysis of
Splicing IsoformS (BASIS) [22] is another recent method
that computes transcript levels from coverage of known
exons by taking advantage of isoform-specific nucleotide
positions from each transcript isoform. BASIS focuses
on detecting the differentially expressed transcript iso-
forms between two conditions and cannot infer the
expression levels under each condition. GPSeq using a
two-parameter generalized Poisson (GP) model to the
position-level read counts can estimate gene/exon
expression and identify differentially expressed genes/
exons [23]. However, GPSeq was not designed for esti-
mating transcript expression levels. Another recent
method [24] applied a linear model to estimate the
ratios of known isoforms in a sample by incorporating
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the non-uniformity of mRNA-Seq read positions along
the targeted transcripts as a key feature into its algo-
rithm. However, the software is not publicly available
for use.

Here, we present a novel method, called IsoformEx,
which is based on weighted non-negative least squares.
We compared IsoformEx with some of the published
methods in accurately estimating the expression levels
of transcript isoforms. Since Cufflinks has additional
function of transcript assembly to identify novel tran-
scripts, we only used its function of transcript level esti-
mation extended from rSeq algorithm for the
comparison studies. The publicly available software to
estimate mRNA-Seq transcript expression with read
mapping uncertainty (RSEM) was also used in the com-
parison studies. For fair comparisons, we used both
simulated mRNA-Seq data and published real mRNA-
Seq data [5] obtained from breast normal (HME) and
cancer (MCF-7) cell lines.

Results

Basic logic of IsoformEx

IsoformEx generates expression estimates both at gene
and transcript levels from mapped mRNA-Seq reads
(see Figure 1 for flowchart of IsoformEx algorithm and
an example of gene with 3 transcript variants). We
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exclusive slices of exons

Compute RPKM for each slice

Solve the weighted NLS

Figure 1 Algorithm and exon slices. (a) Algorithm flow chart. (b) The exon slices were determined by the genomic structures of the transcript
isoforms having overlapping exons. The lower weight was applied for the shorter exon slice. This example shows four exon slices (s1-s4)
obtained from three transcript isoforms. The observed RPKM of the smallest exon slice (s3) was smaller than 10 because its length is small.
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illustrate the basic logic of IsoformEx by using the
sequence reads (from MCEF-7 cell line [5]) that map to a
genomic locus with two overlapping genes (ZNF580 and
ZNF581) (see Figure 2). Let us denote RPKM of each
transcript as 6(transcriptID) and RPKM of the exon
slice as a(sliceID) in Figure 2. A transcript block is
defined as a set of transcripts overlapped in a genomic
locus. We identify the exon slices that are specific to
each transcript in a transcript block, and call those exon
slices as ‘discriminative exon slices’ within a transcript
block. The RPKM values of the discriminative exon
slices are used as a major factor for estimating the
expression levels of corresponding transcripts having the
discriminative exon slices. The total number of exon
slices in this transcript block with six overlapping tran-
scripts is eight, and the approximated RPKM values of
the exon slices in MCF-7 cell line are a(s1) = 10, a.(s2)
~ 8, a(s3) = 14, a(s4) = 30, a(s5) = 20, a(s6) =~ 0, a(s7)
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ZNF580, uc002qim:1 .
ZNF581, uc002qin.] .
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Figure 2 RPKM values of transcript isoforms of ZNF580 and
ZNF581. RPKM values of transcript isoforms of ZNF580 and ZNF581
in the breast normal cell line (HME) and cancer cell line (MCF-7).
The total number of exon slices in this transcript block having six
overlapping transcripts was eight, and approximated RPKM values of
the exon slices in MCF-7 cell line were a(s1) = 10, al(s2) = 8, a(s3) =
14, ol(s4) = 30, a(s5) = 20, a(s6) = 0, a(s7) = 45, and a(s8) = 60,
where a() is the RPKM value of an exon slice (for example, a.(s1)
and a.(s8) are the RPKM values of the first and the eighth exon
slices). Although the sixth exon slice can be expressed from
uc002qIn.1 and uc002glq.1, the observed value was close to 0 due
to its very small exon slice size. In order to handle this small exon
effect (observed RPKM of very small exon slices is usually not
reliable), we applied a lower weight.
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~ 45, and a(s8) ~ 60, where s1, s2, ..., and s8 are the
first, the second, ..., and the eighth exon slices. The
highest expressed last exon slice is common to the two
transcripts (uc002qln.1 and uc002qlq.1). The basic logic
of estimation is as follows (see Figure 2, Additional File
1 Tables S1-S2 and Figure S1 for more detailed informa-
tion). Since RPKM of the discriminative exon slice of
uc002qlq.1 transcript is o(s5) =~ 20, we expect
6(uc002qlq.1) =~ 20 and € (uc002qln.1) =~ 40 by using o
(s8) ~ 60. However, RPKM of the first slice is only a(s1)
~ 10. Thus, 8(uc002qln.1) may be lower than 40 (let us
say #(uc002qln.1) = 35), and #(uc002qlm.1) may be very
low or zero (let us say 6(uc002qlm.1) = 0). The RPKM
of the discriminative exon slice of uc002qlo.1 is a(s2) =
8. And, the RPKM of the discriminative exon slice of
uc002qlp.1 is a(s3) =~ 14. Note that the seventh exon
slice is common to three transcripts (uc002qln.1,
uc002qlq.1, and uc010etc.1). Since #(uc002qln.1) ~ 35
and 6(uc002qlq.1) = 20, we expect that o(s7) is higher
than 55. However, actual a.(s7) is only about 45. Thus,
6A(uc010etc.1) can be close to zero. As illustrated in this
example, the discriminative exon slices and the concept
of non-negativity are important for estimating transcript
expression levels. The discriminative exon slices are
highly weighted in the weighted non-negative least
squares computation. Since the RPKM value of very
small exon slice (s6) is not reliable for estimation (i.e.
small exon effect), the small exon slice is lowly
weighted. Note that the observed RPKM values and esti-
mated transcript expression levels should be non-
negative.

Performance comparison using mRNA-Seq simulated data
Since the true expression levels of all transcript isoforms
are unknown, we first designed an mRNA-Seq simulator
to obtain artificial short sequence reads after assigning
transcript expression levels. In order to mimic the distri-
bution of transcript expression levels, we fitted an expo-
nential decay function to the real mRNA-Seq data
obtained from MCEF-7 cell line, and used the fitted dis-
tribution to randomly assign expression levels to all
transcripts. The assigned expression levels were there-
fore treated as known true expression levels in the simu-
lated mRNA-Seq data for performance comparisons. In
the mRNA-Seq simulator, the number of fragments for
each transcript was determined and the transcript was
randomly fragmented. The first 32 bp (i.e. tag length) of
the fragment sequence and the first 32 bp of the reverse
complementary sequence of the fragment were stored.
Single nucleotide substitutions were introduced in the
sequences, which reflect the 0.1% rate of SNPs in the
human genome. In addition, nucleotide substitutions
were introduced to account for current rate of sequen-
cing errors (~ 1%). The sequencing error rate at each
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location of a sequence read of length 32 bp was
obtained from mismatch information of tag mapping
and Phred sequence quality scores in the MCF-7 data
[5]. The sequencing error rates were fitted to an expo-
nential function and the fitted function was used for
introducing sequencing errors for each sequencing
cycle. The sequencing error ratios at 1-25th nucleotides
were much lower than those at 26th to 32nd nucleo-
tides. The error ratio at 26th position was about 1% of
all reads. In order to simulate sampling of fragments, we
randomly selected 10% of reads and stored them to a
FASTQ file. About 93% of the simulated sequence reads
were then mapped to the human genome.

To assess the performance of IsoformEx, we compared
it with Culfflinks (v0.9.3) since it incorporated an estima-
tion algorithm of rSeq and the latest information about
mRNA-Seq protocol. The mRNA-Seq reads were aligned
to hgl8 version of the human genome downloaded from
the UCSC genome browser database [25]. The splice
junction library was built from the UCSC transcriptome
and sequence alignment was performed using Bowtie
(v0.12.3) [26]. The transcripts information was converted
to GTF file format and Cufflinks used the transcript
information through the -G/-GTF option to estimate
expression levels from a known transcript model. The
min-isoform-fraction parameter of Cufflinks was set to
0.0 in order to recover very lowly expressed transcripts.
The sequence alignment files generated from Bowtie
were used for estimating transcript expression levels by
both IsoformEx and Cufflinks, thus eliminating any plau-
sible bias that could arise from different alignments files.

Table 1 shows estimation errors and correlation coef-
ficients between estimated expression levels (veg)
obtained by IsoformEx and true expression levels (Viye)
based on the simulated mRNA-Seq data. A true propor-
tion vector was prepared by true expression values
divided by the sum of true expression values (i.e., Pyue =
Virue/ ZVirue)- A proportion vector of the estimated value
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was prepared by the estimated expression values divided
by total estimated expression values. The error was
defined as the mean value of absolute difference values
between two proportion vectors, i.e., 2; = 1|Puue (i) -
Pest (0)|/n, where pyye (i) is the i-th element of the pro-
portion vector of true expression values, peg (i) is the i-
th element of the proportion vector of estimated expres-
sion values, and n is the number of estimated tran-
scripts. IsoformEx showed the low error and high
correlation coefficient for the simulated data. For more
rigorous evaluation, we excluded trivial cases of single
transcript genes (or transcript blocks with only one
transcript), since the main goal of IsoformEx is to obtain
estimates at isoform-level. We also excluded transcripts
in mitochondrial DNA. When both expressed and non-
expressed transcripts (Ve = 0) were considered for the
analysis, IsoformEx showed lower error and higher cor-
relation coefficient in comparison to RSEM (v1.1.8) and
Cufflinks (v0.9.3) with default/changed parameters (see
Table 1 and Additional File 1 Tables S3-S4). By remov-
ing very lowly expressed (ves < 0.01) and the unex-
pressed transcripts, the error was increased because the
absolute errors of other transcripts with veg > 0.01 were
generally larger than those of unexpressed transcripts or
very lowly expressed transcripts. We did not observe
any significant variation of correlation coefficients by
removing very lowly expressed transcripts. Overall, the
results showed that the performance of IsoformEx was
better than the other methods for estimating transcript
expression levels, with the least error and the highest
correlation coefficient.

Performance of IsoformEx on real mRNA-Seq data and
qRT-PCR experiments

To validate the estimation of transcript isoforms from
the real mRNA-Seq data of MCF-7 and HME cell lines
[5], we performed quantitative RT-PCR (qRT-PCR)
experiments on the same cell lines. We obtained qRT-

Table 1 Performance Comparison on the simulated mRNA-Seq data

Algorithms Condition IsoformEx RSEM [21] Cufflinks [20]
(v1.1.8) (v0.9.3)
with default parameters (-min-isoform-fraction 0)
The number of estimated transcripts (n) Vest = 0 55416 55441 55441
Vegt > 001 35064 25967 25839
n Veg = 0 841 x 10° 1.02 x 107 923 x 10°
Error = Zi—l [Pirue (1) = Pese()1/m
Vet > 001 132 x 107 215 % 107 196 x 107
r = Corr(Vyue , Vest ) Vest = 0 0921 0.839 0913
Vest > 0.01 0.920 0.838 0912

Estimation error and correlation coefficient between estimated expression levels (vesy) and known true expression levels (vy,e) for our simulated dataset when all
estimated transcripts (ves; = 0) were considered or some expressed transcripts (vess > 0.01) were only considered. pye (i) denotes the i-th element of the
proportion vector of true expression values (Pyue = Virue/2 Virue)r aNd Pes; () denotes the i-th element of the proportion vector of estimated expression values
(Pest = Vest/2 Vesy). The error was defined as the mean value of absolute difference between the true proportion vector and the proportion vector of the

estimated values.
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PCR measurements for eight transcripts in four separate
genome loci, such that each genomic locus contains two
overlapping transcripts. For each of the four genomic
loci, we calculated the expression ratio of one transcript
over another in each cell line (MCF-7 and HME). Simi-
larly, the expression ratios for each transcript in MCEF-7
relative to HME cell line were also obtained (see Table
2). The changes of expression (up/down) of transcripts
between cell lines and within cell lines, determined by
qRT-PCR measurements, are in good agreement with
IsoformEx estimates obtained by analyzing the mRNA-
Seq data.

The correlation coefficients between qRT-PCR measure-
ments and values estimated with IsoformEx, Cufflinks, and
RSEM were 0.88, 0.08, and 0.05, respectively. The low cor-
relation of Cufflinks and RSEM was due to up/down flips
of fold changes (FC,,) in transcript expression for TRAPI
block and HIST1H2BD block (see Figure 3). The different
estimations for HIST1H2BD block was confirmed by cus-
tom wiggle track of mapped tags on the UCSC genome
browser (see Additional File 1 Figure S2). By applying
higher weight to the discriminative exon slice of
uc003ngr.1 transcript and using the lower number of tags
that mapped to the discriminative exon slice than the
number of tags that map to the rest of the transcript
region, IsoformEx estimated the expression of uc003ngr.1
as lower than that of the other transcript (ucOOngs.1).
Other programs incorrectly estimated that uc003ngs.1 was
expressed at lower level than uc0OOngr.1 since they did not
apply additional weight to the discriminative exon slice.
For fair comparison, we used the same Bowtie output files
for IsoformEx and Cufflinks in Table 2. We also tested
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Figure 3 Agreement between estimated RPKM values and qRT-
PCR validation for four transcript blocks in breast cell lines. We
selected four transcript blocks and two transcripts for each
transcript block. We compared gRT-PCR measurements and
transcript expression levels estimated by several methods in the
MCF7 cell line. When the corresponding method could correctly
predict the direction of fold change within the HME cell line, ‘o’
mark is used. Otherwise, X' mark is used. Cufflinks*: the min-isoform-
fraction parameter of Cufflinks was set to 0.0 in order to recover
very low expressed transcripts. IsoformEx and Cufflinks* used the
same Bowtie output files.

Cufflinks with default parameters. Table 3 shows the
agreement between qRT-PCR results and estimations
obtained from RSEM and Cufflinks with default para-
meters. They generated two up/down flips of FC,, (fold
change within cell line). Cufflinks did not show any sub-
stantial changes in performance with different values of
the min-isoform-fraction parameter. IsoformEx showed
the best agreement with qRT-PCR measurements without
any fold change direction flips.

We also compared the execution times of IsoformEx
and other programs for reading the alignment files

Table 2 qRT-PCR validation in human breast cell lines for IsoformEx

qRT-PCR Poly(A) RNA IsoformEx Cufflinks [20]
(v0.9.3)
(-min-isoform-fraction 0)
Symbol TranscriptiD HME MCF-7 FCp HME MCF-7 FC, HME MCF-7 FCy
TRAP1 uc002cvt.2 2347 3023 04 274 439 0.7 223 332 06
TRAP1 uc002¢cvs. 1 4235 5954 05 409 56.0 05 08 16 10
FC, 09 10 06 04 48" 44"
ZNF581 uc002qlq.1 6218 7559 03 83 235 15 8.1 200 13
ZNF580 uc002qlp.1 2779 3813 05 77 144 09 22 53 13
FC, 12 10 0.1 07 19 -19
Wisp2 uc002xmn.1 107 5300 56 18 147 30 00 120 6.9*
Wisp2 uc002xmo.1 8.1 1896 45 05 84 42 00 42 54%
FC, 04 15 20 08 0.0 15
HIST1H2BD uc003ngr.1 124 317.8 47 0.7 6.9 33 43 559 37
HIST1H2BD uc003ngs.1 538.2 19207.9 52 109 1363 36 09 16.2 41
FC, 54 59 40 43 221 18"

FC,: log,(a/b), where a and b are the second/first transcript expression within the same cell line. FCy: log,(a/b), where a and b are the expression values of a
transcript in MCF-7 and HME cell line, respectively. TFold change directions of Cufflinks estimations were erroneously flipped. *When b = 0, the fold change was

computed from log((a+0.1)/(b+0.1)).
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Table 3 qRT-PCR validation in human breast cell lines for other methods

gRT-PCR poly(A) RNA RSEM [21] Cufflinks [20]
(v1.1.8) (v0.9.3)
with default parameters with default parameters

Symbol TranscriptlD HME MCF-7 FCy, HME MCF-7 FCy, HME MCF-7 FCp,
TRAP1 uc002cvt.2 234.7 3023 04 13780 1782.1 04 223 332 06
TRAP1 uc002cvs.1 4235 5954 05 47.0 820 08 0.8 1.7 1.1

FC., 09 10 49" 447 48" 43"
ZNF581 uc002qlq.1 621.8 7559 03 3589 687.6 09 86 20.0 1.2
ZNF580 uc002glp. 2779 3813 05 148.1 2450 0.7 23 54 1.2

FCw -12 -1.0 -1.3 -15 -19 -19
WISP2 uc002xmn.1 10.7 5300 56 100 4350 54 0.0 11.8 6.9*
Wisp2 uc002xmo.1 8.1 189.6 45 9.7 250.9 4.7 0.0 4.2 54

FC. 04 -15 00 08 00* -15
HISTTH2BD uc003ngr.1 124 3178 4.7 775 566.1 29 44 559 3.7
HISTIH2BD uc003ngs.1 5382 19207.9 52 21.7 499.0 4.5 09 16.2 42

FCw 54 59 18 02" 247 18"

FC,: log,(a/b), where a and b are the second/first transcript expression within the same cell line. FCy: log,(a/b), where a and b are the expression values of a
transcript in MCF-7 and HME cell line, respectively. Fold change directions of estimations were erroneously flipped. *When b = 0, the fold change was computed

from log,((a+0.1)/(b+0.1)).

generated by Bowtie and estimating transcript isoform
levels from mRNA-Seq data for MCEF-7 cell line. Each
execution time was measured in the same computer
(two Intel® Xeon®™ CPUs X5460 (12 M Cache, 3.16
GHz, 1333 MHz FSB, 4 cores), 36 GB memory). Cuf-
flinks only accepts SAM file format [27] as an input file
format, whereas IsoformEx can handle Bowtie output
file format as well as SAM file format. Cufflinks (v0.9.3,
machine code) took about 40 minutes with a SAM file
for estimating transcript expression levels. RSEM (v1.1.8,
machine code) took about five hours including mapping
short reads to transcriptome and estimating transcript
expression levels. IsoformEx (Matlab code) took about
40 minutes with two Bowtie output files in order to esti-
mate transcript expression levels of all valid transcripts
and gene expression levels. Although this is not rigorous
comparison, the result shows the computational effi-
ciency of IsoformEx.

Discussion

In the current implementation, IsoformEx assumes a
transcript model is given and the transcript model has
most dominantly expressed isoforms. While IsoformEx
addresses the problem of accurately estimating the iso-
form-level expression values, by assigning reads to a
known set of splice-variants, Cufflinks attempts to simul-
taneously discover novel isoforms and estimate their
expression values. Using user defined transcript model
having novel isoform candidates would be a possible way
for improving estimation accuracy. IsoformEx can handle
overlapping genes as well as overlapping exons in tran-
script model for more accurate estimation of gene/

transcript expression from mRNA-Seq data. It converts
the transcript abundance estimation problem to a con-
strained optimization problem in order to take advantage
of non-negativity in transcript expression levels. It uses
the non-negative least squares algorithm which is well
established optimization method based on mathematical/
numerical analysis. It is numerically stable and computa-
tionally efficient. The non-negative least squares frame-
work is simple and mathematically well defined so that
additional biological knowledge can be incorporated in
the framework through a weighting scheme. For example,
the number of short reads in a smaller exon slice tends to
be small due to the limitation of mRNA-Seq coverage.
IsoformEx uses a weighting scheme for considering the
small exon effect. Although we suggested a reasonable
weighting scheme, it would be worthwhile to study other
weighting schemes. IsoformEx can be applied to mRNA-
Seq data analysis not only to estimate expression levels of
transcript isoforms, but also to estimate more accurate
gene expression levels when different genes overlap.
Executable machine codes are available at http://bioinfor-
matics.wistar.upenn.edu/isoformex.

Conclusion

We developed IsoformEx algorithm to estimate tran-
script-level expression values from mRNA-Seq sequence
reads that were mapped to the genome. It can be
applied not only to estimate isoform-level mRNA
expression values, but also to estimate gene-level expres-
sions when different genes overlap. Executable machine
codes are available at http://bioinformatics.wistar.upenn.
edu/isoformex.
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Methods

Real mRNA-Seq data

We downloaded mRNA-Seq data for human breast can-
cer cell line MCF-7 (GEO sample GSM325487, SRA
experiment SRX003923) and human breast normal cell
line HME [5] (GEO sample GSM325485, SRA experi-
ment SRX003921) from the Short Read Archive section
of GEO at NCBI [28] (accession number GSE12946
(alternative isoform regulation in human tissue tran-
scriptomes) on the platform GPL9052 (Illumina genome
analyzer, Homo sapiens)). For qRT-PCR validations of
our estimations of transcript expression levels from
these data, we obtained the same cell lines for which
mRNA-Seq experiments [5] were performed (MCEF-7
cell line was purchased from ATCC (http://www.atcc.
org/). HME cell line was obtained from Weinberg’s lab).
The raw FASTQ files have short-sequence reads of
length 32 bp. The sequence reads that map to mito-
chondrial genome and ribosomal RNA sequences were
filtered out. Reads were mapped to the human genome
and splice junction database by Bowtie [26].

IsoformEx based on non-negative least squares

The estimation method of IsoformEx is based on
weighted non-negative least squares. Figure 1 shows the
algorithm flow chart and an example to predict isoform
expression levels from short read data using expression
levels of exon slices. A transcript block consists of tran-
script isoforms of a gene and other transcripts overlap-
ping them that belong to other genes. For each
transcript block, IsoformEx collects slices of exons and
computes values of RPKM [29] (reads per kilobase of
exon per million mapped reads) of all exon slices and
splice junctions. When we computed RPKM of splice
junctions, the length of splice junction was fixed at 54.
For splice junction mapping, the 32 bp tag should have
at least five nucleotide matches from either side of splice
junction.

Both constitutive exons and alternative exons were
used for obtaining slices of exons. Thus, we build an
exon structure matrix (A.,,,) of the transcript block,
where A.,,, (i,j)) = 1 when the j-th slice is a part of the
i-th transcript, otherwise Ay, (i,j) = 0. It also builds a
splice junction structure matrix (Ay;) of the transcript
block, of which element A; (i,j) = 1 when the j-th junc-
tion is a part of the i-th transcript, otherwise Ag; (i,j) =
0. After combining the exon structure matrix and splice
junction structure matrix, and combining a RPKM col-
umn vector (b,,,,) of exon slices and a RPKM vector
(bsj) of splice junctions, we solve a weighted non-nega-
tive least squares problem for each transcript block,

min,|[WATx — Wb||3s.tx > 0, (1)
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where A = [Acon Ag] is the combined exon structure
matriX, b = [Dexonsb {5}] is the combined column vector
having all RPKM values, x is the solution vector having
transcript isoform expression levels, and W is the weight
diagonal matrix whose diagonal elements are the corre-
sponding weights of exon slice or splice junction. The
observed short reads in an exon slice is actually the sum
of short reads generated from different transcript iso-
forms having the exon slice. We identify the contribu-
tion of individual transcripts when exon slices are
shared by multiple transcripts. But, sometimes, the
number of reads of an exon slice is small just because
the exon slice is short. A weighting scheme was used
since the confidence level of the number of reads in
smaller exon slice is lower. In addition, the total concen-
tration of transcript isoforms should be zero or positive.
Thus, we constructed a weighted non-negativity-con-
straint optimization problem. This problem can be
solved by a non-negative least squares algorithm. After
estimating expression levels of transcripts, we estimated
an expression level for each gene by the sum of the
expression levels of the individual transcript isoforms of
the gene.

The non-negative least squares problem has a unique
solution when A is full rank and the algorithm con-
verges to the solution [30]. When A is rank-deficient,
the code of Isqnonneg in Matlab (Matlab2009a, Natick,
MA) solves the non-negative least squares problem with
a linearly independent subset of the columns of A”and
leaves all other values of x at zero. This is a particular
solution to the minimization problem subject to non-
negativity constraints. Here is the simplest example of
rank-deficient A generated from four transcripts having
three constitutive exons and two splice junctions:

010 00 01000
111 11 11111
Acon=1011 %= 01" 01101
110 10 11010

The sum of the first and second rows of A is same as
the sum of the third and fourth rows of A. The second
row vector equals the third plus the fourth minus the
first, i.e. A(2,:) = A(3,:) + A(4,:) - A(1,:). The maximal
number of linearly independent columns of A is 3, i.e.
rank(A) = 3. The rank of 4 x 5 matrix A is smaller than
min(4, 5) = 4, so A is rank-deficient. Such non-identifi-
able cases were already discussed in the previous works
[20,31]. If a larger transcript block has above four tran-
scripts, the bigger structure matrix is also rank deficient
and the problem does not have a unique solution. A
more complicated example having four transcripts, four
constitutive exons and four splice junctions follows:


http://www.atcc.org
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1101 1010 11011010
1111 1101 11111101
Aeon=1 0711 "% 0101201110101
0101 0010 01010010

The sum of the first and third rows of A is same as
the sum of the second and fourth rows of A. The rank
of A is 3, so A is rank-deficient. Although these exam-
ples contain only constitutive exons without any alterna-
tive exon, having only constitutive exons does not
guarantee non-identifiability. The simple rule for detect-
ing non-identifiability of a transcript block is testing the
rank-deficiency of structure matrix A and convergence
of a non-negative least squares problem. Although it is
theoretically possible to have non-identifiable cases, the
frequency of non-identifiable cases was lower than 2%
of clusters in our estimation of transcript expression
levels in MCEF7 cell line, whereas the percentages of
non-identifiable models under the Affymetrix Exon 1.0
ST array (four probes per targeting exons) and the Affy-
metrix Human Exon Junction array (HJAY) (eight
probes per targeting exons or splice junctions) were 74%
and 31% for 2256 alternative spliced human genes [31].

When the length of exon slice is smaller than the tag
length of 32 bp, no reads can be detected. We excluded
such small exon slices for accurate estimation. Even if
the length of an exon slice is larger than the tag length,
the smaller exon tends to have the smaller number of
mapped reads. We defined a weight saturation curve to
represent the confidence level of RPKM with respect to
lengths of slices, i.e. w = 1-exp(-x/100), where x is the
length of an exon slice (see Additional File 1 Figure S3).
The exon slice length confidence level starts from 0 at
length = 0, gradually increases to 1.0 from around
length = 1000 bp. When length = 500 bp, the length
confidence level is already reached to w=~0.99. If an exon
slice is only used for a transcript in the block, the exon
slice is called as a discriminative exon slice and is highly
weighted if the exon slice length confidence is larger
than 0.5. Thus, a discriminative exon slice whose length
is very small was not highly weighted; instead, it is lowly
weighted due to low slice length confidence. As for
splice junctions, the junction length confidence was
fixed (w=~0.42) since we used a fixed length of splice
junction (54 bp) and the same saturation curve for the
confidence level. Basically, RPKMs for splice junctions
were lowly weighted, but discriminative splice junctions
were highly weighted. The confidence level for each
slice was multiplied to the corresponding column of the
structure matrix A and the vector element of RPKMs so
as to construct a weighted non-negative least squares
problem. As for discriminative exon slices, the confi-
dence level was increased by w = w + w,, where w, = 10
is the additional weight for discriminative exon slices.
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As for discriminative splice junctions, the confidence
level was increased by w = w + w,, where w, = 2 is the
addition weight for discriminative splice junctions.
When a transcript has discriminative splice junctions as
well as discriminative exon slices, the confidence levels
of discriminative splice junctions were not increased so
that expression level of the transcript can be determined
by more reliable RPKM values of discriminative exon
slices.

qRT-PCR experiments

We performed qRT-PCR experiments on poly(A) puri-
fied RNA from MCF-7 and HME cell lines. Approxi-
mately 1 pg or 100 ng of poly(A) purified RNA was
reverse transcribed (RT) to generate cDNA using Super-
script II following DNAse I treatment according to
manufacturer’s instructions (Invitrogen Inc.). We
designed primers that would uniquely amplify a single
transcript isoform from the UCSC transcript database to
perform quantitative PCR. The forward/reverse primer
sequences and their genomic locations can be found in
the Additional File 1 Table S5. Using the specific pri-
mers for eight distinct mRNA isoforms that are loca-
lized in four distinct gene loci we performed SYBR
green based PCR on the reverse transcribed cDNA for
absolute quantification of each mRNA isoform in the
two cell lines.

Additional material

Additional file 1: Supplementary Material. Supplementary tables and ]
figures.
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