
NETGEM: Network Embedded Temporal
GEnerative Model for gene expression data
Jethava et al.

Jethava et al. BMC Bioinformatics 2011, 12:327
http://www.biomedcentral.com/1471-2105/12/327 (8 August 2011)



METHODOLOGY ARTICLE Open Access

NETGEM: Network Embedded Temporal
GEnerative Model for gene expression data
Vinay Jethava1, Chiranjib Bhattacharyya2, Devdatt Dubhashi1 and Goutham N Vemuri3*

Abstract

Background: Temporal analysis of gene expression data has been limited to identifying genes whose expression
varies with time and/or correlation between genes that have similar temporal profiles. Often, the methods do not
consider the underlying network constraints that connect the genes. It is becoming increasingly evident that
interactions change substantially with time. Thus far, there is no systematic method to relate the temporal changes
in gene expression to the dynamics of interactions between them. Information on interaction dynamics would
open up possibilities for discovering new mechanisms of regulation by providing valuable insight into identifying
time-sensitive interactions as well as permit studies on the effect of a genetic perturbation.

Results: We present NETGEM, a tractable model rooted in Markov dynamics, for analyzing the dynamics of the
interactions between proteins based on the dynamics of the expression changes of the genes that encode them.
The model treats the interaction strengths as random variables which are modulated by suitable priors. This
approach is necessitated by the extremely small sample size of the datasets, relative to the number of interactions.
The model is amenable to a linear time algorithm for efficient inference. Using temporal gene expression data,
NETGEM was successful in identifying (i) temporal interactions and determining their strength, (ii) functional
categories of the actively interacting partners and (iii) dynamics of interactions in perturbed networks.

Conclusions: NETGEM represents an optimal trade-off between model complexity and data requirement. It was
able to deduce actively interacting genes and functional categories from temporal gene expression data. It permits
inference by incorporating the information available in perturbed networks. Given that the inputs to NETGEM are
only the network and the temporal variation of the nodes, this algorithm promises to have widespread
applications, beyond biological systems.
The source code for NETGEM is available from https://github.com/vjethava/NETGEM

Background
Gene expression microarrays are increasingly used to
determine transcriptional regulation in response to a
genetic or environmental perturbation. Often the infer-
ence is presented as a static network of genes that are
activated or repressed by relevant transcription factors,
similar to a wiring diagram of electrical circuits [1].
However, biological networks are inherently dynamic. In
order to reveal the dynamics of the networks, substantial
effort has been devoted to measuring the dynamics of
gene expression or protein abundance. This information
permitted identifying genes or proteins that substantially

varied with time and their correlation to other cellular
components, but not the interactions between cellular
components. It is clear that dedicated mathematical
models have to be generated to infer the dynamics of
interactions in the biological networks.
Conventional methods of time series analysis cannot

be applied to this problem due to the small number of
observations (gene expression data) from different time
points are available relative to variables (gene interaction
strengths) [2]. Additionally, there is the inherent risk of
many genes having similar expression profile, just by
random chance. Recognizing these problems, it is only
recently that dedicated methods are being developed to
infer temporal regulation of transcription [3-5]. These,
and other methods reviewed recently [6] do not con-
sider the interaction networks connecting the genes nor
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any dependency of observations between time points
and hence are not suitable for the problem at hand.
In this paper, we consider the problem of identifying

temporal changes in the interactions in a network with
a known topology from temporal profiles of gene
expression data. The protein interaction network of
baker’s yeast, Saccharomyces cerevisiae is arguably the
most well-constructed with a high level of confidence
[7]. Therefore, we used this network to study and vali-
date our models. The proteins in yeast are classified
according to their biological function, as defined by
MIPS [8]. This annotation scheme provides functional
description of the proteins in a hierarchical structure to
a high degree of resolution. This allows the possibility
to relate functional classification of the network compo-
nents with the temporal interactions between them.
This line of reasoning leads to two very fundamental
questions: (i) can we distill observations about temporal
characteristics of a group of functionally similar genes?
(ii) would it be possible to model the effect of a genetic
perturbation (gene deletion or addition) while compar-
ing temporal interactions between the reference strain
and its perturbed mutant?
We introduce NETGEM, which stands for “Network

Embedded Temporal GEnerative Model for gene expres-
sion data”, a generative model for analyzing temporal
data which is capable of capturing the interaction
dynamics in the network. Our approach incorporates
network effects into Markovian dynamics, and also com-
pares the impact of genetic perturbation on the interac-
tion dynamics. A fundamental premise of the model is
that the evolution of the interaction strengths can be
modeled in terms of the functional categories of the
interacting genes. To the best of our knowledge, this is
the first time such a model has been investigated. NET-
GEM assumes that the interaction strengths evolve con-
ditionally independent of each other conditioned on the
functional roles of the constituent genes. This assump-
tion leads to a model where one can derive efficient
inference procedures which have linear time complexity
in the number of temporal observations. To handle the
problem of low sample size, we adopt a Bayesian
approach by introducing appropriate priors over the
parameters governing the evolution of the interactions.
Information from multiple mutants which differ from
the reference strain in their network topology is incor-
porated by assuming that interactions closer to the per-
turbation (gene deletions) are affected more strongly
than those further away.
Recent work [1,9,10] has focussed on learning locally

sparse temporally rewiring interaction networks. Tem-
porally rewiring gene networks were recovered by sol-
ving the intractable partition function evaluation using
sampling techniques [9]. The key difference between our

approach and the previous work is the generative model
which encapsulates the functional category information.
Further, the simplifications implemented in our work
allow us to scale our inference procedure to large
genetic networks.
Time-sensitive interactions were inferred from gene

expression data using L1-regularization [10]. Such meth-
ods are extremely useful if the underlying network is
not available. However, for the cases where the topology
of the network is known, it is only logical to take advan-
tage of this information and identify the interactions
that change with time.
The main contribution of this paper is a generative

probabilistic graphical model based on Markovian
dynamics for temporal dynamics of gen e interactions
that

• integrates known information about the underlying
interaction network,
• encapsulates known functional category informa-
tion to modulate the Markovian dynamics,
• develops a simple and fast method to jointly infer
closely related models corresponding to small per-
turbations of a base network, and
• incorporates Bayesian approach to address the pro-
blem of small sample size.

Therefore, NETGEM takes the high throughput, tem-
poral gene expression data and the network topology as
inputs and scores the interactions based on the change
in the expression value of the connected nodes over dis-
crete time intervals. Furthermore, it has the built-in cap-
ability to assess the impact of a perturbation, such as a
gene deletion, on the network. The underlying assump-
tion is that the impact of the perturbation dampens
with distance from the perturbed node. In order to pro-
vide physiological insight into the dynamics, the genes
are classified according to their functional categories
and the interaction between the functional categories is
also assessed.

Methods
Datasets and Interaction Network
Dynamic gene expression datasets from Saccharomyces
cerevisiae were downloaded from Gene Expression
Omnibus using accession numbers GSE21988 and
GSE9644. The first dataset contained the expression
profiles of the genes in S. cerevisiae during the gradual
increment in the availability of glucose. Therefore, the
cells experience a transition from glucose starvation to
nitrogen starvation (unpublished data). The data was
measured at eight time points. The second dataset con-
tained temporal gene expression profiles in SFP1 dele-
tion mutant and its isogenic reference at six time points
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after pulsing steadily growing cells with glucose [11].
The reference strain is referred to as REF, the strain in
which SFP1 was deleted is referred to as MUT. The raw
data was obtained as CEL files, which was normalized
and preprocessed in R programming environment using
BioConductor suite of tools [12]. Background intensity
in all the arrays was corrected using GeneChip Robust
Multi-array Average algorithm [13]. The probe-level
data was subjected to preprocessing by quantile normal-
ization and median polish summarization.
The yeast interaction network was constructed using

previously published data [14-19] as well as data down-
loaded from BIND [20], MIPS [8], MINT [21], DIP [22]
and BioGRID [23]. We compiled all the interactions
listed in these databases and retained only those interac-
tions that were backed by at least two independent
sources, resulting in a high-confidence protein interac-
tion network. We excluded protein-DNA interactions
since the result of this interaction is the gene expression
and including these interactions would result in a cyclic
relationship between the interactions and gene expres-
sion. We overlaid the gene expression data onto the
protein interaction network. Therefore, inherent in this
is the assumption that gene expression is translated into
protein abundance uniformly among all proteins.

Model description
We model the high confidence gene interactions net-
work as a graph G = (V, E). We assume there are S per-
turbed networks or strains, indexed by the set {1, ..., S},
each having some genetic perturbation compared to the
base network. Under different conditions, some of the
edges are switched on or off, or, more generally set at
various (discrete) levels of activation W(|W | = M).
Furthermore, an edge may be active in one strain and
not in others at the same time.
Let Xs,t

v be a random variable on ℝ denoting the
microarray gene expression level for gene v Î V in
strain s at time t, i.e. the event {Xs,t

v = xs,tv } indicates the
microarray expression level of gene v in strain s at time
t is xs,tv ∈ R. We note that the gene expressions levels
are not restricted to a discrete set. Similarly, let Ws,t

e be
a random variable on W representing the activation
level of the edge e = (i, j) Î E between the genes i Î V
and j Î V in strain s at time t.
We use the notation �Xs,t = {Xs,t

v }v∈V and

�Ws,t = {Ws,t
e }{e∈E} to denote the gene microarray expres-

sion levels and the edge interaction strengths in strain s
at time t respectively. For simplicity, we write W0,t

e and
x0,tv as Wt

e and xtv for all e ÎE and v Î V respectively.
We begin by describing the overall proess dynamics as
follows.

Observation model
We model the probability of the gene expression levels
�Xs,t = {Xs,t

v }v∈V conditioned on the interaction strengths

�Ws,t = {Ws,t
e }{e∈E} in the interaction network for strain s

at time t as:

P(�Xs,t = �xs,t| �Ws,t = �ws,t) =
1

Z(�ws,t)
exp

⎛
⎝ ∑

e=(i,j)∈E
ws,t
e x

s,t
i x

s,t
j

⎞
⎠ (1)

where Z(�ws,t) is the normalization constant.
Evolution model
We assume that the weights evolve according to the
Markov chain i.e.

P( �Ws,(t+1) = �ws,t| �Ws,t = �ws,t) = Qs(�ws,t, �ws,(t+1)) (2)

where Qs(�ws,t, �ws,(t+1)) is the probability of the transi-
tion from state �ws,t at time t to state �ws,(t+1) at time (t +
1) common for all strains {1, ..., S}. We assume that the
overall dynamics for the interactions strengths in all the
strains is governed by the same underlying factors, while
instantaneous variations might occur in the interactions
strengths due to local perturbations i.e.

Qs(�w, �w′) = Q(�w, �w′) ∀1 ≤ s ≤ S (3)

Incorporating functional categories via mixtures
Since genes belong to multiple categories, a mixture
model is a naturally suited model to handle the influ-
ence of multiple functional categories in the inference
procedure. This allows us to explore the relationship
between functional categories and the temporal evolu-
tion characteristics of the genes which fall in the same
functional category. The remainder of this section
describes the machinery for incorporating the functional
category information into the generative model.
Let there be H possible gene functional categories, and

each gene can be a member of one or more functional
classes C = {C1, ...,CH} where the hierarchical class Ch is
characterized by evolution matrix Qh. The evolution
probability matrix Qe for each edge e Î E is given as

Qe =
H∑
h=1

αe,hQh (4)

P(Wt+1
e = wj|Wt

e = wi; {αe,h,Qh}) = Qe(i, j) (5)

Where ae,h denotes the influence of functional class
Ch in the edge e such that

∑
h αe,h = 1 for all edges e Î

E and Qe(i, j) denotes the (i, j) element of the edge tran-
sition probability matrix Qe.
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Prior on transition probabilities (Θ)
The learning of the model parameters is significantly
difficult when there are few time points. To alleviate
this, we propose a prior Θ on the transition probabilities
Qh. The individual rows −→q l of the transition probability
Qh can be thought about as drawn from a multinomial
distribution. The Dirichlet distribution is the conjugate
distribution [24] of the multinomial distribution and
hence naturally suited as a prior distribution. We model
the transition probabilities matrices as Dirichlet distribu-
tions, such that the prior on the transition probabilities
matrix Q given the parameter Θ is

P(−→q l|−→θ l) ∼ Dir(ql1, . . . , qlM; θl1, . . . , θlM) (6)

=
1

B(
−→
θ l)

M∏
m=1

θlm−1
qlm (7)

where −→
θ l = [θl1, . . . , θlM] and B(

−→
θ l) is the multino-

mial beta function [24]. Since, there is no information
apriori about the functional categories, we chose a non-
informative prior. Specifically. each row element of the
prior is sampled from a uniform random distiribution;
following which the row is normalized (

∑
m θlm = 1).

Prior on mixing proportions (Λ)
We incorporate the effect of the functional classification
of genes on the mixture components �αe for and edge e
by using a Dirichlet prior of the form:

P(�αe) ∼ Dir(αe,1, . . . ,αe,H;λe,1, . . . ,λe,H) (8)

with the prior parameter, le,h, for the edge, e = (i, j),
of the form

λe,h =
{

λp if genes i or j in class h
λo otherwise

(9)

A value of lp = 1 and lο = 0 is used in the
experiments.
Functional Category (Y )
We define the random variable Yt

e which denotes the
functional category active at time t for edge e; such that
the event Yt

e = h implies that
P(Wt+1

e = wm|Wt
e = wl, Yt

e = h) = qh(l,m).

Analysis of Perturbed Networks
We consider the problem of multiple strains which are
just slightly altered versions of the networks where a
few genes have been knocked out of the network.
Therefore, most of the network remains the same across
strains with only the “close” neighbourhood of the
knocked out genes being affected. We assume that the
weights corresponding to the reference strain �wt evolve
according to a Markov law given by a matrix Q, where

∑
m Q(l,m) = 1 with the property that

∑
m Q(l,m) = 1

for all the initial states wl. For other strains, we assume
that the corresponding values are just slightly perturbed;
thus

ws,t
e = wt

e�
s
e (10)

The perturbing parameters �s
e are determined determi-

nistically from the underlying network G by

�s(i, j) = (1 − γ s
i )(1 − γ s

j ) (11)

where γ s
i ∈ [0, 1] is a label determined by how far the

gene i is in the underlying network to one of the genes
knocked out in strain s. We note that the deterministic
nature of the damping implies that all strains evolve
similarly, i.e., Qs = Q∀s. This allows us to incorporate
the information for gene expression levels in the differ-
ent strains while learning the temporal evolution
characteristics.
We compute the damping factor γ s

i for the genes as
follows: If the gene i is knocked out in strain s then we
label it as γ s

i = 1. Now, we diffuse the labels across the

graph such that γ s
i =

1
d(i)

β
∑

j∈N(i) γ s
j where d(i) and N

(i) denotes the degree and the set of neighbors of gene i
respectively, i.e., the damping factor at a node is the
average of the damping factors at its neighbors. Here b
is a hyper-parameter which can be used to control the
damping effect. We investigated two schemes: a distance
dependent b such that starting from the deleted node,
all nodes at distance (in a breadth first search from the
deleted node), greater than a selected distance have b =
0. We also investigated b in the range [0, 1]. Intuitively,
while Γe = 0 for an edge directly incident to one of the
knocked out genes, the perturbation gradually damps
out with distance from the knocked out gene and for an
edge e far away from one of the knocked out genes Γe ≈
1. In the experiments, a value of β = 0.5hi is used where
hi denotes the distance of node i from the knocked-out
node.

NETGEM: a generative model
We now present a unifying view of the NETGEM model
as a generative probabilistic model for gene expression
data {�Xs,t} for multiple strains s Î {1, ..., S} and observa-
tion time points t Î {1, ..., T}. The quantities known
apriori are the number of classes H, the set of edges E,
the number of strains S and the number of observation
points T. The generative process corresponding to our
model is given in Table 1.
The key principle underlying the model is that the

interaction dynamics are governed by the functional
categories. In particular, for each edge e and time t, we
generate a functional category Yt

e. This functional
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category is solely responsible for the change of interac-
tion strength from wt

e to wt+1
e . The interaction strengths

affect the observed gene expression data, through the
strain damping model and the conditional probability
distribution in (1). On the whole, this is equivalent to a
mixture of the corresponding functional categories with
appropriate mixing proportions.

Inference
The hidden variables are � = {Yt

e ,W
t
e}; and the para-

meters to be learnt are Ψ = {Qh, ae,h}. The hyper-para-
meters Λ and Θ are chosen as non-informative priors.
An Expectation Maximization (EM) [25] procedure is

used to obtain the iterative update equations for α
(n+1)
e,h′

and q(n+1)h (l,m). Details on choice of hyper-parameters

and E.M. procedure are provided in Additional File 1
accompanying this paper.

Selection of significant interactions
The E.M. inference procedure in our model estimates
the most probable sequence of states Wt

e for all edges e
Î E over the simulation time period. However, many
edges have few changes, and we need to select the inter-
actions having temporally significant interactions based
on a suitable metric.
The dynamics of the interaction strength Wt

e of an
edge e is governed by the Markov transition probability
Qe in our model. Therefore, we characterize the evolu-
tion of interaction strengths as significant or not signifi-
cant under the hypothesis [26]

H0 : The interaction we(t) on an edge e Î E is not sig-
nificant if the transition probability matrix Qe has more
than P % of its mass on the diagonal, i.e.

tr(Qe) >

(
P
100

)
W,

H1 : The interactions we(t) on an edge e Î E is signifi-
cant if the transition probability matrix Qe has at most P

% of its mass on the diagonal, i.e. tr(Qe) ≤
(

P
100

)
W,

where tr(Qe) denotes the trace of Markov transition
probability Qe for edge e given as

tr(Qe) =
M∑
i=1

qe(i, i) (12)

and M = |W | denotes the total number of possible
interaction strengths for an edge in the network.
The choice of an appropriate test statistic is a non-tri-

vial matter. For example, the weights {-2, -1, 0, 1, 2} on
an edge e = (g, g’) corresponds to increasing degree of
positive correlation between the expression data for
genes g and g’. Therefore, a change from w = -2
(strongly repressing) to w = +2 (strongly activating) is
more significant than a change from w = -2 to 0 (uncor-
related). Further, the transition probabilities for the
edges Qe are dependent on the functional categories
transition probabilities Qh.
We use the test statistic sT (e) which measures the

degree of change exhibited by the edge (interaction), e;

sT(e) =
1
T

T−1∑
t=1

(wt+1
e − wt

e)
2

(13)

where T is the total number of observations and we(t)
is the interaction strength of edge e at time t. We define
change score s̃T(h) for the functional category Ch as

s̃T(h) =

∑
{e∈E:αe,h≥0}αe,hsT(e)∑

{e∈E:αe,h≥0}αe,h
(14)

The decision rule based on sT (·) is given as:
d0 : The interaction for edge e (functional category h)

does not have temporally significant dynamics if
sT(e) < s∗ (s̃T(h) < s∗), and
d1 : The interaction for edge e (functional category h)

has temporally significant dynamics if
sT(e) ≥ s∗ (s̃T(h) ≥ s∗),
where s* is the critical value.
The test statistic sT (e) is a random quantity depend-

ing on the Markov transition probability Qe describing
the evolution of interaction strengths we(t) defined on
edge e. However, the change score sT(e) generally
decreases with increasing trace tr(Qe). Please see the

Table 1 NETGEM Generative process

Require: H {set of functional categories}

Require: G = (V, E) {interaction network graph}

Require: Λ ={le}eÎE {prior on functional category mixtures}

Require: Θ ={θh}hÎH {prior on class transition probability}

1: for all h in H do

2: Choose Qh|θh s.t. each row �qh(i, :) ∼ Dir(�θh (i, :))
3: for all e in E do

4: Choose αe|λe s.t. �αe ∼ Dir(λe)
5: for t = 1 to T do

6: for all e in E do

7: Choose Yt
e ∼ P(Yt

e = h) = αe,h

8: ChooseQt
e|Yt

e whereQ
t
e|{Yt

e = h} = Qh

9: Choose wt
e ∼ Pe(wt

e|wt−1
e ,Qt−1

e ) in (5)

10: Compute ws,t
e = �s

ew
t
e

11: Choose �Xs,t| �Ws,t in (1)

Table 1 shows the generative process for the gene expression data {�Xs,t} for
multiple strains s Î {1, ..., S} and observation time points t Î {1, ..., T} in the
NETGEM model. The active functional category Yt

e controls the change of
interaction strength from wt

e to w
t+1
e in edge e at time t. The interaction

strengths affect the observed gene expression data, through the strain
damping model and the conditional probability distribution in (1).
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supplementary material (Additional File 1) accompany-
ing this manuscript for discussion on change score.
Figure 1 presents a high-level description of the NET-

GEM generative model and the resulting inference algo-
rithm. The hyper-parameters Θ and Λ and the strain
damping factor b are specified by the user. The infer-
ence is done over the hidden variables � = {Yt

e ,W
t
e}; and

the parameters to be learnt are Ψ = {Qh, ae,h}. The
inferred interaction dynamics �Ws,t is used to compute
the edge and functional category change scores sT (e)
and s̃T(h) respectively.

Results and Discussion
We first analyzed the performance of our model NET-
GEM (Figure 1) using synthetic data to investigate the
impact of functional categories on the inference.

Evaluation of NETGEM with synthetic data
We construct a synthetic graph G = (V, E) using the
Erdos-Renyi model consisting of |V | = 1000 nodes,
which represents the genes, and |E| = 5961 randomly
generated edges, which represent the gene interactions.
Each edge e Î E can have one of the following states
W = {−2,−1, 0, 1, 2}, signifying the interaction strength.
We consider two models for interaction dynamics in the
genetic network to investigate the impact of functional
category information on the interaction dynamics in the
gene interaction network, which are described below:

• The first model incorporates the functional cate-
gories, which impact the evolution of interaction
strengths as specified in eqn. (4) and eqn. (5). We
use H = 200 functional categories which govern the

Dynamic gene expression data, X
s,t

s, t

Gene interaction graph, G = (V,E)

Functional category information

Transition Probability, Qh

Edge functional category component, e,h

e,h
(n)

Qh
(n)

E-step (Forward-Backward algorithm)

M-step (Update)

Ye
t(n+1)

We
t(n+1)

Prior on transition 

probabilities, 

Prior on functional category 

components,

Strain damping factor

Edge interaction dynamics, We
s,t

Edge change score, sT (e)

Functional category change score sT (h)

Figure 1 The NETGEM model. This figure presents a high-level description of the NETGEM model and the resulting inference algorithm. Here
Λ, Θ are hyper-parameters and b is the strain damping factor. The parameters to be learnt are the functional category component for each
edge (ae) and the functional category transition probability matrix (Qh). The inference is done over the hidden variables � = {Yt

e ,W
t
e}, where

Yt
e andW

t
e are the random variables corresponding to the active functional category and the interaction strength for edge e at time t

respectively. The inferred interaction dynamics �Ws,t is used to compute the edge and functional category change scores sT (e) and s̃T(h)
respectively.
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behaviour of the evolution of the gene expression.
Nodes were randomly assigned to (multiple) func-
tional categories reflecting the empirical distribution
of functional categories for genes in MIPS database
[8] (See section D in Additional File 1 for details).
The transition probability matrix for the functional
categories Qh were sampled randomly from two
classes H0 : tr(Qh) >0.5W and H1 : tr(Qh) ≤ 0.5W.
The interaction dynamics for each edge (Qe)
depends on the functional categories (in terms of
Qh) that influence the nodes of the edge as in eqn.
(4).
• The second model assumes the evolution of the
interaction strengths for an edge is independent of
other edges. The transition probability matrix Qe for
each edge e Î E is generated by sampling with equal
probability from the two classes H0 : tr(Qe) >0.5W
and H1 : tr(Qe) ≤ 0.5W.

We simulate the dynamics for interactions for t Î {1,
..., 8} for each of the two models by generating interac-
tion strengths wt

e for each edge e by sampling from a
Markov chain with random starting state and transition
probability Qe chosen according to the model. At each
time instant, we generate observation xtv at each node x
Î V in {-1, 1} based on the interactions �wt at time t as
in eqn. (1) using Gibbs sampling [27]. This artificial data
is analogous to gene expression data in our model. The
simulation period chosen (T = 8) is small for generic
statistical inference techniques, reflecting the size of
gene expression datasets commonly available [4,28].
The inference in our model is done to learn the evolu-

tion dynamics of the functional categories based on the
interactions of multiple genes which have the corre-
sponding functional classification. Based on the inferred
interactions, we compute the change score sT (e) and
s̃T(h) for each edge e and functional category h as in
eqn. (13) and eqn. (14) respectively. The change score
allows us to classify the edge (or functional category) as
belonging to class H0 or H1 based on the choice of cri-
tical score s*. If we chose the critical value s* to be very
high, most of the edges or functional categories will be
classified as insignificant (belonging to class H0), as
their test statistics sT (e) or s̃T(h) will be less than the
critical value s*. Conversely, if we chose the critical
value s* to be 0, most of the edges or functional cate-
gories will be classified as significant (belonging to class
H1), as their test statistics sT (e) or s̃T(h) will be more
than the critical value s*.
We characterize the sensitivity of the test statistic

using the Receiver Operating Characteristics (ROC)
curve based on different critical values of the test statis-
tic s*. Figure 2 shows the comparison in ROC plots of

the edges e Î E and functional categories h Î H, based
on the corresponding test statistics sT (e) and s̃T(h) in
eqn. (13) and eqn. (14) respectively. The critical values
of the test statistic s* are indicated next to the obtained
operating characteristics. The Area Under Curve (AUC)
values for functional categories and edges are 0.9484
and 0.7208 respectively, which reflects the increased
accuracy in determining the dynamic functional cate-
gories compared to edges. We note that the multiple
edges corresponding to a functional category improves
the detection of significant functional categories even
under short time periods. If the gene expressions were
truly independent of the function of the genes, one
would observe fairly low accuracy in predicting the most
dynamic functional categories. Additional File 1 accom-
panying this manuscript presents additional experiments
discussing the choice of change score as a test statistic
for selection of significant interactions.
Further, the strain damping allows the incorporation

of multiple gene expression datasets which have been
generated under slightly different conditions. In effect,
we learn the dynamics of functional categories from
multiple instances of short time series which are not i.i.
d. but are strongly related through the functional classi-
fication. This reduces the variance in the results partly
alleviating the problem of inference in short time series.
One can model the dynamics of the simple model

defined by eqn. (1) and eqn. (2) using a simple HMM
having a large state space. The quantity to be estimated
is the transition probability Q. However, the exponential
state space makes such an approach impractical. For the
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purpose of study, we present a small experiment which
shows that incorporating the functional information in
beneficial in terms of computational requirements as
well as accuracy (See Additional File 1 for details).

Using NETGEM on gene expression data
This section presents inference results using our model
for identifying interaction dynamics from two gene
expression datasets in yeast.
We are interested in the edges which show consider-

able activity during the measured time points. Towards
this end, we compute the change score s(e) as in eqn.
(13). We fit an exponential distribution to it and con-
sider the weights falling in the top-5% (p = 0.05) tail of
the distribution. The interaction between the nodes
was visualized as a graph in the Cytoscape [29]
environment.
Our results show that the model correctly identifies

known interactions. For example, it discovers the gra-
dual transition from positive to negative interaction
strength in edges between carbohydrate metabolism and
protein synthesis genes. Moreover, it detects abrupt
changes in the interaction patterns. Combining expres-
sion data from a reference strain and Sfp1 knockout
strain shows that our model is able to successfully inte-
grate multiple strains via strain damping. It also impli-
cates many new actively interacting genes which have
an important role in the biological conditions corre-
sponding to the gene expression datasets. These can be
used as test candidates in future biological experiments.
The gene expression dataset in the following experi-

ments is normalized independently for each strain by
subtracting from the gene expression xs,tv at node v at
time t in strain s as

xs,tv = xs,tv − μs (15)

where μs =
1

|V| ∗ T

∑T−1
t=0

∑
v∈V xs,tv denotes the mean

gene expression level in strain s.
We chose the set W = {−2,−1, 0, 1, 2} as the set of

possible interactions for each edge. An (inferred) inter-
action of we = +2, we = -2 and we = 0 means the gene
expressions for the genes of edge e is strongly positively
correlated, strongly negatively correlated or uncorrelated
respectively. Similarly, an interaction of we = +1 or we =
-1 indicates weak positive or negative correlation
between the expressions for the genes of the edge e
respectively. Our choice of W allows us to infer the
degree of the correlation in addition to its sign. If this
information is not required, one could choose a smaller
state space (e.g. {-1, 0, 1}) which would reduce the over-
all complexity. Alternatively, if finer inference is
required, one can choose a larger state space at the cost

of higher computational complexity and additional prior
information that has to be provided.
Interaction dynamics in response to nutrient availability
(Experiment 1)
The data in this experiment captures the changes in gene
expression during the gradual transition from glucose to
ammonia as the growth-limiting nutrient. Genes that
have already been grouped into eight clusters [11] were
connected according to the protein interaction network
and the interaction strength between them was deter-
mined from gene expression using the model. At the
beginning of the experiment (t = 0 h), the cells were
starved for glucose and were progressively exposed to
increased glucose availability. After time t = 9.6 h, ammo-
nia became the limiting nutrient. Subsequent time points
capture the changes that occur in the presence of excess
glucose. In response to this transition, we observed corre-
sponding changes in glucose and ammonia metabolism,
which are reflected in the interactions between the genes
responsible for the synthesis of proteins and lipids.
Figures 3 shows the inferred interactions at t = 0.0 h.

Please see the supplementary material (Additional File
1) accompanying this manuscript for the inferred
dynamics for all eight time points, as well as the list of
twenty most dynamic gene-gene interactions. Our
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Figure 3 Experiment 1 network interactions . Time varying
interaction strengths between the genes from Experiment 1. Each
network is composed of all the genes from the eight clusters
previously identified [11], and is shown for t = 0.0 hrs. The edge
colors denote their interaction strength, which was classified as
strong repressing (red), low repressing (pink), no effect (yellow), low
inducing (light blue) and strong inducing (dark blue).
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model identified strong positive (inductive) interaction
between the genes of carbohydrate metabolism and pro-
tein synthesis (top left corner of the network) during
glucose starvation. The interaction strength gradually
decreased until t = 9.6 hours and subsequently turned
negative (repressive). Since the genes in this cluster pre-
dominantly belong to amino acid synthesis, our results
indicate a gradual repression in amino acid and protein
synthesis upon the onset of ammonia starvation.
The transition in the growth-limiting nutrient also

brought about an abrupt change in the interactions
between genes responsible for ribosome biosynthesis
(cluster of genes on the extreme right of each network).
Our model identified a momentary repression in the
synthesis of ribosomes at t = 9.6 hours, when the
growth limitation was exerted by ammonia. These genes
were constitutively active during all other time points,
as is expected because ribosome biosynthesis is an
essential cellular process. The temporary arrest in ribo-
some biosynthesis was attributed to the control exerted
by Sfp1 transcription factor [11]. Our model also identi-
fied positive interactions between amino acid metabo-
lism and cell cycle and negative interactions between
genes of storage carbohydrates and lipid metabolism.
Interaction dynamics in response to network perturbation
(Experiment 2)
An important aspect of NETGEM is to capture the
dynamics in response to a perturbation in the network.
The model allows identifying the significantly changed
interactions in response to a deletion of a gene. In this
experiment, we evaluate the effect of deleting a key tran-
scription factor, Sfp1 [30]. We chose this dataset since
Sfp1 was previously identified to be one of the most
important transcription factors that governed the
response to nutrient availability in yeast [11].
We first identified the interactions that are sensitive to

time and perturbation. The histogram of the number of
edges was fit to an exponential distribution and only
those interactions that passed the threshold cutoff of p
< = 0.05 were considered for subsequent analysis. In
this manner, we identified 171 interactions among the
genes that were already identified to have been differen-
tially expressed between REF and MUT. Please see the
supplementary material (Additional File 1) accompany-
ing this manuscript for details.
An important aspect of novelty in our model is the

incorporation of the damping effect in the model
through eqn. (10) and eqn. (11). This ensures that inter-
actions further from the point of perturbation in the
network are affected to a lesser degree than those closer
to it. The effect of damping is very sensitive to the net-
work and in the network we considered in this study, a
majority of the edges appear to be relatively unaffected
by the perturbation.

After assessing the effect of perturbation for our net-
work, we identified temporal changes in the interactions
in the REF strain as well as the MUT strain independently.
We observed some overlap in the actively interacting
genes between REF and MUT. Many of these genes were
hexose transporters and those responsible for pH homeos-
tasis. The genes (and the functional categories) that are
common to the strain indicate that they are not responsive
to the mutations. NETGEM was able to identify temporal
interactions that are most sensitive to the mutation. These
interactions predominantly occurred between ribosome
biosynthesis and amino acid metabolism. The results con-
cur with the known role of Sfp1 in coordinating metabo-
lism with ribosome biosynthesis and serve as an
independent validation of the accuracy of the damping
model incorporated in NETGEM. These interactions were
identified by considering gene expression profiles in REF
and MUT, using the damping model. Indeed the func-
tional classification of the genes between which interac-
tions change significantly indicate that Sfp1 transcription
factor has widespread control over coordinating ribosome
biosynthesis, pH homeostasis, transport of proteins and
drugs, etc. Table 2 and Table 3 show the list of MIPS IDs
corresponding to the 20 topmost functional categories
whose transitional probabilities exhibit the maximum

Table 2 Functional categories with maximum temporal
variation

REF MUT JOINT

32.01.04 32.01.04 32.01.04

20.09.03 20.09.03 20.09.03

10 16.21 16.21

16.21 32.05.05 11.04.02

11.04.02 10 10

32.05.05 11.04.02 12

20.01.27 40.01.05 32.05.05

30 30 30

16.03.03 10.01.09 16.03.03

20.09.07 10.03.01 32.07

12 14.13.01 20.09.07

32.07 20.01.10 40.01.03

20.01.15 16.03.03 20.01.27

42.04.05 20.09.07 10.01.09

34.07.02 42.04.03 34.07.02

10.03.01 16 32.07.07

40.01.03 34.07.02 16.02

10.01.09 12.01.01 42.04.05

42.29 01.03.01 42.29

32.07.07 32.07.07 14.04

Table 2 shows the MIPS IDs of the top 20 functional categories which show
the maximum amount of variation in time for REF or MUT strains, evaluated
independently and Jointly using the damping model. This is obtained by
considering the total probability of change in the transition probability matrix
Qh i.e.

∑
i�=j Qh(i, j). The categories indicated in bold font are those which

are known to have been enriched in the original dataset [30].
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degree of change in interaction strengths out of 260 possi-
ble functional categories, and the description of the func-
tional categories corresponding to the MIPS IDs
respectively. This is obtained by considering the total
probability of change in the transition probability matrix,
Qh, i.e.,

∑
i�=j Qh(i, j). The fact that many of these func-

tional categories have already been identified [30] to be
sensitive to the perturbation gives substantial credibility to
our findings. Figure 4 presents the temporal dynamics of
the interaction strengths in (a) REF, (b) MUT, and (c)
JOINT where the inference is based on both the strains
combined to t = 0 min.
Please see Additional File 2 for the Cytoscape attribute

files and the figures corresponding to Experiment 1 and
Experiment 2.

Conclusion
There is a trade off between using more sophisticated
conditional probability models p(ws(t)|w0(t)) involving

Table 3 Description of functional categories

MIPS ID Description of functional categories

01.03.01 purin nucleotide/nucleoside/nucleobase metabolism

10 cell cycle and DNA processing

10.01.09 DNA restriction or modification

10.03.01 mitotic cell cycle and cell cycle control

11.04.02 tRNA processing

12 protein synthesis

12.01.01 ribosomal proteins

14.04 protein targeting, sorting and translocation

14.13.01 cytoplasmic and nuclear protein degradation

16 protein with binding function or cofactor requirement
(structural or catalytic)

16.02 peptide binding

16.03.03 RNA binding

16.21 complex cofactor/cosubstrate/vitamine Binding

20.01.10 protein transport

20.01.15 electron transport

20.01.27 drug/toxin transport

20.09.03 peroxisomal transport

20.09.07 vesicular transport (Golgi network, etc.)

30 cellular communication/signal transduction mechanism

32.01.04 pH stress response

32.05.05 virulence, disease factors

32.07 detoxification

32.07.07 oxygen and radical detoxification

34.07.02 cell-matrix adhesion

40.01.03 directional cell growth (morphogenesis)

40.01.05 growth regulators/regulation of cell size

42.04.03 actin cytoskeleton

42.04.05 microtubule cytoskeleton

42.29 bud/growth tip

Table 3 presents the description of the functional categories corresponding to
the MIPS IDs present in Table 2.

(a)

(b)

(c)

Figure 4 Experiment 2 network interactions . Dynamics of
temporal interactions between genes in (a) REF, (b) MUT and in (c)
both strains combined, using the damping model for Experiment 2
at t = 0 min. All the genes identified to be significantly changed
[30] were combined into one network. The color of the edges in
the network indicates the interaction strength, which was classified
as strong repressing (red), low repressing (pink), no effect (yellow),
low inducing (light blue) and strong inducing (dark blue).
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more parameters to be learnt and the limited amount of
experimental data in order to model interaction
dynamics. NETGEM is a systematic model that relates
temporal changes in gene expression data to the
dynamics of interactions in the context of a regulatory
network. We believe that NETGEM achieves an optimal
balance between model complexity and the data require-
ment, while allowing ample flexibility to adjust the para-
meters. The framework of the model will also inherently
facilitate analyzing the effect of a perturbation in the
network. For a given regulatory network and gene
expression data, NETGEM was able to identify time-
sensitive interactions in the network and determine
their strength. It was able to deduce the most active
functional categories that interacted. In addition to
these, the NETGEM uses a damping feature that models
the effect of a network perturbation by localizing more
activity around the point of perturbation. These three
novel features that NETGEM offers reflect its advantage
over many other time-series models that have been
developed recently. Of particular interest is its ability to
capture abrupt changes in the interaction patterns. For
example, NETGEM identified momentary arrest in ribo-
some biosynthesis during the transition in the nutrient
that limits growth from glucose to ammonia (Experi-
ment 1). We identified many actively interacting genes
that were implicated to play an important role in the
biological conditions from which we obtained the data.
This lends the promise that new insights obtained from
using NETGEM are also physiologically relevant. Given
that the inputs to NETGEM are the topology of the net-
work and temporal variation of the nodes, it is evident
that this methodology has widespread applications in
analyzing network dynamics, beyond biological systems.

Additional material

Additional file 1: Supplementary material. This file contains the
supplementary material accompanying this manuscript.

Additional file 2: Cytoscape visualization data. This file is a zip archive
containing the Cytoscape attribute files and the figures corresponding to
Experiment 1 and Experiment 2. See the included README file for more
details.
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