Fontes and Soneson BMC Bioinformatics 2011, 12:307
http://www.biomedcentral.com/1471-2105/12/307

BMC
Bioinformatics

RESEARCH ARTICLE Open Access

The projection score - an evaluation criterion for
variable subset selection in PCA visualization

Magnus Fontes and Charlotte Soneson

Abstract

Background: In many scientific domains, it is becoming increasingly common to collect high-dimensional data
sets, often with an exploratory aim, to generate new and relevant hypotheses. The exploratory perspective often
makes statistically guided visualization methods, such as Principal Component Analysis (PCA), the methods of
choice. However, the clarity of the obtained visualizations, and thereby the potential to use them to formulate
relevant hypotheses, may be confounded by the presence of the many non-informative variables. For microarray
data, more easily interpretable visualizations are often obtained by filtering the variable set, for example by
removing the variables with the smallest variances or by only including the variables most highly related to a
specific response. The resulting visualization may depend heavily on the inclusion criterion, that is, effectively the
number of retained variables. To our knowledge, there exists no objective method for determining the optimal
inclusion criterion in the context of visualization.

Results: We present the projection score, which is a straightforward, intuitively appealing measure of the
informativeness of a variable subset with respect to PCA visualization. This measure can be universally applied to
find suitable inclusion criteria for any type of variable filtering. We apply the presented measure to find optimal
variable subsets for different filtering methods in both microarray data sets and synthetic data sets. We note also

subsets with respect to visualization by PCA.

that the projection score can be applied in general contexts, to compare the informativeness of any variable

Conclusions: We conclude that the projection score provides an easily interpretable and universally applicable
measure of the informativeness of a variable subset with respect to visualization by PCA, that can be used to
systematically find the most interpretable PCA visualization in practical exploratory analysis.

Background

High-dimensional data sets, where the observed variables
often by far outnumber the samples, are becoming
increasingly prevalent in many scientific domains. As an
example, microarrays are used extensively to measure a
variety of genomic attributes such as gene expression and
DNA copy numbers. A peculiar feature of many high-
dimensional data sets is that they are often collected with
an exploratory aim, without a specific hypothesis in mind.
This means, among other things, that a data set may con-
tain many variables that are not really informative, while
the informative structure is contained in a small subset of
the variables. The presence of non-informative variables
can have detrimental effects on the possibility to extract
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relevant biological knowledge from the observed data, and
the performance of many machine learning algorithms
may drastically improve if the number of variables is
reduced before or in conjunction with the application of
the algorithm.

The exploratory perspective on high-dimensional data
means that visualization methods, providing a graphical
representation of the data, can be of great assistance. One
of the most commonly used visualization methods for
microarray data is Principal Component Analysis (PCA)
[1-4] which provides coupled, low-dimensional representa-
tions of the samples and variables in a data set. PCA is
applicable also to very high-dimensional data sets, but the
resulting visualization can be severely confounded and the
truly informative structure can be concealed by the pre-
sence of a large number of non-informative variables.
Hence, variable selection can be of great importance to
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improve the interpretability of PCA visualizations. In the
microarray context, one commonly used approach to
reduce the dimensionality is to simply exclude the vari-
ables with the lowest variances before applying PCA [5-8],
implicitly assuming that they do not contain any useful
information concerning the samples in the data set. Such
variable filtering often provides more informative and
easily interpretable PCA representations. Other ways to
reduce the dimension before PCA are also common, such
as excluding the variables with the lowest signal intensities
[9] or including only those variables that are highly related
to a specific response [6,7,10].

Naturally, the resulting visualization may be highly
dependent on the number of included variables and,
hence, on the variance or significance threshold used as
the inclusion criterion. To our knowledge, there exist no
well-motivated, objective criteria that are useful for
obtaining good stopping rules in such variable filterings,
and therefore most studies apply some kind of ad-hoc
criterion. In this paper, we present the projection score,
which is a straightforward, intuitively appealing measure
of the informativeness of a variable subset with respect
to visualization. Intuitively, the projection score com-
pares the variance captured by a pre-defined set of prin-
cipal components to the expected value under the
assumption that the variables are independent, that is,
that there is no non-random structure in the data. The
projection score can be universally applied to provide a
stopping rule for a variable filtering, and hence it can be
used to systematically find the most interpretable PCA
visualizations in practical exploratory analysis applica-
tions, for example in microarray data analysis. More-
over, as we will see in this paper, the projection score
can be applied in more general contexts than those indi-
cated above, to compare the informativeness of any vari-
able subsets with respect to visualization by PCA.

Related work

Many variable selection techniques have been devised for
use with supervised learning algorithms, such as classifiers
or predictors. In the supervised learning context, measur-
ing the informativeness of a variable subset is fairly
straightforward. Probably the most common approach is
to use some kind of cross-validation scheme to train the
classifier on the samples in a training set and define the
informativeness of the variable subset based on the perfor-
mance of the obtained classifier in an independent test set
[11]. For unsupervised learning methods, such as visualiza-
tion and clustering, which do not make use of any class
labels or other response variables, this approach is not
applicable. Variable selection for model-based clustering,
where the data are assumed to come from a mixture of
several subpopulations, has been considered [12,13].
In this case, the value of the objective function depends on
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how well the data comply with the assumed mixture
model. For visualization purposes however, it is less clear
what constitutes an optimal result. The projection score
defined in this paper measures the informativeness of a
variable subset based on the variance accounted for by a
subset of the principal components of the variable subset,
without using any side information such as the class mem-
berships of samples.

Variable selection in the context of PCA has been con-
sidered for many years, but often with the aim of approxi-
mating the original data set as well as possible with only a
subset of the variables. Moreover, the proposed methods
do not in general address the problem of finding a suitable
stopping criteria for variable filtering. The potential advan-
tage of sparse components, in terms of interpretability,
were recognized already in the 1970s [14,15]. One com-
mon approach to variable selection for PCA has been to
fix the desired number of variables in advance and search
for the optimal variable subset of this pre-selected cardin-
ality [4,16-19]. To comply with the original goals of PCA,
the optimal variable subset is often defined as the one con-
taining the largest amount of variance, or providing the
best approximation to the original data set. Hence, one
searches for a subset of the variables containing essentially
the same information as the entire variable set. This goal
is common also to many of the recently proposed sparse
PCA methods [20-22]. These methods often take their
starting point in one of the optimality properties of ordin-
ary PCA and introduce a penalty (often a lasso [23] or
elastic net [24] penalty) to limit the number of non-zero
principal component weights. The algorithms are in gen-
eral developed for a fixed penalty (that is, a fixed number
of non-zero weights) and the optimal penalty is deter-
mined by cross-validation, trying to approximate a test set
as well as possible, or by ad-hoc methods. In contrast to
these methods, the main objective of the approach pro-
posed in this paper is to compare subsets of different sizes,
such as, for example, subsets obtained by variance filtering
with different inclusion thresholds. Our aim is not expli-
citly to approximate the original data set as well as possi-
ble, but rather to find informative structures which may
not be apparent by considering the entire data set. By fil-
tering the variable set with respect to a specific factor
(such as variance or the association with a response) we
obtain sparse principal components where the included
variables are all related to the same factor. These may be
easier to interpret than general sparse principal compo-
nents. With our approach, it is also possible to compare
the informativeness contained in different factors, by filter-
ing with respect to the association with each one of them
and comparing the best projection scores obtained for
each factor.

Another related approach for variable selection, or
variable clustering, using PCA is the gene shaving
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procedure [25,26]. This procedure starts by computing
the first principal component of the data. In each step,
the variables with the smallest loadings are shaved off,
and a new principal component is computed from the
remaining variables. This yields a nested sequence of
variable subsets. For each subset, a quality measure is
computed as the ratio between the variance of the mean
value of the expression levels of the genes in the subset
and the total variance of the subset. Then, this quality
measure is compared to what would be expected from
random data, using the gap statistic (that is, the differ-
ence between the observed and the expected value). The
variable subset with the highest value of the gap statistic
is considered to be the optimal variable subset (called a
gene cluster). We will show that one way to use the
projection score is to obtain another quality measure of
the variable subsets that can be used in such a shaving
approach, and that the optimal variable set is not neces-
sarily the same as with the method described in [25,26].

Biclustering methods based on sparse matrix decompo-
sitions have been proposed by several authors (see for
example [27] and references therein). Here, the aim is to
find a subset of the variables which are correlated across a
subset of the samples and hence sparsity is induced for
both samples and variables. The biclustering methods use
different measures to evaluate subsets of a given data set.
For example, in [28] the quality of a submatrix is defined
based on the average expression value in the submatrix.
Biclustering methods have been shown to be useful for
finding informative patterns which are not necessarily pre-
sent across the entire data set. However, they are not
explicitly optimized for visualization, and, as the sparse
PCA methods, they are not used to find stopping criteria
for variable filtering.

Another variable selection criterion for PCA was
described in [29]. For each variable, the authors compute
the difference between the entropy of the entire data set
and the entropy of the data set with the variable removed.
This is used as a measure of the contribution of each of
the variables, and the variables are ranked according to
their contributions. The optimal variable subset is consid-
ered to consist of all variables whose contributions are
more than one standard deviation higher than the mean
value of all contributions. In contrast to this method, we
compute the projection score for a large number of vari-
able subsets and select the one with the highest value as
the most informative in a visualization context.

Results and Discussion

In this section, we will first apply different filtering tech-
niques, with varying inclusion criteria, to generate a col-
lection of variable subsets from each of three microarray
data sets. The projection score will be applied to find the
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most informative variable subset in each example. It is
important to note that the informativeness is measured
with respect to unsupervised, exploratory analysis by
PCA, where the aim often is generation of new hypoth-
eses rather than validation of existing hypotheses. This
means that we could use the projection score as a quality
measure even in the absence of any side information
about, for example, sample groups. It can also be used to
quantify and compare the informativeness of variable
subsets obtained by supervised methods, for example
subsets consisting of the variables most highly related to
a given response. Regardless of how the variable subsets
are obtained, the projection score evaluates their infor-
mativeness from an unsupervised perspective, based on
the variance contained in a pre-defined subset of the
principal components of the respective variable subsets.

In all cases, when we vary the inclusion criterion (in
most of our examples, a single parameter), the projection
score traces out a reasonably smooth curve, often with a
clear maximum, which means that it is reasonable to say
that there is indeed a maximally informative subset in the
proposed sense. In this article, this curve will be referred
to as the projection score curve for the filtering parameter.
In the first example, we filter the variable set by variance
and find an informative subset of variables with high var-
iances, providing a graphical sample representation which
is more easily interpretable than the one obtained from all
variables. In the second example, we filter the variable set
by the association with given responses, and show that the
optimal projection score and the shape of the projection
score curve obtained from filtering with respect to a cer-
tain response capture the overall evidence in the data for a
significant association with that response. We also show
the results from a combined variance and response-related
filtering. In the third example, we apply a shaving proce-
dure to generate variable subsets, and evaluate the
obtained subsets by their projection scores.

Then, we validate the use of the projection score with
synthetic examples, where we show that the variable sub-
set with the highest projection score is often the one con-
taining the non-random structure in the data. Finally, we
discuss some issues regarding the estimation of the pro-
jection score and warn against a potential pitfall.

In all examples, we use the projection score to com-
pare the informativeness of variable subsets with respect
to visualization. Assume that we are given a data set
with N samples and p variables, represented by a rank-r
matrix X € R”N, and a collection of M variable subsets
R, € {1, .., p} for m =1, ..., M. We define selection
functions @, in such a way that ¢,,(X) € RIR»*N con-
sists only of the rows in X with indices in R,,. To com-
pute the projection score, we must also select an S € {1,
..., 1}, essentially representing the number of degrees of
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freedom we expect in the data. Letting Ax = (44, ..., 4,)
denote the vector of non-zero singular values of X in
decreasing order, the fraction of the variance in X which
is accounted for by the principal components with
indices in S can be computed as

Zkes )‘;3
Y1 M

The projection score of R, is then defined as

Olz(Ax, S) =

2(éu(X), S, Po, ) = (02(Ag,x,9))"
~Epy 0 [ (@2(A0,00,9) "]

Here, Py, (x) denotes the inferred distribution of ¢@,,(X)
under the assumption of independence among the origi-
nal samples and variables in X. We compute the projec-
tion score for each of the M variable subsets, and the
subset with the largest projection score is considered
the most informative variable subset for visualization.
For further details, see the Methods section. To obtain a
visualization which reflects the correlation structure
between the variables of the data set instead of the indi-
vidual variances, we consistently extract the singular
values from standardized data matrices, where each vari-
able is mean-centered and scaled to unit variance. This
standardization is indeed commonly used [30,31]. If we
had not standardized the data, the correlations between
the variables would be less influential when computing
the principal components, and the variances of the indi-
vidual variables could potentially have a very large
impact. Since we define the projection score by compar-
ing the observed data to data generated under a null
model defined by assuming independence between the
variables, we may argue that the non-random structure
that is detected with the resulting score is that corre-
sponding to correlations between variables and that
therefore, the standardized data are better suited for our
purposes. Note that for the variance- and response-
related filterings, the variable rankings are extracted
from the original, unstandardized data.

Variance filtering of a lung cancer data set

We first use the projection score to find particularly
informative variable subsets among those obtained by
applying variance filters to the lung cancer data set stu-
died in [27,32]. The data set contains gene expression
measurements for 12,625 genes in 56 subjects. The sub-
jects belong to four groups: Normal (N = 17), Pulmonary
carcinoid tumors (N = 20), Small cell carcinoma (N = 6)
or Colon metastases (N = 13). For a given set of variance
thresholds {6}, (defined for the original, unstandar-
dized data), we define R,,, as the collection of variables
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with variance exceeding 6,,. The variance thresholds are
specified as fractions of the highest individual variable
variance in the data set, meaning that the variables
included in the variable subset R, are those with var-
iances exceeding 0, - vary.x where var,,,, denotes the
maximal variance among the variables in the data set.
We choose S = {1, 2, 3}, that is, we search for a variable
subset providing an informative three-dimensional sam-
ple representation, which is reasonable in a visualization
context. Figure 1(a) shows the three-dimensional sample
representation obtained by applying PCA only to the
variables in the most informative subset. The representa-
tion based on the most informative subset is considerably
more easily interpretable than the representation based
on the entire set of variables, which is shown in Figure 1
(b). In the representation based on the most informative
variable subset, the pulmonary carcinoid tumors (shown
in red) appear to cluster into several subgroups, an effect
which was also noted in [27]. Figure 1(c) shows the pro-
jection score curve for the filtering parameter 6. Very
small variable subsets, corresponding to high values of
the variance threshold, do not support the chosen S (see
Methods section). The projection score attains its maxi-
mal value of 7 = 0.534 for a variance threshold of 7.76%
of the maximal variance, corresponding to a variable sub-
set consisting of the 591 variables with highest variances.
In Figure 1(d), we show a heatmap for the expression
matrix corresponding to the most informative variable
subset. Clearly, the variables with the highest variances
contain much information about the four sample groups,
which is not surprising.

Response-related filtering of the NCI-60 data set

In this section, we construct ¢,,(X) to consist of the
variables which are most highly related to a given
response variable. In the studied examples the response
variable indicates the partition of the samples into dif-
ferent groups. Given such a partition, we calculate the
F-statistic, contrasting all these groups, for each variable.
For a given set of significance thresholds {a,}},, all
variables which are significantly related to the response
at the level «,, (that is, all variables with a p-value
below ¢,,,) are included in ¢,,(X). For each randomized

data set X* used to estimate [E'pw(x) [(az(A¢m(x),S))l/2]

(see the Methods section) we define the significance
thresholds @}, in such a way that the resulting variable
subsets have the same cardinalities as the corresponding
subsets from the original data set. The choice of S is
guided by the underlying test statistic. When we con-
trast only two groups, we do not expect the optimal
variable subset to support more than a one-dimensional
sample configuration, and therefore we choose S = {1}
in this case. When contrasting more than two groups,
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Figure 1 Variance filtering of the lung cancer data. (a) The sample representation obtained by applying PCA to the most informative variable
subset obtained by variance filtering, containing 591 genes. The different colors indicate different cancer subtypes. (b) The sample representation
obtained by applying PCA to the entire variable set (12,625 variables). (c) The projection score as a function of the variance threshold @ (fraction
of maximal variance) used for inclusion. (d) Heatmap of the most informative variable subset, that is, the one used to create the sample
representation in (a). In panels (a) and (b), in order to obtain more easily interpretable plots, we joined the closest neighbors among the samples
with line segments. The distance between two samples is defined by the Euclidean distance in the space spanned by all the remaining
variables. The hierarchical clusterings in panel (d) are created using Euclidean distances and average linkage. The figures in (a), (b) and (d) were

generated using Qlucore Omics Explorer 2.2 (Qlucore AB, Lund, Sweden).

the choice of S must be guided by other criteria. This is
because the variables with the highest F-score may in
this case very well characterize many different sample
groups, not all of which can simultaneously be accu-
rately visualized in low dimension.

The NCI-60 data set [33] contains expression measure-
ments of 9,706 genes in 63 cell lines from nine different
types of cancers. We first filter the variable set with
respect to the association with the partition defined by all
the nine cancer types, using S = {1, 2, 3}. This gives a most
informative subset consisting of 482 variables, with a pro-
jection score 7 = 0.351. The resulting sample representa-
tion, obtained by applying PCA to the most informative
variable subset, is shown in Figure 2(a). The representation
based on all variables is shown in Figure 2(b) and the

projection score is shown in Figure 2(c) as a function of
logo(cx). Figure 2(d) shows the p-value distribution, which
indicates that there are indeed variables which are truly
significantly associated to the response. Figure 2(e) shows
a heatmap for the most informative variable subset (the
same as in Figure 2(a)) where it can be seen that the sam-
ples are reasonably well clustered according to cancer type
based on these 482 variables only.

Next, we set out to study how informative the contrasts
between one cancer type and all the others are. We filter
the variable set using the association with the contrast of
one cancer type vs the rest, using S = {1}. Figure 3(a) shows
some of the projection score curves. First, we can note that
the range of p-values, as well as the range of obtained pro-
jection scores, are highly different for the different
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Figure 2 Response-related filtering of the NCI-60 data. (a) The sample representation obtained by applying PCA to the most informative
variable subset (482 variables) obtained by filtering with respect to the F-value for contrasting all nine cancer types. The different colors indicate
different cancer types. (b) The sample representation obtained by applying PCA to the entire variable set (9,706 variables). (c) The projection
score as a function of log;o(e), where a is the p-value threshold used for inclusion. (d) The p-value distribution for all variables, indicating that
there are truly significantly differentially expressed genes with respect to the contrast. (e) Heatmap of the most informative variable subset, that
is, the one used to create the sample representation in (a). In panels (a) and (b), in order to obtain more easily interpretable plots, we joined the
closest neighbors among the samples with line segments. The distance between two samples is defined by the Euclidean distance in the space
spanned by all the remaining variables. The hierarchical clusterings in panel (e) are created using Euclidean distances and average linkage. The
figures in (a), (b) and (e) were generated using Qlucore Omics Explorer 2.2 (Qlucore AB, Lund, Sweden).
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Figure 3 Response-related filtering of the NCI-60 data - continued. (a) The projection score as a function of log;o(c), where ¢ is the p-value
threshold used for inclusion when contrasting each of four cancer types with all the other eight types in the NCI60 data set. For the Melanoma,
Leukemia and Renal types, small groups of variables form the most informative subsets. For the NSCLC type, the entire variable collection is the
most informative variable subset. (b) The p-value distribution for all variables when contrasting NSCLC with all other groups, indicating that there
are essentially no truly significantly differentially expressed genes for this contrast. (c) The p-value distribution for all variables when contrasting

value

contrasts. The highest projection scores in the respective
cases are 0.416 (for the Melanoma vs the rest contrast),
0.348 (Leukemia), 0.281 (Renal) and 0.164 (NSCLC).
Apparently, for each of the Melanoma, Leukemia and
Renal contrasts, a small subset of the variables related to
the respective response contains a lot of non-random infor-
mation. However, for the NSCLC contrast the full variable
set (corresponding to log;oer = 0) is the most informative.
This can be understood from Figure 3(b), which shows a
histogram over the p-values obtained from the F-test con-
trasting the NSCLC group with the rest of the samples.
The p-values are essentially uniformly distributed, indicat-
ing that there are no truly differentially expressed genes in
this case. Hence, in the filtering process we do not unravel
any non-random structure, but only remove the variables
which are informative in other respects. Figure 3(c) shows
the p-value distribution for the Melanoma contrast. In this

case, there are indeed some differentially expressed genes,
which means that in the filtering process, we purify this
signal and are left with an informative set of variables. The
projection scores obtained from the different contrasts are
consistent with Figure 2(a), in the sense that the highest
projection scores are obtained from the contrasts corre-
sponding to the cancer types which form the most appar-
ent clusters in this sample representation, that is, the
Melanoma samples and the Leukemia samples. The
NSCLC samples do not form a tight cluster and are
not particularly deviating from the rest of the samples in
Figure 2(a).

Combined variance and response-related filtering of the
NCI-60 data set

In some cases, the variable set is first filtered by variance
before a statistical test is applied. Removing supposedly
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non-informative variables in this way may be beneficial in
terms of statistical power, since if the number of per-
formed tests is high, we need to do a rather heavy correc-
tion for multiple comparisons. Also with the approach
proposed in this paper, we can combine different filtering
procedures to find a variable subset which is informative
from more than one perspective. Here, we show how to
combine variance filtering with response-related filtering
for the NCI-60 data set. In this way, we exclude all vari-
ables that obtain small p-values from the F-test mostly
due to their low variances. As before, we define a collec-
tion of variance thresholds 0,, and a number of signifi-
cance thresholds «,,, for the F-test contrasting all nine
cancer types. We choose S = {1, 2, 3} as before. Now, the
projection score can be represented as a surface, shown
in Figure 4(a), for varying values of the variance and p-
value thresholds. The curves traced out for log;o(@) = 0
and 0 = 0 correspond to the projection score curves for
the individual variance and response-related filterings,
respectively. As can be seen in Figure 4(a), we get the
maximal projection score for a variable subset obtained
by a combination of variance filtering and response-
related filtering. This subset includes all variables with a
variance exceeding 5.8% of the maximal variance, and
with a p-value below 3.6 - 107, in total 263 variables. The
maximal projection score is 7 = 0.416. This can be com-
pared to the purely response-related filtering, which gave
a maximal projection score of 7 = 0.351 by including the
482 variables with p-values below 2.1 - 10, Figure 4(b)
shows the sample configuration obtained by applying
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PCA to the most informative variable subset from the
combined filtering.

Shaving of a leukemia data set

Here, we will use the projection score to evaluate the
informativeness of variable subsets obtained by the shav-
ing procedure described in [25]. Briefly, for a given frac-
tion e (0, 1), we define a function & : 211+# — pil-p}
by letting &(R) consist of the fraction 1 -  of the vari-
ables in R having the highest loadings in the first princi-
pal component of the data set consisting of the variables
in R. The selection functions ¢@,, are then defined by let-

ting @,,(X) contain all variables in w({l' B P}).
m

We use 7 = 0.02, hence in each step shaving off 2% of
the variables, continuing until only one variable remains.
We compute the projection score for each of the vari-
able subsets, as well as the gap statistic proposed in [25]
(using the signed variables, see Methods section).

We apply the described method to the leukemia data
set studied in [34]. The data set contains gene expres-
sion measurements from 7,129 genes in 38 samples
with either AML (N = 11) or ALL (N = 27). Comput-
ing the projection score and the gap statistic for the
variable subsets obtained by shaving gives optimal vari-
able subsets containing 691 variables (projection score)
and 336 variables (gap statistic), respectively. Figure 5
(a) shows the two informativeness measures as func-
tions of the variable subset cardinality. Both curves are
smooth and have clear extreme points. Figures 5(b)

Projection score

log, () 0

(a)

Mereast
Wcns

[ Colon

[ Leukemia
l Melanoma
EnscLe

[ ovarian
Cerostate

MRenal

Figure 4 Combined variance and response-related filtering of the NCI-60 data. (a) The projection score for various choices of the inclusion
criteria for the variance (6, fraction of max variance) and the p-value from an F-test contrasting all nine cancer types (log;o(cr), where o is the p-
value threshold). The optimal projection score is obtained by combining the two filtering procedures. (b) The sample representation obtained by
applying PCA to the most informative variable subset. In panel (b), in order to obtain a more easily interpretable plot, we joined the closest
neighbors among the samples with line segments. The distance between two samples is defined by the Euclidean distance in the space
spanned by all the remaining variables. The figure in (b) was generated using Qlucore Omics Explorer 2.2 (Qlucore AB, Lund, Sweden).
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Figure 5 Gene shaving of the leukemia data. (a) The projection score (black) and the gene shaving gap statistic (red) as functions of the
cardinality of the variable subset. (b) Heatmap of the most informative variable subset by the projection score, consisting of 691 variables. Red -
ALL, green - AML. (c) Heatmap of the most informative variable subset by the gene shaving gap statistic, consisting of 336 variables. The

hierarchical clusterings in panels (b) and (c) are created using Euclidean distances and average linkage. The figures in (b) and (c) were generated
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and 5(c) show heatmaps for the optimal variable sub-
sets from the two methods. As can be seen in these
figures, the two subsets contain much the same infor-
mation about the samples in the data set. The variable
subset selected by the projection score is larger than
the one selected by the gap statistic. In some situa-
tions, a small number of included variables may be

Table 1 Sparsity detection, example 1

Measure First component Second component
Projection score 10 (10-10) 10 (9-10)
Gap statistic 10 (9-10) 10 (8-10)
SPC 18.5 (10-46) 21 (11-32)
SSVD 11 (10-13) 105 (1-12)

The median and range (across 10 instances) of the number of non-zero
elements included in the optimal variable subset found by different methods.
Each underlying component contains 10 non-zero elements. SPC - sparse PCA
[22]. SSVD - sparse SVD [27]. The gap statistic is defined as in [25,26].

beneficial. However, as will be shown (Tables 1 and 2,
see the section “Detecting sparsity in principal compo-
nents” below), the gap statistic tends to underestimate
the number of variables in the optimal subset (this was
also noted in [26]), which may potentially be the case
also in this example. This would then lead to a num-
ber of “false negatives”, that is, variables falsely
excluded from the optimal combination.

Validation on synthetic data

In this section, we will validate the projection score by
using it to find informative variable subsets from differ-
ent filtering processes applied to synthetic data sets.
Variance filtering

We let

| -05if1<j<50,
Hi=1+0.5 if 51 <j < 100.
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Table 2 Sparsity detection, example 2

Measure First component Second component
Projection score 160 (156-160) 152 (133-156)
Gap statistic 122.5 (106-133) 78 (60-100)

SPC 260.5 (229-499) 311.5 (280-494)
SSVD 162.5 (161-339) 164 (162-313)

The median and range (across 10 instances) of the number of non-zero
elements included in the optimal variable subset found by different methods.
Each underlying component contains 160 non-zero elements. SPC - sparse
PCA [22]. SSVD - sparse SVD [27]. The gap statistic is defined as in [25,26].

and generate a synthetic data set with 1,000 variables
and 100 samples by letting

N(uj o) if 1 <i<150;
1<j<100

N(0,0.5) if 151 <i < 1,000;
1 <j<100.

Xij €

The only non-random structure in the data is contained
in the first 150 variables, discriminating between two
groups of 50 samples each. By varying o; we obtain data
sets with difference variance properties. With o; = 0.5, the
informative variables and the non-informative variables
have comparable variances. With o; = 0.2, the informative
variables obtain a lower variance than the non-informative
variables and with o; = 0.8 the informative variables are
also those with the highest variances.

We take S = {1}, since no other choice of S is sup-
ported by any variable subset. This is also consistent
with the structure of the data matrix.

Across 20 realizations, the mean number of variables
in the subset giving the best projection score are 710.2
for o, = 0.5 (standard deviation 143.1), 999.9 for o, =
0.2 (standard deviation 0.30) and 118.3 for o; = 0.8
(standard deviation 15.0). The projection score correctly
indicates that when o; = 0.2, the informative structure
in the data is indeed related to the variables with lowest
variances, and hence all variables are included in the
most informative subset (that is, no variance filtering).
Note that the association between the variables within
each sample group is very strong when o; = 0.2. If the
variables with lowest variance had been routinely filtered
out in this example, we would lose the informativeness
in the data. It can also be noted that when the number
of variables is below a certain threshold (approximately
850) in the o, = 0.2 case, not even S = {1} is supported
by the data since we have filtered out all the informative
variables. For 07 = 0.5, the optimal number of variables
is highly dependent on the specific data set since the fil-
tering removes both informative and non-informative
variables uniformly.

Response-related filtering
In this example, we simulate a data matrix containing
two group structures (see [35]). The data set consists of
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40 samples which are divided into four consecutive
groups of 10 samples each, denoted 4, b, ¢, d. We define

| —2ifjea U,
Fi=1+2 ifjecua

o —1lifjea Ug
F3=1 41 ifjebud

The data matrix is then generated by letting

N(pj, 1) if 1 < i < 200;

1<j=40
e N (m2j, 1) if 201 < i < 250;
g 1<j<40
N(0,1) if251 <i<1,000;
1 <j < 40.

We perform a two-sided ¢-test contrasting @ U ¢ and b
U d and order the variables by the absolute value of their
t-statistic for this contrast. In this case, since we compare
only two groups we are essentially searching for a one-
dimensional separation, so we choose S = {1}. Figure 6(a)
shows the structure of the data set. The data set contains
one very strong factor, encoded by the first 200 variables,
and one weaker factor, the one we are interested in,
which is related to the next 50 variables. Figures 6(b) and
6(c) show the projection score for different thresholds on
the significance level o and for different variable subset
cardinalities, respectively. The optimal projection score
(approximately 0.33) is obtained for variable subsets con-
taining slightly less than 50 variables (mean value across
20 simulations of 38.0, standard deviation 4.6, range
30-46). Hence, even though there is indeed much infor-
mation contained in the entire variable set, it is possible
to obtain an even more informative variable subset by fil-
tering. Projecting onto the first principal component
based only on the variables in the most informative sub-
set clearly discriminates between a4 U ¢ and b U d, as
shown in Figure 6(d). As above, we can compare the
maximal projection score corresponding to filtering by
the association with different responses. Filtering with
respect to the association with the contrast between a U
b and c U d, that is, the stronger factor in the data set,
gives a maximal projection score around 0.60. Hence,
this correctly suggests that this factor is more informative
than the previously studied. Filtering with respect to the
variance, still using S = {1}, gives a maximal projection
score of 0.68, obtained for approximately 200 variables
(the variables related to the first factor in the data). This
implies that the variables with high variance in this case
are even more informative than the variables closely asso-
ciated with one of the responses, in the sense that the
encoded information deviates more from what would be
expected from the highly varying variables in a rando-
mized data set. Applying variance filtering with S = {1, 2}
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represent variables. (b) The projection score as a function of logo(c), where o is the p-value threshold used as inclusion criterion. (c) The
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provides a most informative variable subset containing
222 variables, capturing parts of both the two informative
variable groups in the data (note that the variances of the
variables in the second, smaller group are not all larger
than the variances of the non-informative variables). S =
{1, 2, 3} is not supported by any variable subset.

Detecting sparsity in principal components

In this example, we will evaluate the usefulness of the pro-
jection score for detection of sparsity in the leading princi-
pal components of a data matrix. We generate a data set,
with p = 500 variables and N = 50 samples, following the
scheme given in [21]. Briefly, we form a matrix V = [vy, ...,
v,,] from an orthonormal set of p principal components v;,
s Vp € R?, and a matrix C = diag(cy, .., ¢,) containing the
eigenvalues in decreasing order on the diagonal. Then, we
form the covariance matrix X by

p
Y= Z civiviT =vevr,
i=1

To generate data, we let Z be a random draw from
N(0,1,) and take X = VC'?Z. The first two principal
components (v; and v,) are constructed to have specific
sparsity patterns. In the first example, we let v; and v,
contain 10 non-zero elements each (all of equal magni-
tude and selected in such a way that the two sets of non-
zero elements are non-overlapping) and choose ¢; = 30,
¢y = 16. We let ¢, = 1 for k = 3, ..., 500 and sample the
entries of the corresponding principal components uni-
formly between 0 and 1 before orthogonalizing and nor-
malizing them. In the second example, we let v; and v,
instead contain 160 non-zero (equal) elements. We
choose ¢; = 400 and ¢, = 200 and proceed as in the pre-
vious example to obtain the rest of the components.

The variable subsets are obtained by the shaving pro-
cedure, as outlined above and described in [25]. This
gives a nested sequence of variable subsets, which can
be evaluated in terms of their projection scores. We also
compute the gap statistic as defined in [25] as another
quality measure of each variable subset. The optimal
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variable subsets obtained from these methods are com-
pared to those found by a sparse PCA algorithm [22]
and the sparse SVD proposed in [27]. It should be
noted that the aims of these methods are somewhat dif-
ferent. The sparse PCA attempts to find a good approxi-
mation of the original data set using only a subset of the
variables, while the sparse SVD was developed for
biclustering, that is, finding small groups of variables
which are related across possibly only a subset of the
samples. Hence, also the sample representation can be
sparse (that is, only describing some of the samples) in
the results from the sparse SVD. In the examples stu-
died here, however, the sparsity patterns of the principal
components are designed to be identical across all sam-
ples. The sparse SVD and the sparse PCA were applied
through the R programs provided by the respective
authors. The sparse SVD was applied with y, = 7, = 2,
as suggested by the authors. The sparsity parameter in
the sparse PCA was estimated via the cross-validation
function provided with the R package, evaluating 100
different sparsity levels between 1 and /500 via 5-fold
cross-validation.

Table 1 and Table 2 give the median and the range of
the number of non-zero entries in the first two principal
components across 10 instances of each example. To
obtain the second component, we orthogonalized the
observed data matrix with respect to the first component
and extracted the first component from the orthogona-
lized matrix. The results in Table 1 and Table 2 suggest
that the projection score is able to detect the underlying
sparsity structure of the principal components. The gap
statistic tends to underestimate the number of variables
in the optimal variable subset, as was also noted in [26].
The sparse PCA consistently overestimates the number
of non-zero entries of the components. The sparse SVD
performs well in many cases, but the variability is larger
than for the projection score-based method.

Estimating Ep, [(az(Ax, S))l/z]

To obtain Ep, [(az(Ax, S))l/z], we repeatedly permute

the values in each row of X and perform the variable filter-
ing, which is computationally expensive (see Methods sec-
tion). A more efficient implementation can be obtained if
we specify the distribution Py, (x) for each m = 1, .., M in

advance. Then, the values of Ep, [(az(A¢m(x), S))l/z]

can be estimated in advance and stored, which leaves only
the calculations for the observed data matrix and the sub-
traction of a known quantity for each variable subset. For
instance, we can fix Py, (x) by assuming that each element
in ¢,,(X) is drawn from a standard normal distribution,
that is,

Page 12 of 17

(m(X)); € N(0,1)

fori =1, .., |R,|l andj =1, .., N. We can then calcu-
late the expected value of (a2 (Ag,(x), S))/? for a large
collection of choices of variable subset cardinalities and
sample sizes. Figure 7 shows an interpolated surface for
10 < |R,,| <2, 000 and 10 < N < 100. This more com-
putationally efficient approach may be used for example
for variance filtering, if the observed data matrix is stan-
dardized before the principal components are extracted.

When the variable subsets are defined by response-
related filtering, it is more difficult to specify and sample
from the truncated distribution resulting from the filter-
ing. In particular, we note that even for a data matrix X
containing only independent variables, we still expect to
see an aggregation of the variance in the first principal
components when we consider small submatrices ¢,,(X).
In some cases, however, it may still be of interest to
compare the singular values from the observed data to
those from matrices with a given, known distribution
such as the one described above. We next give a small
example to show the different conclusions that can
result if different definitions of Py, x) are used.
Example
We define X € R * %0 by letting x;j € N(0,1) for i =
1, .., 1,000; j = 1, .., 40. We divide the samples into
four consecutive groups 4, b, ¢, d of 10 samples each, as
in the response-related filtering above, and filter the
variable set based on the absolute value of the ¢-statistic
contrasting groups aUc and bUd, using S = {1}. If Py, (x)
is defined by assuming that each element of ¢,,(X) is
drawn from a standard normal distribution, the most
informative variable subset contains 11 variables. Here,
even though we study a completely random matrix and
an artificial grouping of the samples, we obtain a good
separation between the groups. However, the projection
score is not very high in this case (r = 0.119). Figure 8
shows the projection score as a function of the signifi-
cance threshold, and the optimal projection. As can be
seen, just looking at the visualization in the right panel
we might be led to believe that there is actually some
non-random structure in the data. On the other hand, if
we define Py, (x) as we have done in the previous exam-
ples, by assuming independence among the samples and
variables of the original matrix X and then filtering, no
submatrix supports even S = {1}, and hence we get an
indication that we are filtering a matrix without non-
random relationships between the variables.

Conclusions

In this paper, we have introduced and shown the useful-
ness of the projection score, a measure of the informa-
tiveness of a subset of a given variable set, based on the
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variance contained in the corresponding sample config-
uration obtained by PCA. The definition of the projec-
tion score is straightforward and the interpretation in
terms of captured variance is intuitively appealing in a
PCA visualization context. Moreover, the projection
score allows a unified treatment of variable selection by
filtering in the context of visualization, and we have
shown that it indeed gives relevant results for three

different filtering procedures, both for microarray data
and for synthetic data. By filtering with respect to a spe-
cific factor, we obtain sparse principal components
where all variables receiving a non-zero weight are
indeed strongly related to the chosen factor. In this
respect, the resulting components may be more easily
interpretable than general sparse principal components,
where the variables obtaining a non-zero weight can be
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related to many different factors. The optimal number
of variables included in the extracted principal compo-
nents often increases with |S| and in many cases small
variable subsets do not even support large subsets S.

Methods

The projection score

Definition and basic properties

Let X = [xy, .., X5] € RN be a given matrix with rank
r, containing N samples of p random variables. Principal
Component Analysis (PCA) [1-4] reduces the dimen-
sionality of the data by projecting the samples onto a
few uncorrelated latent variables encoding as much as
possible of the variance in the original data. Assuming
that each variable is mean-centered across the samples,
the empirical covariance matrix (scaled by N - 1) is
given by XX”. The covariance matrix is positive semi-
definite with rank r, so by the spectral theorem we have
a decomposition

XXV = VAZ.

Here V = [vy, .., v,] is a p x r matrix such that V'V =
I,, where I, is the r x r identity matrix, and Ax = diag
(A1(X), ..., (X)) is the r x r diagonal matrix having the
positive square root of the non-zero eigenvalues of XX”
(that is, the singular values of X) in decreasing order
along the diagonal.

The orthonormal columns of V contain the weights of
the principal components, and the coordinates of the
samples in this basis are given by U = X”V. We obtain
a lower-dimensional sample configuration by selecting
the columns of U with index in a specified subset S €
{1, .., r}. The rows of this matrix then provide a repre-
sentation of the samples in an |S|-dimensional space. In
this paper the aim is to find particularly instructive such

sample configurations for a given choice of S, by includ-
ing only a subset of the original variables with non-zero
weights in the principal components.

The first principal component is the linear combina-
tion of the original variables which has the largest var-
iance, and the variance is given by A2(X). Similarly, the
second principal component has the largest variance
among linear combinations which are uncorrelated with
the first component. Given a subset S € {1, ..., r }, the
fraction of the total variance encoded by the principal
components with index in S is consequently

Zkes )‘}% (X)
21 2 (X)

This interpretation implies that &, can be used as a
measure of the amount of information captured in the
corresponding |S|-dimensional sample configuration. In
some applications, it is fairly straight-forward to select a
suitable subset S. The synthetic example above, where
we filter the variables by their association to a response
variable dividing the samples into two groups, is such a
case, where we expect a one-dimensional signal and
hence select S = {1}. In other applications, we may select
S={1,2}or S ={1, 2, 3} in order to make visualization
possible. It is also possible to try several different
choices of S for the same data set, in order to possibly
detect different patterns. A specific choice of S effec-
tively indicates which part of the data is to be consid-
ered as the “signal” of interest, and the rest is in some
sense considered irrelevant. For a given S the expected
value of o, depends heavily on the size and the underly-
ing distribution of the matrix X. This should be taken
into account in order to obtain a reasonable measure of
the informativeness of X. We introduce the projection
score as follows:

[0%) (Ax, S) =
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Definition 1 (Projection score). Let X € R”*" be a
matrix with rank r. For a given matrix probability distri-
bution Px and a subset S € {1, ..., r} we define the pro-
jection score t(X, S, Px) by

(X, S, Px)
= (@a(Ax ) — Eny [ (@2(Ax $) ]

where Ax = (A1(X), ..., 1,(X)) is the length-r vector
containing the non-zero singular values of X in decreas-
ing order.

While much work is going on in the field of random
matrix theory and eigenvalue distributions for random
matrices (see e.g. [36-38]), most results are asymptotic
and only valid under certain distributional assumptions
on the matrix elements. Since we do not expect such
assumptions to hold true in general for submatrices
obtained by variable selection procedures, it is often
necessary to use randomization methods to estimate

Ep [(e2(Ax, )]

The relationship between the projection score and the
quality measure from the gene shaving algorithm

As described in the previous section, the projection
score is a measure of the informativeness of a variable
subset. Let X € RN denote the submatrix correspond-
ing to a certain variable subset. Letting X;; denote the
value of the /'th variable in the subset for the j'th sample
and assuming S = {1}, the informativeness measure used
by the projection score is given by

2
N k
[112]‘=1 (Zi:l IBiXiJ‘>
= kN
N Lict 2 X

where 8 = (B4, ..., Bx) is the first principal component of
X. The expression in the denominator is the variance of
the variable subset, and the numerator is the variance of
a weighted average of the variables in the subset, where
each variable is weighted by the corresponding element
of the first principal component. In [25,26], the authors
use another quality measure of a variable subset, and
apply it to subsets generated by a shaving procedure. The
quality measure proposed in [25,26] is given by

N k =\?

R2 = 111 j=1 ((Zi:l iXij) _X>
- . _
i ien e (X — X)

where X denotes the overall mean value of X. To
allow both positively and negatively correlated variables
in the same cluster, the values are multiplied by the sign
of the corresponding element of the first principal com-
ponent of the variable subset before computing R*. This
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quality measure is similar to our informativeness mea-
sure, but all variables are weighted equally, by 1/k.
Hence, in this case the Euclidean norm of the weight
vector depends on k, while for the weight vector in the
projection score we have ||8]|5 = 1. As noted in [26], the
R* measure is biased towards small cluster sizes.

How to use the projection score

In this section, we will outline how the projection score
can be used to compare the informativeness of M differ-
ent submatrices of a given matrix X. For a given collec-
tion of variable subsets R,,, m = 1, ..., M, we define
functions

b : RN 5 RIRnIXN

for m = 1, ..., M by letting ¢,,,(X) be a submatrix of X
containing only the rows corresponding to the variables
in R,,. For filtering purposes, the number of variables to
include in each submatrix (|R,,|) can be determined by
setting threshold levels on an underlying statistic in the
observed matrix X. For example, one can successively
include all variables with variances greater than 1%, 2%,
... of the maximal variance among all variables. Note
that this is only one example of how the variable subsets
can be defined, and that there are many other possibili-
ties. For example, we could successively include the 100,
200, . . . variables with the largest variances. Given a
null distribution Py, (x) for each ¢,,(X), we can calculate
the projection score T(¢m(X), S, Py, x)) for m = 1, ..., M.
For a fixed S, a subset R, is then said to be more infor-
mative than a subset R,, if

T(om(X), S, Py, (x)) = T(a(X), S, Py, (x))-

Note that the same S should be used for both subsets.
In general, it is very difficult to compare projection
scores obtained for different choices of S.

The null distribution Py, x), for matrices of dimension
|R,;| x N, can be defined in different ways. One particu-
larly simple way is to assume that every matrix element
is drawn independently from a given probability distri-
bution, e.g. x;; € N'(0,1) for i = 1, .., |R,| and j = 1, ...,
N. Then, the optimal projection score is obtained for
the submatrix whose singular values deviate most from
what would be expected if all matrix elements were
independent standard normally distributed variables.
However, even if the original data set consists of inde-
pendent normally distributed variables, this is not in
general true after applying ¢,,. This means that even a
submatrix obtained by filtering independent normally
distributed variables may be far from the null distribu-
tion defined this way.

In the applications in this paper, we define Px by per-
mutation of the observed data, assuming that X consists
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of N independent samples of p independent variables.
We then define the null distribution of each variable in
¢,,(X) by truncation of the corresponding distribution
obtained from Px, with respect to the features of ¢,,.
For real microarray data sets, which often contain a
considerable amount of non-random variation, the vari-
ables are generally far from independent. Therefore we
expect that the variance encoded by the leading princi-
pal components of the real data is larger than for the
data generated under the null model, and the basic idea
behind the projection score is to use the difference
between them as an informativeness measure.

In practice, we generate B data matrices X*?, b = 1, ...,
B from Px by permuting the values in each row of X
independently. For each X*” we compute a(Axw, S),
and the expected value of (0(Ax, $))? under the prob-
ability distribution Px is then estimated as

B
b (et 7] = 3 (enlre )

Similarly, Ep, [(az(A¢m(x),S))1/2] is estimated by

repeated permutation of the values in each row of X,
followed by application of ¢,, to the permuted matrix.
Hence,

[P¢7n(x] [(az(A¢m(X)’ S))l/z]

B
1
"B > (a(Ay, xy, 9)'
b=1

For each b, the variable subsets R,,, are re-defined in
such a way that each (pm(X*b) contains the same number
of variables as ¢,,(X). In our examples, we permute the
data matrices B = 100 times.

When the number of variables is decreased by filter-
ing, the true dimensionality of the resulting data set
(that is, the number of non-trivial principal compo-
nents) may change. We say that a submatrix ¢,,(X) sup-
ports a given S if the variance accounted for by each of
the principal components of ¢,,(X) with index in S is
large enough. More specifically, we estimate the distri-
bution of A}(¢m(X)) for each k € S under the probabil-
ity distribution Py, x). If the estimated probability of
obtaining a value of A7 (¢n(X)) at least as large as the
observed value is less than 5% for all k € S, we say that
the submatrix ¢,,(X) supports S. In practice, the null
distribution of A7 (¢ (X)) is estimated from the singular
values of the submatrices qom(X*b). Permutation methods
similar to this approach, comparing some function of
the singular values between the observed and permuted
data, have been used and validated in several studies to
determine the number of components to retain in PCA
[4,31,39].
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Generalizations of the projection score

In this section we will indicate some possible generaliza-
tions of the projection score defined above.

Generalized measure of information

We noted above that o,(Ay, S) is a natural measure of
the information contained in the principal components
of X with index in S. More generally, we can use any £4
norm (g > 1) instead of the £* norm to measure infor-
mation content, giving a measure of the explained frac-
tion of the information content as

Zkes )‘Z (X) )
> et M(X)

By replacing (o(Ax, $))2 in the definition of the pro-
jection score with, for example, a function of the form

aq(Ax, S) =

g =hoa;/q

where /1 : R — R is an increasing function, we obtain
a generalized projection score as

‘L’g(X, S, Px)
= 8(Ax, S) — Eni[8(Ax, S)]-

An alternative generalization is obtained by normaliz-
ing by taking the quotient of the observed and expected
value of g(Ax, S) instead of the difference, that is, defin-
ing the generalized projection score as

04(X, S, Px) = Ep [g(Ax, S)]

Supervised projection score

The projection score evaluates only the informativeness
of the variable subsets with respect to visualization by
PCA. We can make the variable subset selection (par-
tially) supervised by incorporating a term quantifying
the association of the variable subset with a response
variable into the projection score. The term can be, for
example, the classification ability of the variable subset
(estimated by cross-validation) or the correlation
between an aggregate of the variables and a quantitative
response.
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